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Solvent accessibility (SASA) is a key feature of proteins for determining their folding

and stability. SASA is computed from protein structures with different algorithms, and

from protein sequences with machine-learning based approaches trained on solved

structures. Here we ask the question as to which extent solvent exposure of residues

can be associated to the pathogenicity of the variation. By this, SASA of the wild-type

residue acquires a role in the context of functional annotation of protein single-residue

variations (SRVs). By mapping variations on a curated database of human protein

structures, we found that residues targeted by disease related SRVs are less accessible

to solvent than residues involved in polymorphisms. The disease association is not

evenly distributed among the different residue types: SRVs targeting glycine, tryptophan,

tyrosine, and cysteine are more frequently disease associated than others. For all

residues, the proportion of disease related SRVs largely increases when the wild-type

residue is buried and decreases when it is exposed. The extent of the increase depends

on the residue type. With the aid of an in house developed predictor, based on a

deep learning procedure and performing at the state-of-the-art, we are able to confirm

the above tendency by analyzing a large data set of residues subjected to variations

and occurring in some 12,494 human protein sequences still lacking three-dimensional

structure (derived from HUMSAVAR). Our data support the notion that surface accessible

area is a distinguished property of residues that undergo variation and that pathogenicity

is more frequently associated to the buried property than to the exposed one.

Keywords: solvent accessible surface area, relative solvent accessibility, protein variations, prediction of solvent

accessible surface, pathogenic protein variations

INTRODUCTION

In structural bioinformatics, Solvent Accessible Surface Area (SASA) [or briefly Accessible Surface
Area (ASA)] of proteins has always been considered a main feature for determining protein folding
and stability. Early computational studies (Lee and Richards, 1971; Chothia, 1976; Miller et al.,
1987, and references therein) emphasized the role of solvent exposed vs. non-exposed amino
acid residues in determining the protein structure. Typically, ASA is defined as the polar solvent
accessible area of a given protein, and it is computed by means of a solvent molecule, which
probes the protein surface beyond the van der Waals radius. After the first rolling ball algorithm
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(Shrake and Rupley, 1973), many alternatives became available
for computing ASA from the atomic coordinates of the protein
in its folded and unfolded state [for review see Ali et al.
(2014)]. Evidently, ASA is a function of the three dimensional
structure of the protein and, based on ASA values, amino acid
residues of a protein can be classified as buried or exposed
(Kabsch and Sander, 1983), a property that is conserved through
evolution in protein families (Rost and Sander, 1994). ASA is
routinely computed as an absolute value or as Relative Solvent
Accessibility (RSA), when the ASA value is divided by the
maximum possible solvent accessible surface area of the residue
(Tien et al., 2013). ASA gained also a pivot role in detecting
protein-protein interfaces of molecular complexes in the Protein
Data Bank (PDB) [for review see Savojardo et al. (2020), and
references therein].

With the advent of machine and deep learning-based
approaches (Baldi, 2018), many methods became available for
predicting RSA and ASA. They differ mainly in the machine
learning approach, the volume of the database of protein
structures and the predicted output (ASA, RSA, or binary
classification) (Rost and Sander, 1994; Pollastri et al., 2002;
Drozdetskiy et al., 2015; Ma and Wang, 2015; Fan et al., 2016;
Wu et al., 2017; Kaleel et al., 2019; Klausen et al., 2019).

Surface accessible area of residues can be important also
for functional annotation of disease related protein variants.
However, this property has been rarely included into the
physico-chemical characteristics adopted to describe the residues
undergoing variations (Chen and Zhou, 2005; Martelli et al.,
2016; Savojardo et al., 2019).

