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Clear cell renal cell carcinoma (ccRCC), one of the most common urologic cancer types, has
a relatively good prognosis. However, clinical diagnoses are mostly done during the medium
or late stages, whenmortality and recurrence rates are quite high. Therefore, it is important to
perform real-time information tracking and dynamic prognosis analysis for these patients.
We downloaded the RNA-seq data and corresponding clinical information of ccRCC from
The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A total
of 3,238 differentially expressed genes were identified between normal and ccRCC tissues.
Through a series of Weighted Gene Co-expression Network, overall survival,
immunohistochemical and the least absolute shrinkage selection operator (LASSO)
analyses, seven prognosis-associated genes (AURKB, FOXM1, PTTG1, TOP2A, TACC3,
CCNA2, and MELK) were screened. Their risk score signature was then constructed.
Survival analysis showed that high-risk scores exhibited significantly worse overall survival
outcomes than low-risk patients. Accuracy of this prognostic signature was confirmed by
the receiver operating characteristic curve and was further validated using another cohort.
Gene set enrichment analysis showed that some cancer-associated phenotypes were
significantly prevalent in the high-risk group. Overall, these findings prove that this risk model
can potentially improve individualized diagnostic and therapeutic strategies.

Keywords: kidney cancer, microarray, WGCNA, targeting therapy, novel markers, prognostic model

INTRODUCTION

In 2019, an estimated 73,820 patients were diagnosed with renal cell cancer, with a mortality
burden of 14,000 persons, indicating a high mortality rate from this disease (SEER http://seer.
cancer.gov/statfacts/html/kidrp.html). Clear cell renal cell cancer is the most common and
lethal subtype of renal carcinoma, accounting for approximately 75% of kidney cancer (Moch
et al., 2016). Currently, surgical therapy has been shown to be effective in the treatment of
localized renal cell carcinoma. However, the medium or late stage diagnoses of this cancer have
been associated with high mortality and recurrence rates. The tyrosine kinase inhibitor (TKI)
and mammalian target of rapamycin (mTOR) inhibitors have improved therapeutic outcomes.
To a certain extent, most patients develop resistance or discontinue the use of these drugs due
to severe side effects (Banumathy and Cairns, 2010; Suttle et al., 2014; Lai et al., 2016).
Therefore, to improve the quality of life for these patients, it is important to perform real-time
information tracking and dynamic prognostic analyses.
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TABLE 1 | Detailed information about datasets.

Datasets GSE53757 GSE73731 GSE89563 TCGA and GTEx

Platform HGU133_Plus_2 HGU133_Plus_2 HuGene–2_1–st Illumin
GPL570 GPL570 GPL17692 RNAseqV2

Sample number
Total 144 125 16 623
Normal kidney 72 - - 100
Kidney cancer 72 125 16 523

Tumor stage
Stage i 24 41 5 265
Stage ii 19 12 3 57
Stage iii 14 28 4 123
Stage iv 15 44 4 82
unknown - - - 3

Pathology grader
Grade i - 17
Grade ii - 45
Grade iii - 44
Grade iv - 76
Function Select DEGs Perform WGCNA Perform GSEA Related verification

FIGURE 1 | Flow chart of data collection and analysis.
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Due to advances in microarray and high throughput
technologies, several candidate biomarkers associated with
ccRCC have been identified using bioinformatics analysis (Sun
et al., 2019; Yan et al., 2019). Unfortunately, most studies did not
evaluate the correlation between genes and clinical
characteristics. The weighted gene co-expression network
analysis (WGCNA), characterized by the presence of different
genes with similar expression patterns in the same module, has
been used to determine the relationships between module and
clinical traits. Recently, it has been used to screen candidate
biomarkers for complex diseases, including (Voineagu et al.,
2011), Alzheimers (Miller et al., 2010) and glioblastoma
(Horvath et al., 2006).

