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Resistance to drugs used to treat tuberculosis disease (TB) continues to remain a
public health burden, with missense point mutations in the underlying Mycobacterium
tuberculosis bacteria described for nearly all anti-TB drugs. The post-genomics era
along with advances in computational and structural biology provide opportunities
to understand the interrelationships between the genetic basis and the structural
consequences of M. tuberculosis mutations linked to drug resistance. Pyrazinamide
(PZA) is a crucial first line antibiotic currently used in TB treatment regimens. The
mutational promiscuity exhibited by the pncA gene (target for PZA) necessitates
computational approaches to investigate the genetic and structural basis for PZA
resistance development. We analysed 424 missense point mutations linked to PZA
resistance derived from ∼35K M. tuberculosis clinical isolates sourced globally, which
comprised the four main M. tuberculosis lineages (Lineage 1–4). Mutations were
annotated to reflect their association with PZA resistance. Genomic measures (minor
allele frequency and odds ratio), structural features (surface area, residue depth
and hydrophobicity) and biophysical effects (change in stability and ligand affinity) of
point mutations on pncA protein stability and ligand affinity were assessed. Missense
point mutations within pncA were distributed throughout the gene, with the majority
(>80%) of mutations with a destabilising effect on protomer stability and on ligand
affinity. Active site residues involved in PZA binding were associated with multiple
point mutations highlighting mutational diversity due to selection pressures at these
functionally important sites. There were weak associations between genomic measures
and biophysical effect of mutations. However, mutations associated with PZA resistance
showed statistically significant differences between structural features (surface area and
residue depth), but not hydrophobicity score for mutational sites. Most interestingly
M. tuberculosis lineage 1 (ancient lineage) exhibited a distinct protein stability profile
for mutations associated with PZA resistance, compared to modern lineages.

Keywords: Mycobacterium tuberculosis, pncA, nsSNPs, non-synonymous Single Nucleotide Polymorphisms,
biophysical effects, thermodynamic stability, mCSM, FoldX
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INTRODUCTION

Tuberculosis (TB), is a highly infectious and contagious air-borne
disease caused by the bacterium Mycobacterium tuberculosis.
Despite its ancient origins and the efforts to develop disease
control and prevention measures, the disease continues to
cause a global public health burden, with increased drug
resistance making control difficult. In 2019, WHO reported
around 10 million global cases of TB of which 1.4 million
result in death (World Health Organization [WHO], 2020).
In 2019, 465,000 cases of rifampicin resistant TB (RR-TB),
among which 78% cases of multidrug-resistant TB (MDR-
TB, defined as having additional resistance to isoniazid) were
reported. Among these RR/MDR cases, ∼6% cases were further
resistant to one fluoroquinolone and one injectable second
line drug, leading to extensively drug resistant TB (XDR-TB)
(World Health Organization [WHO], 2020).

The size of the M. tuberculosis genome (reference H37Rv
strain) is 4.4 Mb, with a high (65%) GC content. The
M. tuberculosis genome is clonal, and consists of seven main
lineages, which vary by their geographical spread (L1: Indo-
Oceanic, L2: East Asian, L3: East-Africa-Indian, and L4: Euro-
American) (Phelan et al., 2016). The lineages are further classified
into ancient (L1, L5–6), modern (L2–4), and intermediate (L7)
strains, with L2 being particularly mobile as evidenced by its
recent spread to Europe and Africa from Asia (Phelan et al.,
2016). The M. tuberculosis lineages appear as distinct clades
on phylogenetic trees (Coll et al., 2014) and govern disease
transmission and dynamics with phenotypic consequences
on clinical severity and drug resistance (Ford et al., 2013;
Reiling et al., 2013), including recent reports of lineage-specific
associations with the latter (Oppong et al., 2019). Drug resistance
in M. tuberculosis is almost exclusively due to mutations
[including non-synonymous Single Nucleotide Polymorphisms
(nsSNPs), insertions and deletions (INDELs)] in genes coding
for drug-targets or drug-converting enzymes. Changes in efflux
pump regulation may also have an impact on the emergence
of resistance (Al-Saeedi and Al-Hajoj, 2017) and putative
compensatory mechanisms have been described to overcome
fitness impairment that arises during the accumulation of
resistance conferring mutations (de Vos et al., 2013). Resistance-
associated point mutations have been described for all first-line
drugs, including rifampicin, isoniazid and pyrazinamide, as well
as for several second-line and newer drugs (fluoroquinolones,
bedaquiline) (Somoskovi et al., 2001; Boonaiam et al., 2010;
Segala et al., 2012), but knowledge is still incomplete.