In this study, we investigate the relation between the
pathogenicity of human protein variations and the solvent
exposure of the residues undergoing variation (wild-type
residues). To this aim, we provide an updated version of a
highly curated dataset of Single Residue Variations (SRVs)
occurring in human proteins that can be mapped in high-
quality structures deposited in the Protein Data Bank (PDB).
The dataset, here referred to as HVAR3D-2.0, is generated from
data available at the HUMASVAR database and builds on top of
data previously analyzed in a different study (Savojardo et al.,
2019). On this structural dataset, we explore the relationship
between pathogenicity of SRVs and the solvent accessibility of
the corresponding wild-type residues. In particular, we determine
that the majority (67%) of disease-related SRVs occur in buried
positions whereas neutral SRVs occur mostly (64.3%) in exposed
residues. Moreover, SRVs targeting specific residue types such as
glycine, tryptophan, tyrosine, and cysteine, are more frequently
associated with disease than others are. Finally, for all residues,
and in particular for asparagine, glutamine, histidine, and
lysine, the proportion of disease related SRVs largely increases
when the wild-type residue is buried, and decreases when it is
exposed, confirming that, among other factors, the context can
be associated to the pathogenicity of the variations (Casadio et al.,
2011).

We extended the above analysis to a larger set of variations
included in HUMSAVAR and collected in a dataset called
HVARSEQ. In order to estimate the solvent accessibility of all
residues undergoing disease-related or neutral SRVs in human

proteins, we developed an in-house method based on deep-
learning for predicting solvent exposure from sequence. Our
method performance is comparable to state-of-the-art methods.
We apply it to all the residues of human protein sequences,
undergoing pathogenic and neutral SRVs in HVARSEQ.

Results of the large-scale analysis on protein sequences
support what observed in protein structures and confirm
the different distribution buried/exposed wild-type residues in
disease-related and neutral SRVs. Our data suggest that solvent
accessibility is a distinguished property of wild type residues
undergoing pathogenic variations.

MATERIALS AND METHODS

Variation Databases
All human Single-Residue Variations (SRVs) were collected from
HUMASVAR version 2020_04 (Aug 2020). As a first filtering step,
we retained variations labeled as “Disease” and “Polymorphism,”
neglecting all variations labeled as “Unclassified.” Disease-related
SRVs not associated with OMIM diseases were excluded. After
this procedure we ended up with a large set of SRVs occurring
on human protein sequence. Here this dataset is referred to as
HVARSEQ (Human VARiations in SEQuences)

In order to build the structural dataset (here referred to
as HVAR3D-2.0, Human VARiations in three Dimensional
structures), we firstly identified, among all the sequences included
in HVARSEQ, the subset of proteins endowed with a PDB
structure meeting the following criteria:

• Coverage of the corresponding UniProtKB sequence is ≥70%;
• Experimental method is X-ray crystallography;
• Resolution is ≤ 3Å.

The mapping of SRV positions on protein structure was
performed using data from the Structure Integration with
Function, Taxonomy and Sequence (SIFTS) project1. Protein
structures having ambiguous or wrong SIFTS mapping files were
excluded from the dataset.

Computing Solvent Exposure
The absolute Accessible Surface Area (ASA) of each wild-type
residue undergoing variation has been computed using the
DSSP program (Kabsch and Sander, 1983). Relative Solvent
Accessibility (RSA) values were then obtained dividing absolute
ASA values in Å2 by residue-specificmaximal accessibility values,
as extracted from the Sander and Rost scale (Rost and Sander,
1994). Finally, each residue has been classified as buried (B) if its
RSA was below 20%, and exposed (E) otherwise.

Computing PD, PD|R, PD|B,R, and PD|E,R
In this study, the background probability of a wild-type residue
to be disease associated in a dataset of wild-type residues is
computed as follows:

PD =
nD

N
(1)

1https://www.ebi.ac.uk/pdbe/docs/sifts/.
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where nD andN are the number of wild-type residues undergoing
disease-related variations and the total number of wild-type
residues undergoing variations (disease related or not) in the
dataset, respectively.

The conditional probability of being disease related when
variated, given a wild-type residue R, is computed as follows:

PD|R =
nDR

nR
(2)

where nDR and nR are the number of wild-type residues of a given
R type, which are disease related upon variations, and the total
number of R residues in the whole dataset, respectively.