In this study, we identified multiple differentially expressed
genes associated with KIRC using high-throughput
bioinformatics analysis of data obtained from the Gene
Expression Omnibus database. Subsequently, we used
WGCNA to select a clinically significant module. Furthermore,
screening was done to identify the real hub genes. Using the real
hub genes, we constructed and validated a prognostic multigene
signature using the cancer genome atlas cohort. Finally,
functional enrichment analysis was performed to determine
the underlying mechanisms.

MATERIALS AND METHODS

Research Design and Data Collection
Raw gene expression profiles and clinical data were obtained from
the Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/geo/) (Table 1). Dataset GSE53757, including
144 samples (72 normal kidney tissue, 72 kidney renal cell
carcinoma) was used to screen for the differently expressed
genes (DEGs). Dataset GSE73731 had 265 samples, however,
most of them did not have their clinical data. Therefore, 125
samples from the GSE73731 dataset were finally used to identify
the hub module through WGCNA. The TCGA data was used to
construct and validate the prognostic risk model. Further, we
used GSE89563, an independent dataset, to perform Gene Set
Enrichment Analysis (GSEA). The data collection and analysis
procedures was as shown in Figure 1.

Data Processing and Screening for
Differentially Expressed Genes
Rawmicroarray data were subjected to RMA background correction,
log2 transformation and normalized by quantile normalization. The
“Affy” R packages were used to summarize the Median-polish probe
sets (Gautier et al., 2004). The Affymetrix annotation files were used
to annotate probes. The assessment of microarray quality was
performed by sample clustering based on the distance between
different samples in Pearson’s correlation matrices and average
linkage. Then, the R package “limma” (Ritchie et al., 2015) was
used to select the DEGs.

Weighted Gene Co-expression Network
Construction
Using the R package “WGCNA,” the DEGs were used to
construct a weighted co-expression network (Zhang and

FIGURE 2 | Volcano plot of all differentially expressed genes in GSE53757. A total of 1,579 genes were up-regulated while 1,659 genes were down-regulated.
Red: up-regulated DEGs; Black: unchanged DEGs; Green: down-regulated DEGs.
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Horvath, 2005). First, the “goodSamplesGenes” R package in the
“WGCNA” packages was used to determine whether the input
DEGS were good genes from good samples. Second, we
constructed an adjacent matrix by Pearson’s correlation
analysis of all gene pairs. To construct a scale-free co-
expression network, we used a soft-thresholding parameter (β),
which could enhance the strong correlations between genes and
penalize weak correlations. The adjacencymatrix was then turned
into a topological overlap matrix (TOM). The TOM was used to
measure network connectivity of a gene, which was defined as the
sum of its adjacency with all other genes and was used for
network generation. Finally, based on TOM dissimilarity, we
performed the average linkage hierarchical clustering. The
purpose of this step was to classify genes with similar

expression patterns into gene modules with a minimum size
of 50.

Identification of Clinically Significant
Modules and Module Functional Annotation
After the classification of differentially expressed genes into
gene modules, which were characterized by similar
expression patterns, WGCNA was used to determine the
correlation between the external clinical information and
gene modules to identify clinically significant gene
modules. Combined with the correlative clinical feature,
the gene module that was most correlated with clinical
features was selected as the hub module.

FIGURE 3 | The main steps of WGCNA. Clustering dendrogram of tumor samples with its clinical information. Determination of soft threshold and examination of
the scale free topology (β � 8). Hierarchical clustering dendrogram of module eigengenes. Correlation between module and clinical feature, red represents the positive
correlation and green represents the negative correlation. The depth of color represents the value of the correlation.
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Screening Tests
Based on the previous step, hub genes were input into the
STRING (https://string-db.org/) database to construct a
protein-protein interaction (PPI) network. The minimum
interaction score was >0.4. The Cytoscape software (Su
et al., 2014) and Molecular Complex Detection tool
(MCODE) (version 1.5.1) (Bader and Hogue, 2003), a
cytoscape plug-in, were used to visualize and identify the
most significant module in the PPI network. The resulting
criteria were: cluster finding � haircut, cut-off degree � 2, cut-
off node score � 0.2, k-score � 2, and maximum depth � 100.
We used the Gene Expression Profiling Interactive Analysis
(GEPIA) database (http://gepia.cancer-pku.cn/), with data
obtained from the TCGA and GTEx database to test the
diagnostic and survival-related value of hub genes. Since
gene expression levels are not always consistent with their
protein content (Maier et al., 2009), the HPA database
(https://www.proteinatlas.org/) was used to evaluate it. The
genes that meet all the above tests were selected as the real
hub genes.