Pyrazinamide (PZA) is a crucial antibiotic used in WHO
recommended combination therapies in the front-line treatment
of TB. It is a pro-drug which is activated by the amidase
activity of the enzyme pyrazinamidase/nicotinamidase (PZase;
MtPncA) encoded by the pncA gene, converting PZA to its active
form of pyrazinoic acid (POA). Despite its indispensable status
in TB treatment, PZA’s exact mode of action remains poorly
understood. Other genes (rpsA and panD) have been implicated
in PZA resistance (Dookie et al., 2018) with a recent study
suggesting that PZA exerts its antibacterial activity by acting as
a target degrader of panD, blocking the synthesis of coenzyme A
(targeted by POA) (Gopal et al., 2020). Despite this, mutations

in the pncA gene remain the most common mechanism of PZA
resistance (Khan et al., 2019).

Advances in whole genome sequencing (WGS) is assisting
the profiling of M. tuberculosis for drug resistance, lineage
determination and virulence, and presence in a transmission
cluster (Phelan et al., 2019a), thereby informing clinical
management and control policies. This is reflected in the
WHO recommendation for use of rapid molecular testing
for detecting TB and drug resistant TB (World Health
Organization [WHO], 2020). The use of WGS can uncover new
resistance mutations through genome-wide association studies
(GWAS) and convergent evolution analysis (Phelan et al., 2016;
Coll et al., 2018).

Furthermore, using protein structure, the biophysical effects of
point polymorphisms can be investigated allowing a mechanistic
understanding of resistance development (Phelan et al., 2016;
Kavvas et al., 2018; Portelli et al., 2018). This approach can
highlight important functional resistance mutations before they
take hold in a population, corroborate drug susceptibility test
results, as well as provide insights in highly polymorphic
candidate loci (e.g., pncA) where many of the putative mutations
have low frequency. It has been observed that sites with multiple
mutations (>2) are linked to drug resistance (Comas et al.,
2011), but such resistance hotspots may not necessarily lie close
to the drug binding site. To this effect, sites with 2 mutations
are considered as “emerging” or “budding” resistance hotspots
(Portelli et al., 2018).

One assessment of the impact of missense mutations is to
measure the change in a protein structure’s as well as drug-
target complex’s physical interactions that contribute to its overall
stability. Computational approaches (e.g., the mCSM suite; Pires
et al., 2014a, 2016; Pires and Ascher, 2016, 2017; Rodrigues et al.,
2019) have been developed to predict the effects of missense
point mutations on overall protein structure stability, as well
as the binding affinity/stability of ligand, protein-protein, and
protein-nucleic acid interactions within a single framework,
based on either an experimentally resolved structure or derived
model. Here we apply such approaches to the effects of missense
point mutations in the pncA gene. In addition, we also analyse
biophysical structural features including surface area, residue
depth and hydrophobicity for residues and sites associated with
missense point mutations.

A crystal structure for pncA from M. tuberculosis has
been determined as a monomeric enzyme of 186 amino acids
(19.6 kDa) (Petrella et al., 2011). The structure comprises a 6-
stranded parallel beta sheets, with helices on either side forming
a single α/β domain with a metal cofactor (iron, Fe2+) binding
site formed of D49, H51, H57, and H71. The substrate binding
cavity in MtPncA is small, approximately 10 Å deep and 7 Å
wide. It consists of highly conserved residues F13 and W68
that are essential in substrate binding with Y103 and H137
limiting access to this cavity (Petrella et al., 2011). The catalytic
triad consisting of C138, D8, K96 is indicative of a cysteine-
based catalytic mechanism (Petrella et al., 2011). Leveraging
this crystal structure, we developed an in silico framework
to assess the biophysical impact of pncA mutations and their
resistance risk as determined by GWAS. In this study, we attempt
to understand PZA resistance by exploring the relationship
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between the genomic features and the biophysical consequences
of stability and affinity of nsSNPs, and how this is reflected in
differences between M. tuberculosis lineages.