The conditional probability of a wild-type residue R to be
disease related upon variation when buried is computed as:

PD|B,R =
nDBR

nBR
(3)

where nDBR and nBR are the number of buried wild type R residue
in the set of wild type disease related upon variation and the total
number of buried R wild type residues, respectively.

Similarly, the conditional probability of a wild-type residue
R to be disease related upon variation when exposed is
computed as:

PD|E,R =
nDER

nER
(4)

where nDER and nER are the number of exposed wild type R
residue in the set of wild-type disease related upon variation and
the total number of exposed R wild type residues, respectively.

All the above probabilities are estimated considering the
structural dataset HVAR3D-2.0, and by computing the residue
solvent accessibility with the DSSP program. Moreover, we
extended the analysis to the whole HVARSEQ sequence dataset,
by estimating the residue exposure state (buried and exposed)
with a predictor implemented in-house and described in the
following section.

Predicting Solvent Accessibility From the
Protein Sequence
The method implements a deep-learning architecture processing
an input based on the following descriptors:

• The residue one-hot encoding, representing primary
sequence information;

• Evolutionary information encoded with a protein sequence
profile, as extracted from multiple sequence alignment
generated using the HHblits version 3 program (Steinegger
et al., 2019). We performed two search iterations with default
parameters against the Uniclust30 database (Mirdita et al.,
2017).

Our deep architecture processes the input using three cascading
Bidirectional Long-Short TermMemory (BLSTM) layers (Graves
and Schmidhuber, 2005). BLSTMs belong to the class of LSTM
(Hochreiter and Schmidhuber, 1997), a special recurrent neural
network architecture well-suited for processing protein sequence

data and extracting significant sequential relations between
elements of the sequence. BLSTMs are an extension of LSTMs
performing a double scanning of the input sequence, from
left to right and vice versa, in order to better capture the
sequential relations among sequence positions. The adoption
of the recurrent BLSTM allows the method to take into
consideration the local sequence context without the explicit use
of a fixed-size window centered on each residue.

The output of the third recurrent layer is then provided as
input to a time-distributed fully connected layer adopting a
sigmoid activation function. This layer is responsible for the final,
binary classification of each residue in the sequence into buried or
exposed classes. In particular, the numerical output value in the
range [0, 1] attached to each residue is interpreted as a probability
p of being exposed: all residues with p ≥ 0.5 are predicted as
exposed while those with p < 0.5 are classified as buried.

The dataset adopted to train and test the predictor presented
in this study has been extracted from the Protein Data
Bank (interrogated Oct 15, 2019) (Berman, 2000). Overall,
the dataset comprises 2532 non-redundant, author-declared
functional monomeric PDB structures, obtained with X-ray
crystallography at < 2.5 Å resolution and covering more than
70% of corresponding UniProtKB sequences. All proteins in the
dataset share <30% sequence identity. This dataset was then
randomly split into a training set, comprising 2,352 sequences,
and an independent blind test set including 200 sequences.
Proteins in the training set were further split into 10 equally-
sized sets for setting the values of hyperparameters with a cross-
validation procedure.

Solvent exposure for training/testing data has been computed
using DSSP as detailed in Section: Computing solvent exposure.
The residues were classified into buried and exposed using a
RSA threshold of 20%. Using this threshold, the set of residues
is roughly divided into equally sized subsets comprising 52%
and 48% of buried and exposed residues, respectively, providing
balanced datasets for training and testing.

RESULTS

HVAR3D-2.0: A Dataset of Variations
Covered by 3D Structure
The structural dataset collected in this work, here referred to
as HVAR3D-2.0, is an updated version of the dataset described
in a previous study (Savojardo et al., 2019). The dataset has
been derived by mapping on PDB structures OMIM-related and
neutral SRVs annotated in the HUMSAVAR database2, release
2020_08 (Aug, 2020). Only structures determined with X-ray
crystallography with resolution ≤3Å and covering ≥70% of
the corresponding UniProtKB sequences were selected. After
this stringent filtering, we ended-up with a high-quality dataset
comprising 10,760 human SRVs occurring on 1,255 PDB entries
(corresponding to 1,285 protein chains). The set includes 6,778
and 3,982 disease-related and neutral SRVs, respectively. Table 1
lists a summary of the HVAR3D-2.0 content. The HVAR3D-2.0
dataset is available in Supplementary Table 1 in TSV format.