Construction and Validation of the
Prognostic Risk Model
The least absolute shrinkage and selection operator was used to
further sort the prognostic genes while the “glmnet” R package
was used to construct the prognostic model. The risk score was
calculated as follows: Risk score � Sum (each gene’s expression
× corresponding coefficient).

Then, the expression levels of genes with different risk
scores were determined using a heatmap. The Kaplan–Meier
survival curve was also plotted to evaluate the high- and low-
risk groups by the log-rank test. Accuracy of the gene
signature was determined by generating the receiver
operating characteristic (ROC) curves while validation was
done using data from the TCGA cohort. PCA and t-SNE were
performed to explore the distribution of different groups
using the “stats” or “Rtsne (Maaten, 2014)” R package.
Univariate and multivariate Cox regression analyses were
carried out among the available variables (age, gender, grade,
stage) to determine whether the risk score was an
independent prognostic predictor for OS via the R package
“survival.”

Functional Enrichment Analysis
To identify the biological functions and pathways correlated with
the risk score signature, GO and KEGG enrichment analyses were
in the high-and low-risk groups. Moreover, the infiltrating score
of 16 immune cells and the activity of 13 immune-related
pathways were calculated using the single-sample gene set
enrichment analysis (ssGSEA) in the “gsva” R package. GSEA
was also performed for the high-and low-expressed real hub
genes in the GSE89563 cohort.

Statistical Analysis
All statistical analyses were performed using the Perl language
and R language. The cut-off criteria for significant comparisons
were defined as p ≤ 0.05.

FIGURE 4 | Composition of the molecular complex.
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RESULTS

Data Processing and Screening of
Differentially Expressed Genes
A total of 3,238 DEGs were screened (1,579 up-regulated and
1,659 down-regulated) from a total of 21,655 genes using the FDR
<0.05 and log FC (fold change) > 1 threshold. The volcano plot of
ccRCC DEGs is presented in Figure 2.

Weighted Gene Co-Expression Network
Construction
From the hierarchical clustering, there were no outlier
samples (Figure 3A). Then, the 3,238 DEGs with similar
expression patterns were clustered into modules. β� 8
(scale -free R2 � 0.85) was selected as the soft-
thresholding power to ensure a scale-free network
(Figure 3B), after which, the network was constructed

(Figure 3C). After clustering by dissimilarity between
genes, the DEGs were grouped into 11 modules with a
minimum size of 50, to establish the gene dendrogram.
Given that some modules were similar, a cut-off of 0.25 was
made for the module dendrogram. The brown and black
modules were combined into a new module, with the color
of the new module remaining black. Subsequently, a total of
10 modules were identified.

Clinically Significant Modules and Their
Functions
The correlation value between the gene module’s principal
component and the clinical feature was calculated. Figure 3D
shows the module that exhibited the highest correlation with the
ccRCC clinical stage and pathology (r � 0.41, p � 2e-6; r � 0.45,
p � 1e-7). The red module consisted of 247 genes (195 up-
regulated and 52 down-regulated).

