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Human genome resequencing projects provide an unprecedented amount of data about
single-nucleotide variations occurring in protein-coding regions and often leading to
observable changes in the covalent structure of gene products. For many of these
variations, links to Online Mendelian Inheritance in Man (OMIM) genetic diseases are
available and are reported in many databases that are collecting human variation data
such as Humsavar. However, the current knowledge on the molecular mechanisms that
are leading to diseases is, in many cases, still limited. For understanding the complex
mechanisms behind disease insurgence, the identification of putative models, when
considering the protein structure and chemico-physical features of the variations, can
be useful in many contexts, including early diagnosis and prognosis. In this study, we
investigate the occurrence and distribution of human disease–related variations in the
context of Pfam domains. The aim of this study is the identification and characterization
of Pfam domains that are statistically more likely to be associated with disease-related
variations. The study takes into consideration 2,513 human protein sequences with
22,763 disease-related variations. We describe patterns of disease-related variation
types in biunivocal relation with Pfam domains, which are likely to be possible markers
for linking Pfam domains to OMIM diseases. Furthermore, we take advantage of the
specific association between disease-related variation types and Pfam domains for
clustering diseases according to the Human Disease Ontology, and we establish a
relation among variation types, Pfam domains, and disease classes. We find that Pfam
models are specific markers of patterns of variation types and that they can serve to
bridge genes, diseases, and disease classes. Data are available as Supplementary
Material for 1,670 Pfam models, including 22,763 disease-related variations associated
to 3,257 OMIM diseases.

Keywords: protein variations, protein structure, protein domain, variation type, disease-related variations,
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INTRODUCTION

In the last decade, several efforts have been devoted to the
problem of functional annotation of protein variants with the aim
of relating variations to specific diseases (Vihinen, 2017, 2018).
A collection of variations of genetic diseases is now available,
and this prompted the investigation of molecular mechanisms
responsible for protein failure (Schaafsma and Vihinen, 2018).
Particularly, variations of non-synonymous proteins can promote
the change of the active/binding sites and/or protein instability
and can hamper protein–protein and ligand–protein interactions
(Kucukkal et al., 2015; Ittisoponpisan et al., 2019; Ofoegbu et al.,
2019). Molecular mechanisms can be, therefore, different, and
different phenotypes may share common molecular mechanisms,
independent of the different genes (Deans et al., 2015; Reeb
et al., 2016; Babbi et al., 2019, and references therein). Several
studies also focused on determining the most frequent protein
variants associated with diseases, with the aim of helping
functional annotation, starting from variant sequencing (Niroula
and Vihinen, 2017; Zeng and Bromberg, 2019).

Different computational methods are available for the
functional annotation of variations, based on different
approaches. Routinely, given a specific variation, computational
methods return with a computed reliability whether the change
of a side chain in a protein is disease-related or not (Niroula and
Vihinen, 2016).

An interesting aspect of disease-related protein variants is the
protein instability promoted by the variations (Casadio et al.,
2011; Savojardo et al., 2019, and references therein). Protein
instability may be related to a disease, with this not being the only
reason. For functional annotation of disease-related variations,
routinely, the chemico-physical properties of the variation and
the effect of the variation on the close environment in the
protein structure are taken into consideration. It appears that the
correlation among the strength of association to disease and the
strength of association to the protein structure perturbation is
moderate (Savojardo et al., 2019).

The problem of which phenotype is associated with a
given variation or a set of variations has been scarcely
addressed, and it remains unanswered, given the complexity
of the scenario relating phenotypes to variations. Existing
databases can relate genes to diseases and/or variations to
diseases (MalaCards1, Rappaport et al., 2017; GeneCards2, Stelzer
et al., 2016; DisGeNet3, Piñero et al., 2020; eDGAR4, Babbi
et al., 2017; Humsavar5, UniProt Consortium, 2019; OMIM6,
Amberger et al., 2015).