2https://www.uniprot.org/docs/humasavar
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TABLE 1 | Statistics of HVAR3D 2.0 dataset.

Description Counts (#)

PDB structures 1,255

PDB chains 1,285

Distinct SRV positions 9,379

SRVs 10,760

Disease-related SRVs 6,778

Neutral SRVs 3,982

In the present study, we are interested in investigating the
relation between the pathogenicity of SRVs and the solvent
accessibility of the residue undergoing variation. For this reason,
we firstly computed Accessible Surface Area (ASA) values for
all 1,285 protein chains included in the HVAR3D dataset using
the DSSP program (Kabsch and Sander, 1983). Raw ASAs
were then converted into Relative Solvent Accessibility (RSA)
values using the Rost and Sander maximal accessibility scale
(Rost and Sander, 1994). Finally, all residues with RSA ≥

20% were labeled as exposed (E) or buried (B) otherwise.
This threshold (or similar ones, in the range of 15–25% RSA)
is routinely adopted for computing the protein surfaces and
deriving classification datasets in many studies (Thompson and
Goldstein, 1996; Mucchielli-Giorgi et al., 1999; Pollastri et al.,
2002; Kaleel et al., 2019), since it roughly divides the set of
residues in a protein in two equally-sized subsets. In HVAR3D,
using a 20% RSA threshold, we obtain 55% and 45% of residues
classified as buried and exposed, respectively, corresponding to
a realistic characterization of the protein interior (accounting
for completely and partially buried residues) and surface (Miller
et al., 1987). Preliminary analysis highlighted that the choice of
the RSA threshold (in the reasonable range of 15–25% RSA)
only minorly affects the conclusions drawn in this study (data
not shown). For this reason, all the subsequent analyses were
performed using the aforementioned threshold.

Focusing our attention to structure positions undergoing
SRVs, we firstly computed the different proportions of buried
and exposed wild-type residues associated to disease-related
and neutral SRVs. As shown in Figure 1, 67% of wild-type
residues undergoing disease-related variations are located in
buried positions and about 64% of wild-type residues involved
in neutral variations are exposed. This conclusion corroborates,
on a much larger structural database, results partially reported
in previous studies (Martelli et al., 2016; Savojardo et al., 2019).
The relative abundance of disease-related variations in buried
positions of the protein and of neutral ones in exposed positions
suggests that the solvent accessibility of the variated position is a
further property to consider when determining the pathogenicity
of a variation.

Analyzing Distributions of Variated
Wild-Type Residues in the Structure
Database
We tackle the problem of associating solvent exposure to
a specific wild-type residue as a characteristic feature to be

FIGURE 1 | Pie charts showing the fractions of buried/exposed wild-type

residues undergoing disease-related (left) and neutral (right) SRVs in the

HVAR3D-2.0 dataset, respectively.

FIGURE 2 | Composition of buried (A) and exposed (B) wild-type residues

undergoing disease-related and neutral variations in the HVAR3D-2.0 dataset.

associated to its variation type (neutral or disease related).
We compute the relative frequency of occurrence in the
buried and exposed sets of each residue undergoing a disease
related or neutral variation (Figures 2A,B). It is evident that
while some residue types are more often disease related when
variated in the buried state (Q, H, D, E, K), others (including
G, W, C, and R) are disease related upon variation in
either state.
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FIGURE 3 | Probabilities of the 20 wild-type residues undergoing disease-related variations, depending on the wild type residue and the exposure state in

HVAR3D-2.0. Buried and exposure state of each residue position are estimated with DSSP as described in Section: Analyzing distributions of variated wild-type

residues in the structure database. PD: the probability of a wild-type residue (position) to be disease associated in the HVAR3D-2.0 dataset [see Equation (1)]. PD|R:

the conditional probability of being disease related when variated, given a wild-type residue [see Equation (2)]. PD|B,R: the conditional probability of a wild-type residue

to be disease related upon variation when buried [see Equation (3)]. PD|E,R: the conditional probability of a wild-type residue to be disease related upon variation when

exposed [see Equation (4)].