MATERIALS AND METHODS

SNP Dataset
The dataset consists of 35,944 M. tuberculosis isolates, which
has been described recently (Napier et al., 2020). In brief, it
encompasses all the main lineages (1, 5, and 6, ancient; 2, 3,
and 4, modern; 7 intermediate), and drug susceptibility testing
across 8 first-and second-line anti-TB drugs. Across these isolates,
mutations in the pncA coding region with non-synonymous
amino acid changes (nsSNPs) were extracted. These nsSNPs were
further annotated for their link with drug resistance as defined by
their presence in the TB-Profiler mutation database (Phelan et al.,
2019b). Initial analysis aimed at understanding the structure and
characterising the active site, followed by in silico predictions to
quantify the enthalpic and entropic effects of GWAS-identified
nsSNPs on the pncA protein structure. Subsequently, additional
metadata relating to the clinical isolates were studied in relation
to the structural effects of mutations. The general methodology
workflow followed in this analysis is similar to the one described
previously (Portelli et al., 2018).

Drug and Target: Structural Data
In the absence of a drug (PZA) and target (pncA) complex,
respective individual structures were obtained from RSCB PDB
database (Berman et al., 2000). The crystal structure of pncA in
M. tuberculosis is available as PDB entry 3PL1 (Petrella et al.,
2011), while the structure of PZA was extracted from PDB entry
3R55 (Singh et al., 2011). The molecular motion of pncA was
analysed by Normal Mode Analysis using the DynaMut tool
(Rodrigues et al., 2018) (Supplementary Figure 1).

Protein-Ligand Docking: Autodock Vina
The pncA-PZA complex was generated using the software
AutoDock Vina, version 1.1.2 (Trott and Olson, 2009). Autodock
Vina is an open-source, freely available molecular modelling
platform to perform protein-ligand docking. Docking was carried
out with default settings and guided by the positioning of
the ligand within the active site as descried by Petrella et al.
(2011). The complex was generated to facilitate downstream
analyses by mCSM-lig (Pires et al., 2016) Autodock Vina returns
bound conformations with their respective predicted binding
affinity values. The prediction of binding affinity (strength of
the ligand interaction with its target) is based on one of several
scoring functions, which rank the poses in increasing order
of predicted binding affinity. Binding free energy is calculated
using a semi-empirical force field, combining experimental and
knowledge-based information. The docking poses were visualised
and inspected in UCSF Chimera 1.13 (Pettersen et al., 2004)
according to the occupation of search space and diversity of pose
conformations (Supplementary Figure 2). The top two binding
poses were closely matched with the conformations generated
by Karmakar et al. (2018) and Petrella et al. (2011), respectively
(Supplementary Figure 3). The best pose was chosen considering

the ligand orientation generated by molecular docking performed
by Karmakar et al. (2018) and comparing interaction of both
poses with active site residues through an Arpeggio (Jubb et al.,
2017) analysis (Supplementary Figure 4).

Ligand extraction and protonation were carried out using
UCSF Chimera, version 1.11 (Pettersen et al., 2004) while
identification of rotatable bonds was carried out in Autodock
tools (available as part of MGL tools, version 1.5.6) (Morris et al.,
2009) where protonation of the ligand is specifically required
by Autodock Vina (Trott and Olson, 2009). Similarly, protein
extraction and explicit removal of solvent were carried out in
UCSF Chimera, version 1.11 (Pettersen et al., 2004), and other
steps in the overall protein preparation process were carried out
in Autodock tools (part of MGL tools, version 1.5.6) (Morris et al.,
2009). All the required parameters to perform docking needed to
be included in a configuration file.

In silico Predictions: mCSM DUET, FoldX,
mCSM-lig
The computational tools based on mutation cut-off scanning
matrix, primarily mCSM DUET (Pires et al., 2014a) and mCSM-
lig (Pires et al., 2016) were used to investigate the structural
effects of nsSNPs within the pncA target protein. The effects
of nsSNPs within pncA were analysed with respect to protein
stability (DUET and FoldX (Schymkowitz et al., 2005) and ligand
affinity (mCSM-lig). The consequences of these effects were to
investigate change in protein fold and function, and effect on
mechanism of PZA drug activation, respectively. Results from
mCSM-lig (Pires et al., 2016) return both ligand affinity and
DUET scores, hence only mCSM-lig was run to obtain both the
outputs simultaneously.