FIGURE 5 | GO and KEGG enrichment analyses of red modules (A) Enriched GO terms in Biological processes (BP), Cellular components (CC), and Molecular
functions (MF) (B) Significantly enriched KEGG pathways.
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SCREENING TESTS

The STRING database (https://string-db.org/) was used to
construct the PPI in the red module with 228 nodes and 2,910
interactions. Cytoscape and Molecular Complex Detection tool
were used to identify the significant. The Molecular complex
(Figure 4) presents the most significant hub genes. The red nodes
represent the up-regulated genes while the green nodes represent
the down-regulated genes. Further, the magnitude of change

determined the color depth. Gene interactions were then
visualized. Gene Ontology and KEGG pathways in the red
module revealed that these genes were mainly involved in “cell
cycle,” “DNA replication” and in the “P53 signaling pathway”
(Figure 5). The GEPIA database showed that 26 genes were
significantly correlated with overall survival while
immunohistochemical staining indicated that only 10 genes
significantly expressed in the adjacent normal tissues than in
cancer tissues (Figure 6).

FIGURE 6 | The expression level of ANLN, AURKB, CCNA2, EZH2 in The Human Protein Atlas and its Prognostic value (A) Immunohistochemistry results of ANLN
in normal tissues (Staining: Low; Intensity: Weak; Quantity: 75–25%; Location: Nuclear) and in ccRCC tissues (Staining: Medium; Intensity: Strong; Quantity: ＜25%;
Location: Nuclear) (B) Immunohistochemistry results of AURKB in normal tissue (Staining: Not detected; Intensity: Negative; Quantity: None; Location: None) and in
ccRCC tissue (Staining: Medium; Intensity: Strong; Quantity: ＜25%; Location: Nuclear) (C) Immunohistochemistry results of CCNA2 in normal tissues (Staining:
Not detected; Intensity: Negative; Quantity: None; Location: None) and in ccRCC tissues (Staining: Medium; Intensity: Strong; Quantity:＜25%; Location: Nuclear) (D)
Immunohistochemistry results of EZH2 in normal tissues (Staining: Not detected; Intensity: Negative; Quantity: None; Location: None) and in ccRCC tissues (Staining:
Low; Intensity: Moderate; Quantity: ＜25%; Location: Nuclear) (E) Prognostic value of AURKB (F) Prognostic value of AURKB (G) Prognostic value of CCNA2 (H)
Prognostic value of EZH2.
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Construction and Validation of the
Prognostic Risk Model
The LASSO regression analysis was performed to identify the
real hub genes with the highest potential prognostic
significance. Ultimately, seven genes were retained and
used to construct a predictive model. Expression levels of
the seven genes and the above determined regression
coefficients were used to calculate a risk score for each
patient. Risk scores were calculated using the following
equation: Risk score � (0.3556 *AURKB) + (0.3660 *
FOXM1) + (0.2565 * PTTG1) + (−0.4311 * TOP2A) +
(0.0236 * TACC3) + (0.2399 * CCNA2) + (−0.0478 * MELK).

Based on the median risk score, 526 ccRCC patients were
assigned into the high-risk (n � 263) and low-risk groups
(n � 263). The heatmap of the expression of 7 genes in the two
groups is shown in Figure 7. Low-risk patients exhibited a
significantly longer OS compared to the patients in the high-
risk group (p � 1.953e−08) (Figure 8A). The AUC value for
this seven gene risk score signature was 0.695 in the 1 year
ROC curve, 0.687 in the 3 years ROC curve, and 0.678 in the
5 years ROC curve (Figure 8B). The risk scores and survival
status for each patient in the two subgroups are presented in
Figures 8C,D. PCA and t-SNE analysis indicated the patients
in different risk groups were distributed in two directions
(Figures 8E,F). Univariate analysis revealed that stage and
risk score were adverse prognostic factors for survival
(Supplementary Figure S1). More interesting, after
correction for other confounding factors, multivariable
survival analysis remained that risk score was an

independent prognostic factor influencing patients with
ccRCC (Supplementary Figure S2).