However, when we compute the conditional probabilities per
residue type, clearly the tendency of the majority of the wild-
type residues is that of being disease-related upon variation when
buried (red squares in Figure 3). Indeed, in Figure 3 we show
to which extent the knowledge of the solvent exposure changes
the a priori probability of a given residue type to be associated
with disease. For each residue type R, we report the conditional
probability of being associated to disease (PD|R, black squares)
and how the two conditional probabilities (PD|B,R and PD|E,R
in red and blue squares, respectively) change, given that the
variated residue is buried or exposed. We contrast these values
to the baseline frequency of disease related variations in the
HVAR3D-2.0 dataset, referred to as PD and equal to 0.62.

In Figure 3, when comparing PD|R of each residue R (black
squares) with the baseline value PD, it is evident that not all the
residues are equally likely to be associated with disease when
variated. Residues like glycine (G), leucine (L) tryptophan (W),
tyrosine (Y), and cysteine (C) show values of PD|R that are higher
than the baseline, indicating that their variations are frequently
associated to disease in the database. Furthermore, for all residues
the relation PD|B,R > PD|R > PD|E,R holds. This means that for all
residue types, the probability that SRVs are related to disease is
higher when the wild-type residue is buried (red squares) than
when it is exposed (blue squares). The extent of this difference
depends on the residue type and it is remarkable for asparagine
(N), glutamine (Q), histidine (H), and lysine (K). All these
residues are polar and abundant on the protein surface (data
not shown). On average, when variated, they are associated to
disease with a frequency comparable or lower than the baseline
0.62. However, when variations of these residue types occur in
buried positions, the frequency of disease related variations raises
to values around 0.8, reaching 0.85 in the case of glutamine (Q)
and lysine (K). Remarkably, for three residues [tryptophan (W),
tyrosine (Y) and cysteine (C)] the frequency of disease-related
variation is higher than the baseline, rather independently of

the exposure state. Conversely, the fraction of disease-related
variations of valine (V) and isoleucine (I) is lower than the
baseline, independently of their accessibility.

Overall, these findings highlight a relation between the
pathogenicity of the variation and the solvent accessibility of the
wild-type residue and show that the extent of the association
depends on the residue type. In all cases, variations occurring
in buried positions are more likely to be disease-related. This is
particularly so for charged residues, for polar residues such as
asparagine (N), glutamine (Q) and histidine (H), and for proline
(P), cysteine (C), and tryptophan (W).

HVARSEQ: A Dataset of Protein Sequences
With Variations
Here we make use of computational prediction of solvent
accessibility to extend our analysis to all the positions
undergoing variations contained in HUMSAVAR. From the
HUMSAVAR database, release 2020_08 (Aug, 2020), we collected
all polymorphisms and all OMIM-related SRVs occurring in
protein sequences. Unclassified SRVs were filtered-out from the
set. Overall, 69,385 SRVs were collected. 29,949 and 39,436 SRVs
are disease-related and neutral, respectively, occurring on 12,494
protein sequences. Here, this extended set of protein sequences
is referred to as HVARSEQ. In Table 2 we summarize the basic
statistics of the dataset. The HVARSEQ dataset is available in
Supplementary Table 2 in TSV format.

Predicting Solvent Accessibility
For computing solvent accessibility from protein sequences,
we implemented an in-house method for predicting solvent
exposure from sequence. The method is based on deep-learning
processing of several input features, which encode the protein
sequence and the sequence profile (seeMaterials andMethods for
more details on the method). Our method classifies each residue
of the sequence into two classes: buried (B), corresponding
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TABLE 2 | Statistics of HVARSEQ dataset.