A semi-automated pipeline was constructed for mCSM and
FoldX to submit and extract results for multiple mutations
consecutively using python and shell scripts. Both tools require
wild type structure, chain ID and a list of nsSNPs in the
X <POS> Y format (X: wild type residue; <POS> : position, Y:
mutant residue). The residue symbols (X and Y) are specified as
one letter amino acid code. DUET and FoldX estimate mutational
impact as a change in Gibbs Free energy (11G) in Kcal/mol.
The classification of mutational impact based on 11G from
these methods are categorised in opposing ways. For example,
11G < 0 of a SNP is classified as a “destabilising” according to
DUET, while the same is classified as “stabilising” according to
FoldX.

The mutational impact on ligand affinity is calculated as a log
fold change between wild type and mutant binding affinities. In
addition to SNP identifiers, mCSM-lig requires the ligand affinity
of the wild-type protein to be specified in nano Molar (nM) for
affinity change calculations. Since the binding affinity returned
by AutoDock Vina, version 1.1.2 (Trott and Olson, 2009) is in
Kcal/mol, these needed to be converted to nM via Eq. 1 (below).
The binding affinity for PZA in nM was 0.9911.

1G = − RTlnK. (1)

Equation 1: Calculation of binding free energy, 1G, where R
is the gas constant, 1.987 cal K−1 mol−1 and T is the absolute
temperature, 298 K. Adapted from Morris et al. (1998).
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The mCSM suite of tools (Pires et al., 2014a, 2016; Pires
and Ascher, 2017; Rodrigues et al., 2019) are based on
graph-based measures at an atomic level along with machine
learning (ML) tools for predicting enthalpic and entropic
effects of stability. mCSM achieves this broadly by generating
a signature encompassing the wild-type milieu and change in
pharmacophore properties upon mutation (Pires et al., 2014b).
Owing to the inter-atomic distance pattern within mCSM
describing the wild-type residue environment, novel parameters
like residue depth and long-range interactions are implicitly
considered. In this manner, mCSM is able to characterise
both local and global effects of missense point mutations. The
mutational change at the atomic level is considered by using a
change in the “pharmacophore count” vector, thus obviating the
need to have explicit mutant structure. All mCSM tools (Pires
et al., 2014a, 2016; Pires and Ascher, 2016, 2017; Rodrigues
et al., 2019) use the atomic changes, while DUET (Pires et al.,
2014a) is an ensemble method combining methods of mCSM
stability (Pires et al., 2014b) and SDM (Worth et al., 2011;
Pandurangan et al., 2017). FoldX, however is an empirical-based
prediction tool which summarises the change in stability between
mutant and wild type protein structures using a combination of
energy terms based on fundamental intramolecular interactions
(Schymkowitz et al., 2005).

Other Structural Parameters
Additional structural parameters for wild type structure were
also included in the analysis. These were: Accessible (ASA) and
Relative Surface Area (RSA), residue depth (RD), hydrophobicity
values according to the Kyte-Doolittle scale (KD). The DSSP
programme (Kabsch and Sander, 1983; Touw et al., 2015) was
run to extract the ASA and RSA values, while RD values
calculated as described by Chakravarty and Varadarajan (1999)
were calculated using the depth server available at http://cospi.
iiserpune.ac.in/depth. The KD values were fetched from the
expasy server (Artimo et al., 2012) available at https://web.expasy.
org/protscale/.

Data Normalisation: DUET, FoldX, and
mCSM-lig
The DUET (Pires et al., 2014a), FoldX (Schymkowitz et al., 2005),
and mCSM-lig (Pires et al., 2016) scores associated with each SNP
were subsequently normalised between the range of−1 and 1. For
mCSM-lig analyses, data was filtered according to distance from
interacting site and only residues within a distance of 10 Å of the
ligand (PZA) were considered for all ligand affinity analyses.

Minor Allele Frequency and Odds Ratio
Calculations: SNP Dataset
Across the M. tuberculosis isolates tested for PZA drug
susceptibility data, we performed association analysis to estimate
the risk of resistance for SNP alleles. For each nsSNP, minor allele
frequency (MAF) and odds ratio (OR) were calculated in relation
to all samples tested for PZA susceptibility. MAF is the average
occurrence of a given nsSNP, and OR is the measure of association
of a given nsSNP with PZA resistance. In addition to unadjusted

odds ratio (OR), and similar to a GWAS approach, adjusted
odds ratio (aOR) were estimated using logistic regression models
with a kinship matrix adjusting for a random effect representing
the SNP-based relationships between samples (e.g., the lineage-
based population structure) (Zhou and Stephens, 2012; Coll et al.,
2018). P-values were estimated using Fisher and Wald test for
unadjusted and adjusted ORs, respectively.