Protein domains have been adopted to explore associations
between genes and human-inherited diseases (Zhang et al., 2011,
2016; Yates and Sternberg, 2013; Wiel et al., 2017, 2019). Models

1https://www.malacards.org/
2https://www.genecards.org/
3https://www.disgenet.org/
4http://edgar.biocomp.unibo.it
5https://www.uniprot.org/docs/humsavar
6https://www.omim.org/

of protein domains are available in the Pfam database7 (El-
Gebali et al., 2019), and they enable the clustering of proteins
into protein families, each represented by multiple sequence
alignments, mainly based on protein structural alignments and
cast into hidden Markov models (HMMs). Initially, similarities
of disease phenotypes were exploited within a given domain–
domain interaction network, and a Bayesian approach was
proposed to prioritize candidate domains for human complex
diseases (Zhang et al., 2011). Then, domain–disease associations
were inferred from domain–protein, protein–disease, and
disease–disease relationships (Zhang et al., 2016). In these
studies, the bottom layer of variations in proteins, detected
in large-scale sequencing experiments, was not taken into
consideration, restraining the analysis only to the already known
protein– or gene–disease associations. More recently (Wiel et al.,
2017), with the notion of homologous domains in proteins,
variants were aggregated to improve their interpretation, and a
web server (MetaDome8, Wiel et al., 2019) was made available for
the pathogenicity analysis of genetic variants.

In a previous study (Savojardo et al., 2019), we introduced
the notion of variation type, in order to take the physico-
chemical properties of the variations into account as well
(Casadio et al., 2011). After mapping genetic disease–related
variations on a restricted set of human protein three-
dimensional (3D) structures, we found that the distribution
of disease variation types significantly varies across different
structural/functional Pfam models.

In this study, relying on the relationship between genes and
phenotypes, we ask the question as to which extent possible
patterns of variation types framed into Pfam domains are
significant for a reliable association to specific groups of maladies.

MATERIALS AND METHODS

Dataset Construction
The dataset adopted in this study was derived from the Humsavar
database5 release 2020_04 of August 2, 2020, listing all missense
variants annotated in human UniProtKB/Swiss-Prot (UniProt
Consortium, 2019) entries.

From the initial set of proteins included in the database, we
only selected those reporting at least one variant implicated in
the disease, excluding proteins reporting only polymorphisms
not associated with disease insurgence. Moreover, any variation
labeled as “unclassified” (i.e., with uncertain implications in
disease) was filtered out. Finally, we only retained disease-related
variations associated with a genetic disorder reported in the
Online Mendelian Inheritance in Man (OMIM) catalog9.

The set of neutral variations was extended using data retrieved
from the GnomAD database (exome version 2.1.1) (Karczewski
et al., 2020). Only variations occurring in our set of proteins,
not already included in Humsavar and with clinical significance

7https://pfam.xfam.org/
8https://stuart.radboudumc.nl/metadome/
9https://omim.org/
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labeled as “Benign/Likely benign” by ClinVar (release 2021-03-
23) (Landrum et al., 2020), were retained.

Pfam (El-Gebali et al., 2019) annotations were retrieved from
the Pfam-A region annotation file for Homo sapiens version 33.1
obtained via the Pfam FTP server10. From all the annotations
available, we only retained those occurring at proteins included in
our set of data and covering at least one disease-related variation.

Mapping OMIMs to Disease Ontology
The DO (Human Disease Ontology) OBO (Open Biological and
Biomedical Ontology) file release of September 15, 2020, was
downloaded11 and used directly to retrieve annotations for each
OMIM disease by means of cross-references. Each retrieved leaf
DO term associated to a single OMIM was expanded up to the
ontology root term, including all ancestors. Term expansion was
computed using an ad-hoc script to parse the OBO file.