Description Counts (#)

UniProtKB sequences 12,494

Distinct SRV positions 64,869

SRVs 69,385

Disease-related SRVs 29,949

Neutral SRVs 39,436

TABLE 3 | Performance of our deep learning-based method for predicting solvent

exposure from protein sequence.

Scoring index Dataset

Cross-validation Blind test HVAR3D-2.0

MCC 0.63 0.63 0.60

Q2 (accuracy) 81% 82% 80%

F1 81% 82% 80%

TABLE 4 | Performance of different methods for solvent accessibility prediction on

the blind test set described in this study comprising 200 protein sequences.

Method MCC Q2 % F1 %

PaleAle 5.0 0.65 82 84

NetSurfP-2.0 0.67 83 81

Our method 0.63 82 82

to residues whose RSA is lower than 20%, and exposed (E),
corresponding to residues with RSA ≥ 20%.

Performances are listed in Table 3 and are evaluated adopting
three different testing sets (by adopting a cross validation
procedure (leftmost column); on the blind test (central column);
on our HVAR3D-2.0 dataset, for which solvent exposure can
be directly computed using DSSP). Comparing the first two
columns, it is evident that our method is robust, achieving
generalization performances that are as good and even better
than cross-validation results. Overall, our method is able to
discriminate buried from exposed residues with Q2 (accuracy),
MCC (Matthew Correlation Coefficient) and F1 equal to 82%,
0.63 and 82%, respectively. When scored on the HVAR3D-2.0
dataset, the performance is almost unchanged, suggesting that
our method is quite stable across different datasets.

We also performed a side-by-side comparison between our
method and two state-of-the-art approaches, namely PaleAle5.0
(Kaleel et al., 2019) and NetSurfP-2.0 (Klausen et al., 2019).
Results are reported in Table 4. All methods perform quite well,
with comparable scoring indexes. It is worth mentioning that the
testing set used in this benchmark is non-redundant only with
respect to our training set: this condition is not guaranteed for
the other two methods evaluated, which adopt different training
sets. In general, we can conclude that our method well-compares
with recent tools at the state-of-the-art.

FIGURE 4 | Pie charts showing the fractions of predicted buried/exposed

positions disease-related (left) and neutral (right) upon variations in the

HVARSEQ dataset, respectively.

Analyzing Distributions of Variated
Wild-Type Residues in the Sequence
Dataset
After computing solvent accessibility over HVARSEQ, we
assessed the proportions of buried and exposed predictions
separately on the subsets of residues undergoing disease-related
and neutral variations. Results are in Figure 4.

As to the prediction, 72% of disease related SRVs occurs in
buried positions and 58% of neutral SRVs affect exposed residues.
Interestingly, the proportions of buried/exposed positions for
disease and neutral SRVs are in agreement with those assessed
on the structural dataset (67% and 64.3%, respectively: compare
Figures 1, 4). The result further corroborates the notion that
residues undergoing disease-related variations are mainly in
buried positions.

We then evaluated PD|R, PD|B,R, and PD|E,R for all the
residue types and results are reported in Figure 5. We also
show the baseline probability PD (0.43), which represents the
proportion of positions that undergo disease-related variations
in the HVARSEQ dataset.

The comparison between PD|R and PD, which are both
independent from predictions, confirms the finding obtained
on the HVAR3D-2.0 dataset: residues such as glycine (G),
tryptophan (W), tyrosine (Y), and cysteine (C), when undergoing
variation, are more frequently associated to disease than expected
from the baseline. In the sequence set, this behavior characterizes
also arginine (R) and aspartic acid (D).