Statistical Analyses
Data was analysed using non-parametric statistical tests.
For assessing correlations, Spearman correlation values
were calculated. For comparing lineage distributions, the
Kolmogorov-Smirnov (KS) test was used. Statistical significance
thresholds used are ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001,
∗∗∗∗P < 0.0001).

Data Visualisation
All plots were generated using R statistical software,
version 4.0.2 (R Core Team, 2014). Protein and ligand
structures were generated using UCSF Chimera, version
1.11 (Pettersen et al., 2004).

RESULTS

Analysing the pncA Molecular Motion
and pncA-PZA Complex
Molecular motion in pncA was analysed by Normal Mode
Analysis (NMA). Regions undergoing the greatest movement
were limited to residues in loop regions and mainly concentrated
to loop 60–66, followed by loop residues 39–41 and 111–113.
Residues at site 165–167 within helix 164–178 showed the least
flexibility (Supplementary Figure 1). The frequency of mutations
in these variable regions was most prominent for sites 62–63
(>2 mutations) while the other sites were limited to at most two
mutations (Figure 1). Mutations within the most flexible region
(residues 60–66) of pncA showed mixed effects in relation to their
association with PZA resistance with the single mutation at site 64
related to PZA resistance. Sites 39 and 40 within the other highly
flexible region 39–41 were not associated with any mutations in
our study, while the two mutations at site 41 were not associated
with PZA resistance. The region 111–113 is associated with single
mutations at sites 111 and 112 which are not linked to PZA
resistance, while site 113 was not associated with any mutations in
our study. Sites 165–167, which form part of the helix (164–178),
are the most stable according to NMA. Two residues (A165 and
D166) within this helix were not associated with any mutations
in our study, while a single mutation at site T167 was not
associated with PZA drug resistance (Supplementary Figure 1
and Supplementary Table 1). Docking with AutoDock vina
(Trott and Olson, 2009) generated nine different conformations
as per default settings. In six of these poses, the aromatic ring
of PZA was oriented towards the substrate binding residue
W68 (Supplementary Figures 2A,B). The top two poses (1
and 2) returned by Vina were similar to previous molecular
docking studies (Petrella et al., 2011; Karmakar et al., 2018)

Frontiers in Molecular Biosciences | www.frontiersin.org 4 July 2021 | Volume 8 | Article 619403

http://cospi.iiserpune.ac.in/depth
http://cospi.iiserpune.ac.in/depth
https://web.expasy.org/protscale/
https://web.expasy.org/protscale/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-619403 August 3, 2021 Time: 21:57 # 5

Tunstall et al. Pyrazinamide Resistance in Mycobacterium tuberculosis

FIGURE 1 | Logo plot showing sites with multiple missense point mutations and association with Odds Ratio. Sites associated with multiple (>2) missense point
mutations (i.e., nsSNPs). A total of 386 mutations corresponding to 113 positions on the pncA protein structure were associated with multiple nsSNPs. The
horizontal axis in (A,B) show the position numbers of sites with multiple nsSNPs, while part (C) shows the wild-type residues for each position. The vertical axis in (A)
represents Odds Ratio (OR) where letters denote mutant residues which are proportional to their corresponding OR highlighting the most resistant mutation at each
site and overall. Part (B) shows each mutant residue at a given position, highlighting nsSNP diversity by position. The wild-type and mutant residues are coloured
according to the amino acid properties as denoted. Positions marked in yellow form the catalytic triad, residues in blue and teal are involved in substrate binding,
those in green are involved in hydrogen binding while the ones in purple are involved in the iron centre coordination. The figure is generated using R statistical
software (version 4.0.2). nsSNPs, non-synonymous Single Nucleotide Polymorphisms; pncA, pyrazinamidase.

(Supplementary Figure 3). A follow-up Arpeggio analysis (Jubb
et al., 2017) indicated that pose 1 when compared to pose 2,
has more H-bonds (4 vs. 1), fewer aromatic contacts (3 vs. 13),
and greater Van der Waals interactions (3 vs. 1) (Supplementary
Figures 4A,B). Therefore, model with pose 1 was chosen to form
the pncA-PZA complex (Supplementary Figure 5).