Computing the Disease Score
For each Pfam domain, we estimated a propensity score for the
association to the disease as follows:

Score (pfam) =
Npfam
d /

(
Npfam
d + Npfam

p

)
Nd/

(
Nd + Np

) (1)

where Npfam
d and Npfam

p are the number of disease-related and
polymorphism variations in the domain pfam, while Nd and Np
are the same numbers in the whole dataset. In the dataset, scores
range from 1.40 down to 0.03.

Kullback–Leibler Divergence Between
Distributions
Differences between probability distributions were evaluated
using the Kullback–Leibler divergence:

DKL = −
∑
x∈X

p (x) · log2
q(x)
p(x)

(2)

where p and q are two discrete probability distributions defined
on the same probability space X.

RESULTS

A Dataset of Variations With Annotated
Pfam
Overall, our dataset comprises 50,746 variations occurring in
2,959 proteins implicated in 3,884 genetic disorders. Disease-
related variations in these proteins are 29,949, accounting for
55% of the total variations. The remaining 20,797 variations are
neutral (45%). Table 1 shows summary statistics about the dataset
analyzed in this study.

Restricting the set of proteins to those having Pfam entries
covering at least one disease-related variation, we ended up

10ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam33.1/proteomes/9606.tsv.gz
11https://disease-ontology.org/

TABLE 1 | Summary of the OMIM-related variation dataset of this study.

Number of proteins associated with disease 2959

Number of diseases (OMIM) 3884

Number of variations 54746

Number of disease variations 29949 (55%)ˆ

Number of neutral polymorphisms (on the same disease
proteins)

24797 (45%)ˆ

Number of disease proteins with Pfam covering disease
variations

2513 (85%)#

Number of Pfams 1670

Number of diseases (OMIM) in proteins with Pfams 3257 (84%)◦

Number of variations covered by Pfams 31934 (68%)ˆ

Number of disease variations covered by Pfams 22763 (71%)+

Number of neutral polymorphisms covered by Pfams 9171 (29%)+

ˆ percentage computed with respect to the total number of variations (54746);
# percentage computed with respect to the total number of proteins (2959);
◦ percentage computed with respect to the total number of diseases (3884);
+ percentage computed with respect to the total number of Pfam-covered
variations (31934).

with 2,513 proteins (corresponding to 85% of the initial protein
set) implicated in 3,257 distinct genetic diseases. Overall, 1,670
distinct Pfam entries were annotated on these proteins. A subset
of 548 out of 1,670 Pfams occurs in two or more proteins in the
set. The vast majority (96%) of Pfam entries are of type “Domain”
or “Family,” while a very small fraction accounts for “Repeat,”
“Coiled-coil,” “Motif,” and “Disordered” types.

After this reduction, we retained 31,934 variations covered by
Pfams, distributed into 22,763 (71%) and 9,171 (29%) disease-
related and neutral polymorphic variations, respectively.

Data shown in Table 1 clearly indicate that the incidence of
disease-related variations within Pfam domains is significantly
higher than the background (71% against 55%).

Overall Pfam Association With Disease
We were interested in elucidating the overall association between
Pfam and OMIM diseases. For each entry in the set of 1,670
Pfam domains in our dataset, we computed the score for the
association to disease with the formula reported in Eq. 1. A value
greater than 1 for this ratio highlights a higher abundance of
disease variations in the Pfams than in the background. The
complete result of this analysis is reported in Supplementary
Table 1 for all the 1,670 Pfam entries. About 48% of Pfam
entries have a value greater than 1, as a consequence of the
overall propensity of disease-related variations to be located
within Pfam domains. In general, the distribution of scores is
not random and reflects a differential disease association for the
different Pfam entries.

In Table 2, we list the result for the 20 highest scoring
Pfams covering 10 or more proteins. Scores with corrected
p-values (Supplementary Table 2) equal to or lower than 0.1 are
highlighted (top scoring Pfams are all significant at 0.1 level).
Significance does not hold for some Pfams covering only few
variations. In these cases, more data are needed in order to
properly evaluate the association to the disease.