Similarly to the structural case, for all residues we have
that PD|B,R > PD|R > PD|E,R, highlighting that for all residue
types, SRVs are more frequently associated to disease when
occurring in buried positions than in exposed ones. The tendency
is remarkable for the majority of residues, already identified
from HVAR3D-2.0 and including asparagine (N), lysine (K), and
histidine (H). The analysis on HVARSEQ highlights a difference
between PD|B,R and PD|E,R for tryptophan (W) and cysteine (C).
However, this discrepancy can be due to prediction errors on
these two less abundant (rare) residues in the database. Similarly,
to what described for HVAR3D-2.0 (Figure 3), the frequency
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FIGURE 5 | Frequency of disease-related SRVs, depending on the wild type residue and the exposure state in HVARSEQ. Here, buried and exposure states of each

residue position have been predicted using the method described in Section Analyzing distributions of variated wild-type residues in the sequence database. PD: the

probability of a wild-type residue (position) to be disease associated in the HVARSEQ dataset [see Equation (1)]. PD|R: the conditional probability of being disease

related when variated, given a wild-type residue [see Equation (2)]. PD|B,R: the conditional probability of a wild-type residue to be disease related upon variation when

buried [see Equation (3)]. PD|E,R: the conditional probability of a wild-type residue R to be disease related upon variation when exposed [see Equation (4)].

FIGURE 6 | Mapping SASA predictions on a protein model. The model is that of human Dimethylaniline monooxygenase 3 (UniProtKB: P31513) derived from the

SWISS-MODEL Repository. Solvent exposure is computed from the available 3D protein model using DSSP. Variation (SVR) positions are highlighted using the

spacefill view. In red, buried positions associated to disease-related SRVs and correctly predicted as buried by our method. In magenta, buried disease-related

positions wrongly predicted as exposed. In orange, exposed disease-related positions wrongly predicted as buried. In blue, exposed neutral SRV positions correctly

predicted as exposed. In yellow, exposed neutral positions wrongly predicted as buried. In green, buried neutral positions correctly predicted as buried.
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of disease-related SRVs occurring at valine (V) and isoleucine
(I) residues is lower than the baseline, independently of the
exposure state.

Case Study
Many human protein sequences, without any associated three-
dimensional (3D) structure, are endowed with models that
can be derived from the SWISS-MODEL Repository3, directly
linked to the protein UniProtKB file. For sake of curiosity, we
took advantage of an example to show the 3D location of our
sequence-based prediction. In particular, in Figure 6 we show
the model of the human Dimethylaniline monooxygenase 3
protein (UniProtKB: P31513)4. This protein has 19 SRVs in
HVARSEQ, eight of which are disease-related and 11 are neutral.
Disease-related SRVs are all associated to Trimethylaminuria
(OMIM:602079)5, a disease condition resulting from the
abnormal presence of large amounts of volatile and malodorous
trimethylamine within the body. In Figure 6, we map all the
solvent exposure predictions for all SRV positions into the
3D model.

It is evident that the vast majority of disease-related SRVs
(6 out of 8) are in buried positions. Of these, five are correctly
predicted as buried by our method (in red) while only one
is wrongly predicted as exposed (in magenta). Neutral SRVs
are mostly exposed (10 out of 11): eight of these are correctly
predicted in exposed regions (in blue).

Results illustrate the general trend of what we observed in the
structural data set and are consistent with the accuracy of the
prediction method.

CONCLUSION AND PERSPECTIVE

In this paper, we focus on the solvent accessible surface area, a
property of protein residues, firstly described and computed in
several biophysical studies, to which Cyrus Chothia contributed
(Chothia, 1976). The property, which nowadays can be computed
with machine learning based methods, is here exploited in

3https://swissmodel.expasy.org/repository
4https://www.uniprot.org/uniprot/P31513.
5https://www.omim.org/entry/60207

relation to another important problem: the annotation of
variations in human proteins as disease related or not. We took
advantage of an ample set of human protein structures to observe
that indeed disease related variations occur more frequently
in buried regions of the proteins than in solvent accessible
surfaces. In turn, neutral polymorphisms are characterized by
a more frequent solvent exposure. We then proved that with
a deep learning method performing at the state of art, the
tendency is observable also in the majority of all the wild-
type residues undergoing variations that are presently listed in
HUMSAVAR. We suggest that the solvent accessible surface
area of wild type residues is a distinguished property to be
included among those necessary to annotate pathogenic from
non-pathogenic variations.
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