Genomics Data
SNP data from 35,944 M. tuberculosis clinical isolates tested for
drug susceptibility to a range of first and second line drugs were
obtained (Napier et al., 2020). Among these, 39% (n = 13,914)
of these isolates were tested for PZA drug susceptibility. The
isolates were collected from over 30 different countries and
represented the 4 main M. tuberculosis lineages (L1, n = 144;
L2, n = 1,886; L3, n = 190; L4, n = 2213) (Supplementary
Figure 6). In order to infer whether the ancestral pncA
sequences for each lineage differed, we quantified the number
of samples without any mutations in each lineage. The majority
of isolates in L1–L4 had an identical pncA sequence as the
H37Rv reference indicating that the ancestral sequences for
these lineages do not differ. The majority were pan susceptible
(n = 23,256, 64.7%), with the remainder MDR-TB (n = 6,691,
18.6%), XDR-TB (n = 989, 2.8%), or another type of resistance
referred to as DR-TB (n = 5,008, 13.9%) (Table 1). From the
list, only nsSNPs within the protein coding region of pncA
(n = 4,731, 13.2%) were considered for our analyses (Table 1).
The majority of these were MDR-TB (n = 3,290, 69.5%) followed
by relatively equal numbers of XDR-TB and DR-TB (n = 625,
13.2% and n = 632, 13.4%, respectively), while only a small
percentage were susceptible (n = 184, 3.9%) (Table 1). From

a total of 13,914 samples tested for PZA drug susceptibility,
a minority of those were found to be resistant (n = 2,379,
17.1%) (Table 1). However, the burden of PZA resistance among

TABLE 1 | Number of samples analysed.

Item name Total number (%)

Clinical isolates/samples 35,944

Samples classified Susceptible 23,256 (64.7)

Drug resistant (DR) 5,008 (13.9)

Multi-drug resistant (MDR) 6,691 (18.6)

Extreme drug resistant (XDR) 989 (2.8)

Samples tested for PZA drug
susceptibility

13,914

Resistant 2,379 (17.1)

Samples with nsSNPs in the protein
coding region of pncA

4,731 (13.2)

Susceptible 184 (3.9)

Drug resistant (DR) 632 (13.4)

Multi-drug resistant (MDR) 3,290 (69.5)

Extreme drug resistant (XDR) 625 (13.2)

Samples with pncA nsSNPs tested for
PZA drug susceptibility

2,289 (48.4)

Samples with pncA nsSNPs resistant to
PZA

1,677 (73.3)

Unique nsSNPs: No. of sites 424 nsSNPs: 151 sites

Summary of clinical isolates from genome-wide analysis. PZA, pyrazinamide;
nsSNPs, non-synonymous Single Nucleotide Polymorphisms.
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FIGURE 2 | Barplots showing number of mutations and sites associated with protein stability and ligand affinity. (A) Number of nsSNPs categorised as destabilising
(n = 359) and stabilising (n = 65) according to DUET protein stability. (B) Frequency of sites associated with the number of nsSNPs, where horizontal axis denotes the
number of nsSNPs and vertical axis denotes the total number of sites/positions corresponding to the number of nsSNPs. (C) Barplot showing the number of nsSNPs
categorised as destabilising (n = 168) and stabilising (n = 33) according to mCSM ligand affinity where sites lie within 10Å of ligand. (D) Frequency of sites associated
with the number of nsSNPs, where horizontal axis denotes the number of nsSNPs and vertical axis denotes the total number of sites/positions corresponding to the
number of nsSNPs. The figure is generated using R statistical software (version 4.0.2). nsSNPs, non-synonymous Single Nucleotide Polymorphisms.

samples containing nsSNPs in the protein coding region was high
(n = 1,677, 73.3%) (Table 1).