Interestingly, Pfam entries reported in Table 2 can be grouped
into few functional classes, including DNA-binding domains
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TABLE 2 | The 20 highest scoring Pfam entries mostly associated with diseases.

Pfam ID Pfam name Pfam type No of proteins No of disease variations No of neutral polymorphisms Score§

PF00105 zf-C4 Domain 12 60 2 1.36*

PF00250 Forkhead Domain 10 88 4 1.34*

PF00010 HLH Domain 14 48 3 1.32*

PF00104 Hormone_recep Domain 18 195 20 1.27*

PF00307 CH Domain 11 48 6 1.25*

PF00046 Homeodomain Domain 42 163 21 1.24*

PF07645 EGF_CA Domain 17 301 46 1.22*

PF00096 zf-C2H2 Domain 23 80 13 1.21*

PF00029 Connexin Family 10 319 53 1.20*

PF00017 SH2 Domain 11 72 12 1.20*

PF00520 Ion_trans Family 48 1020 173 1.20*

PF00004 AAA Domain 10 70 12 1.20*

PF00400 WD40 Repeat 19 52 9 1.20

PF02770 Acyl-CoA_dh_M Domain 10 40 7 1.19

PF00169 PH Domain 11 53 10 1.18

PF00005 ABC_tran Domain 15 236 49 1.16*

PF07686 V-set Domain 12 84 18 1.16

PF00271 Helicase_C Family 17 65 15 1.14

PF00176 SNF2_N Family 10 63 15 1.13

PF00089 Trypsin Domain 21 258 87 1.13*

§Score is computed as defined in Eq. 1. Significance of each score was assessed using the Fisher exact test on the corresponding contingency table and correcting for
multiple testing using the Benjamini-Hochberg procedure. Individual p-values are listed in Supplementary Table 2. *Corrected P-values are equal or lower than 0.1.

(accounting for eight domains/families), transmembrane
domains (three), and enzymes (three).

Pfams Have Distinctive Patterns of
Disease Variation Types
Going a step further in the analysis, we investigated the
composition of disease-related variations occurring in different
Pfam domains. In a previous study (Savojardo et al., 2019),
the same analysis was performed on a small dataset of highly
curated variations covered by 3D structures from Protein Data
Bank (PDB). In this study, we extended and complemented the
previous results using a larger dataset of Pfam domains and
variations. To this aim, we first grouped residues according to
their physico-chemical properties, obtaining four major groups,
namely, apolar (GAVPLIM), aromatic (FWY), polar (STCNQH),
and charged (DEKR) residues. We define a variation type in
relation to the conservation or substitution of apolar (a), polar
(p), aromatic (r), and charged (c) (Figure 1). Then, we computed
Pfam-specific distributions of disease-related variations involving
substitutions from one group to another (overall, 16 different
substitution types are possible). Complete results are reported in
Supplementary Table 3 for all the 1,670 Pfam domains.

In Figure 1, we show a heatmap reporting the frequencies
of each substitution type for the 20 highest scoring Pfam
entries described in the previous section and mostly associated
with diseases. For each Pfam entry, we report the Pfam ID,
the name, and two numbers in parentheses, indicating the
number of proteins and disease-related variations covered by the
specific Pfam. For comparison, the last row reports the overall
distribution of substitution types computed on the whole set of
variation types covered by Pfams.

The results shown in the heatmap of Figure 1 indicate that
the different Pfams are enriched in different variation types and
that each Pfam shows a differential pattern with respect to the
background. Interestingly, in some cases, the pattern of enriched
variation types can be related with the overall function of the
Pfam domain and/or the cellular context in which the domain/s
are presumably operating.