To verify the prognostic performance of this model, 254
cases were randomly selected from the TCGA database, and
their risk scores calculated. Using the TCGA cut-off value, it
was found that patients with high-risk scores (n � 132)
exhibited worse OS than those in the low-risk group
(n � 122) (p � 2.542e−07) (Figure 9A). The AUC value
was 0.793 at 1 year, 0.744 at 3 years, and 0.717 at 5 years
(Figure 9B). The risk scores and survival status for each
patient are shown in Figures 9C,D. PCA and t-SNE analysis
results are shown in Figures 9E,F. These results revealed that
our prognostic signature had considerable robustness in
predicting OS for ccRCC patients.

6 Functional Enrichment Analysis
Some cancer-associated gene sets were found to be
significantly elevated in the high-risk score ccRCC
patients. These genes were enriched in the P53 signaling
pathway, Cell cycle, DNA replication, and Cytosolic DNA-
Sensing pathway (Figure 10). To evaluate the correlation
between risk score and immune status, we quantified the
enrichment scores of diverse immune cell subpopulations,
related functions, or pathways using ssGSEA. As shown in
Figure 11, the scores for various immune subpopulations
were significantly higher in the high-risk group. However,
mast cell scores were lower. Fascinatingly, type II IFN
response score was low in the high-risk group when
compared to the others.

FIGURE 7 | Heatmap of the expression of the seven genes in ccRCC.
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DISCUSSION

Despite advances in various therapeutic strategies, clinical
diagnoses for ccRCC are mostly confirmed in the medium or
late stages when mortality and recurrence rates are quite high
(Zhao et al., 2018). In precision medicine, this means that
more attention should be paid to the dynamic prognosis of
disease status. Therefore, we identified a molecular gene
complex with significant functions in some cancer-related
pathways. Then, overall survival, immunohistochemical, and
the least absolute shrinkage selection operator analyses were

performed to determine their potential prognostic values.
Finally, a risk model that could predict ccRCC prognosis
based on six RBP genes was established. The accuracy of this
prognostic signature was confirmed by the ROC curve while
validation was done using another cohort. Gene set
enrichment analysis revealed that some cancer-related
phenotypes were significantly abundant in the high-
risk group.

Among the seven genes, AURKB and PTTG1 have been
reported to act as oncogenes (perezdecastro 2006) during
spindle formation or chromosome segregation. Lin Bao et al.

FIGURE 8 | Risk score analysis of the seven-gene prognostic model in TCGA cohort (A) Kaplan-Meier curves for the OS of patients in the high-risk group and low-
risk group in the TCGA cohort (B) AUC of time-dependent ROC curves verified the prognostic performance of the risk score in the TCGA cohort (C) Distribution and
median value of the risk scores in the TCGA cohort (D) Distributions of OS status, OS and risk score in the TCGA cohort (E) t-SNE analysis of the TCGA cohort (F) PCA
plot of the TCGA cohort.
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showed that AURKB was overexpressed in ccRCC while AURKB
knockdown significantly inhibited the migration and invasion of
ACHN cells (Bao et al., 2020). Atsushi Okato et al. documented
that dual strands of pre-miR-149 act as antitumor miRNAs by
targeting FOXM1 in ccRCC cells (Okato et al., 2017). TOP2A,
type IIA topoisomerases, which are DNA topoisomerases, are
proven therapeutic targets for anticancer and antibacterial drugs.
Clinically successful topoisomerase-targeting anticancer drugs
act through topoisomerase poisoning, which leads to
replication fork arrest and double-strand break formation
(Delgado et al., 2018). Chong Zhang et al. found that lncRNA
SNHG3 promotes ccRCC proliferation and migration by

upregulating TOP2A (Zhang et al., 2019a). However, the
mechanism needs further elucidation. TACC3 is involved in
chromosomal alignment, separation, and cytokinesis which is
associated with p53-mediated apoptosis (Guo and Liu, 2018).
Overexpression of TACC3 is correlated with tumor aggression
and poor prognosis in prostate cancer (Li et al., 2017). The same
phenomenon has been identified in Renal Cell Carcinoma Cells
(Guo and Liu, 2018). The levels of CCNA2 are elevated in a
variety of tumors such as breast (Gao et al., 2014), cervical (Huo
et al., 2019), and liver cancers (Yang et al., 2016). Studies have
documented that the oncogenic effect of MELK in ccRCC is
exerted through the phosphorylation of PRAS40, an inhibitory