In Figure 2, we report three examples, namely, a selection
of DNA-binding domains, growth factors, and transmembrane
domains. For DNA-binding domains, we observe a higher
concentration of disease-related variations involving a
substitution from a charged residue to any different residue
type. Contrarily, for growth factor domains, we observe
abundant variations involving substitutions from polar to any
type of the residue, while transmembrane domains are mostly
enriched in substitutions involving apolar wild types. These
observations clarify a general trend, pointing to the specificity of
the disease variation type per Pfams of functional classes.

From data analysis, we conclude that the distribution
of the disease-related variation type patterns observed for
the different Pfams is non-random and different from the
background distribution (computed considering all the disease-
related variation types occurring in Pfams). This observation
confirms our previous results obtained with a smaller number
of Pfam domains, directly related to human protein structures,
and corroborates the notion that distinctive patterns of disease-
related variation types are Pfam specific (Savojardo et al., 2019).

Linking the Pfam to Disease Ontology
As a final step of our investigation, we searched for a link between
Pfam domains and disease ontology. Disease classification is not
a trivial task. Different controlled vocabularies and ontologies
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FIGURE 1 | The heatmap reporting the frequency of each variation type as observed within the 20 Pfam entries mostly associated with diseases. For each Pfam, the
numbers within parentheses indicate the number of proteins and disease-related variations covered. In variation types, labels are as follows: a, apolar; r, aromatic; p,
polar; and c, charged. Mean and median Kullback–Leibler divergences (Eq. 2) between individual Pfam distributions and the background are 2.1 and 2.1 bits,
respectively.

such as the Human Phenotype Ontology (HPO)12 (Köhler et al.,
2019) or the DO (Schriml et al., 2019) are available for this
purpose. However, none of the ontologies provides a full coverage
of the entire space of OMIM diseases, ranging from 82% coverage
of HPO to 74% of DO. Moreover, ontologies like HPO are
not specifically designed to describe a disease. Instead, they
are devised to describe clinically relevant phenotypes. In the
current study, we used the DO ontology because, in spite of a
slightly lower coverage, it provides a better and less ambiguous
classification of diseases.

12https://hpo.jax.org/app/

To obtain a high-level disease classification, we collected
all the 3,257 OMIM diseases linked to variations occurring
in our 1,670 Pfam domains and mapped them to a set of
17 first-level DO terms. These include 12 terms describing
diseases affecting anatomical entities (all child terms of
“DOID:7 – disease of anatomical entity” like cardiovascular,
endocrine, gastrointestinal, etc.), cellular proliferation diseases
(DOID:14566), mental health diseases (DOID:150), metabolic
diseases (DOID:0014667), physical disorders (DOID:0080015),
and syndromes (DOID:225). We were able to map 2,454
out of 3,257 OMIMs to at least one of the above DO
terms. On average, each OMIM was mapped to 1.01 DO,

Frontiers in Molecular Biosciences | www.frontiersin.org 5 May 2021 | Volume 8 | Article 617016

https://hpo.jax.org/app/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-617016 May 3, 2021 Time: 16:55 # 6

Savojardo et al. Associating Variations, Pfams and Diseases

FIGURE 2 | The heatmap reporting the frequency of each variation type as observed within a selection of (A) DNA-binding, (B) growth factor, and (C)
transmembrane domains. For each Pfam, the numbers within parentheses indicate the number of proteins and disease-related variations covered. In variation types,
labels are as follows: a, apolar; r, aromatic; p, polar; and c, charged.

providing an almost strict classification of each OMIM into
a single DO term.

With this mapping, we computed a Pfam-specific distribution
of DO-associated disease classes. Complete results are reported in
Supplementary Table 4 for all the 1,670 Pfam entries considered
in this study. The data provided in this study indicate that
disease classes are not evenly distributed among different Pfam
domains, again suggesting a differentiated association between
the Pfam and phenotypes.

In Figure 3, we show an extract of our analysis, focusing on the
20 highest scoring Pfam domains associated with diseases. The
heatmap reports, for each Pfam, the frequency of disease types (in

the 17 different classes detailed above) as retrieved from OMIMs
associated with substitutions occurring on the specific Pfam. In
brackets, close to each Pfam name, we list the number of proteins,
disease variations, and OMIMs associated to the Pfam.

Even in this case, the distributions of disease classes appear
to be very different from the background (reported in the last
row of the heatmap). Remarkably, the aggregation of Pfams into
more general functional classes provides an additional level of
interpretation. Considering Figure 3, we can observe that DNA-
binding domains are mostly associated with syndromes,
nervous system, and endocrine system disease classes,
while enzymes are mostly involved in the metabolic disease
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FIGURE 3 | The heatmap reporting, for each Pfam, the frequency of diseases (grouped into 17 different classes extracted from Disease Ontology) as retrieved from
OMIMs, after the association via the disease type with Pfam. The numbers within parentheses are the number of proteins, the number of disease variations, and the
number of Online Mendelian Inheritance in Man (OMIM) diseases associated with the Pfam, respectively. Each Pfam is labeled according to its functional class:
DNAb, DNA-binding domain; Enz, enzymatic domain; TM, transmembrane; GF, growth factor; ACTINb, actin-binding domain; Sign, signaling; and Various, various
functions associated. Mean and median Kullback–Leibler divergences (Eq. 2) between individual Pfam distributions and the background are 2.5 and 2.7 bits,
respectively.

FIGURE 4 | The heatmap reporting, for the Pfam entry PF00250 Forkhead, the frequency of each variation type as observed after separating variations according to
disease classes. The numbers within parentheses are the number of proteins, the number of disease variations, and the number of Online Mendelian Inheritance in
Man (OMIM) diseases associated with the Pfam (and covered by DOID), respectively.
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class. Transmembrane domains show the prevalence of nervous
and integumentary disease classes, while growth factors and
actin-binding domains are enriched in musculoskeletal diseases.
Finally, signaling Pfam domains are prominently associated with
immune system diseases. Overall, many of these findings are
in line with what we expected. Protein domains have different
functions and are involved into different biological processes.
Variations occurring in these domains, when disruptive, lead
to diseases that are connected to the biological processes in
which the proteins are mainly involved. For instance, the
fact that variations occurring in transmembrane domains are
often linked to neurological diseases is a direct consequence
of the involvement of transmembrane proteins (among other
functions) in neurotransmission. Similarly, variations in enzymes
routinely lead to metabolic diseases.

Some of the Pfams reported in Figure 3 are associated to
more than one disease types. For example, diseases that are
associated to the Forkhead domain (PF00250) are distributed
into five classes, namely, nervous, mental, endocrine, immune
diseases, and syndromes. In Figure 4, an additional heatmap is
shown trying to link the disease types to the patterns of variation
types. Specifically, the patterns of variation types are reported
after isolating variations linked to OMIMs in the different disease
classes. Interestingly, the patterns show an evident difference
among each other. This confirms the level of association that links
domains to variation types and diseases.

CONCLUSION AND PERSPECTIVES

In this study, we consider, for the time being, only diseases
of genetic origins, with the belief that cancer-related somatic
variations are as yet not satisfactorily clustered according to tissue
specificity of the plague.

This study, as well as the previous ones (Yates and Sternberg,
2013; Wiel et al., 2017, 2019), aims at establishing a direct
mapping among variations, diseases, and phenotypes via the
protein domains. Our novelty is the introduction of the variation
type as a distinguished feature of association to the Pfam domain
and to the phenotype. Our findings complement previous ones

(Wiel et al., 2017) with the inclusion of the variation type, which
adds to the classification of variations and their impact on the
protein function, stability, and interaction in the specific context
where the gene is active.

The link among the variation type, Pfam domain, and
phenotype can greatly reduce the number of possible steps to
understand which variations are disease-related or which are
not and which phenotype they may promote. In perspective,
the association among the variation type, protein domain/s,
and phenotype may greatly simplify the problem of genetic
variant annotation.
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