FIGURE 9 | Risk score analysis of the seven-gene prognostic model in the validation cohort (A) Kaplan-Meier curves for the OS of patients in the high-risk group
and low-risk group (B) AUC of time-dependent ROC curves verified the prognostic performance of the risk score model (C) Distribution and median value of the risk
scores (D)Distributions of OS status, OS and risk score in the validation cohort (E) t-SNE analysis of the validation cohort (F) PCA plot of in the validation cohort.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 60986510

Zhan et al. Bioinformatics Analysis of Kidney Cancer

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


subunit of mTORC1, and by disrupting the interaction between
PRAS40 and raptor (Zhang et al., 2019b). Given the importance
of these seven genes in different cancer types, they might be
potential prognostic biomarkers for ccRCC patients. However,
studies should be performed to elucidate on their molecular
mechanisms.

GSEA analysis showed that some cancer-associated pathways
such as P53 pathway, Cell cycle, DNA replication, and Cytosolic

DNA-Sensing pathway were enriched in high-risk ccRCC
patients. These molecular pathways are involved in
carcinogenesis. P53 as a tumor suppressor protein. Inhibition
of the p53 pathway may promote ccRCC cell proliferation and
inhibit apoptosis (Noon et al., 2010). Through cell cycle and HIF-
2α regulation, Notch3 promotes the proliferation of renal cancer
cells (Han et al., 2020). DNA sensing activates innate immune
responses not only in immune cells such as dendritic cells (DCs)

FIGURE 10 | GSEA analysis of the high- and low-risk groups (A–I) Some cancer-related pathways were prevalent in the high-risk group: “Nod like receptor
signaling pathway,” “P53 signaling pathway,” “cell cycle,” “homologous recombination,” “base excision repair,” “cytosolic dna sensing pathway,” “ubiquitin mediated
proteolysis,” “primary immunodeficiency,” “DNA dergradation,” NES, Normalized enrichment score.
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but also in non-immune cells such as fibroblasts and tumor cells.
Disorders in DNA sensing may lead to cancer (Han et al., 2020;
Qiao et al., 2017).

To inform disease prognosis and progression, several multigene
prognostic models have been developed to predict survival for
ccRCC patient. Sheng et al. developed an immune-related
prognostic model in ccRCC (Shen et al., 2020), while Xiang
et al. developed an associated prognostic model for ccRCC
based on RNA binding protein expression (Xiang et al., 2020).
Construction of a prognostic model for ccRCC using a series
cohort and WGCNA methods has not yet been reported. To
the best of our knowledge, this is the first study to develop a
prognostic model for ccRCC patients using specific types of genes.

Based on our risk score signature, there was a significant
difference in OS between high-and low-risk subgroups. Low-
risk patients exhibited better survival outcomes than high-
risk patients. The ROC curves showed that our prognostic
model had good accuracy. The 1, 3 and 5 years AUC values
were greater than 0.65, both in the training and testing set.
PCA and t-SNE analysis indicated that our prognostic
signature model had considerable robustness in predicting
OS for ccRCC patients.

However, this study is associated with some limitations. First,
the seven genes signature was built and validated using a public
dataset, and has not been validated using our own clinical ccRCC
case cohort. Second, most ccRCC patients in the TCGA database
were Caucasian, and it is, therefore, not clear whether the model
has the same predictive effect in non-Caucasian races. Finally, our

study was retrospective in nature. Our findings should be
validated by a larger prospective study.

In conclusion, we identified and constructed a promising
seven gene prognostic signature to predict the clinical
outcomes for ccRCC patients. Moreover, this study elucidates
on the prognostic value and biological functions of these genes in
ccRCC.
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