Across the 4,731 isolates, 424 distinct nsSNPs corresponding
to 151 distinct amino acid positions on the pncA structure were
identified (Figures 2A,B). A total of 201 nsSNPs corresponding
to 54 amino acid changes were within 10 Å of the ligand binding
site (Figures 2C,D). The majority of these nsSNP mutations
have been annotated as being linked to PZA resistance within
the TBProfiler tool (227/424). The majority of these nsSNP
mutations have been annotated as being linked to PZA resistance
within the TBProfiler tool (227/424; denoted as DM), while

the others (197/424; denoted as OM) were assumed to have
weak or no links. Genomic measures like minor allele frequency
(MAF) and odds ratio (OR) were obtained for a total of 322
nsSNPs, with adjusted OR (aOR) estimated for a total of 163
nsSNPs. Across the majority of these nsSNPs, the MAFs were low
(median: 0.02% range: 0.01–2.11%) (Supplementary Figure 7A).
Similarly, when considering ORs, the majority of the nsSNPs had
high ORs (median: 9.70, range: 0.22–414.61) (Supplementary
Figure 7D). When looking at the distribution of MAF and OR
within mutations associated with PZA resistance (DM) and other
mutations (OM) (Supplementary Figures 7B,E), DM mutations

Frontiers in Molecular Biosciences | www.frontiersin.org 6 July 2021 | Volume 8 | Article 619403

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-619403 August 3, 2021 Time: 21:57 # 7

Tunstall et al. Pyrazinamide Resistance in Mycobacterium tuberculosis

FIGURE 3 | Mutational landscape of pncA structure (3PL1) coloured by positions linked to pyrazinamide drug (PZA) resistance. Panels (A,B) show all mutational
positions in orange while mutational positions in (C,D) are further coloured by mutations classed as either drug resistant mutations (purple) or “other mutations”
(blue), while sites linked to mutations belonging to either category are coloured in pink. The right panels (B,D) depict the corresponding structure rotated by 180◦.
The ligand (PZA) is shown as ball and stick within the active site denoted by the red circle. The figure is rendered using UCSF Chimera (version 1.14). pncA,
pyrazinamidase.

were associated with significantly higher (P < 0.0001) MAF and
OR (Supplementary Figures 7C,F).

Understanding Mutational Effects on
pncA Stability and PZA Binding Affinity
The 424 nsSNPs mapped onto the crystal structure of pncA
revealed that mutational landscape of pncA appears distributed
(Figures 3A,B) throughout the structure. Sites linked to drug
resistant mutations were predominant around the PZA binding
(active) site, while sites exclusively linked to mutations classed in
the “other” category are distal to the active site (Figures 3C,D, 4).
Furthermore, active site residues were associated with a multiple

point mutation (Table 2 and Figures 1B, 5C). All active site and
hydrogen-bond forming residues with the ligand were associated
with multiple mutations (≥2) (Figure 1B), thus representing the
high diversity of mutations present within pncA. Despite this,
there appears to be some degree of clustering around positions
4–14, 46–97, 132–143 involving the active site and metal centre
residues (Figure 5C).

The biophysical effect of mutations on protomer stability,
estimated as 11G (Kcal/mol), was measured using DUET (Pires
et al., 2014a) and FoldX (Schymkowitz et al., 2005), while
mutational impact on ligand affinity was measured using mCSM-
lig (Pires et al., 2016) (see section “Materials and Methods”).
Assessing mutational effects on protein stability as measured by
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FIGURE 4 | Comparison of structural features between Drug resistance (DM) and other mutations (OM) of pncA gene mutations according to (A) DUET protein
stability (11G), (B) FoldX stability (11G), and (C) Ligand Affinity. A total of 424 nsSNPs for DUET and FoldX (DM, n = 227, OM, n = 197), while a total of 201
nsSNPs (DM, n = 129 OM, n = 72) lying within 10 Å of PZA for ligand affinity were included in the analysis. DM and OM mutations were compared using Wilcoxon
rank-sum (unpaired) and statistical significance indicated as: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). The figure is generated using R statistical
software (version 4.0.2). ns, non-synonymous Single Nucleotide Polymorphisms; pnca, pyrazinamidase; PZA, pyrazinamide; Å, Angstroms; 11G, Change in Gibbs
free energy in Kcal/mol; ASA, Accessible Surface Area; RSA, Relative surface Area; RD, Residue Depth; KD, Kyte-Doolittle Hydrophobicity values.

DUET, nearly 85% had a destabilising effect (n = 359) compared
to nearly 15% mutations with stabilising effects (n = 47) as shown
in Figure 2A. When assessing ligand affinity, 47.4% (n = 201)
SNP mutations were present within 10 Å of the PZA binding site
(Figure 2C). Similar to DUET stability effects, the majority (84%;
n = 168) of nsSNPs were destabilising while 16% (n = 27) were
stabilising for ligand binding affinity (Figure 2C). More than
50% of the mutational positions were associated with multiple
nsSNPs for both protein stability (n = 113) and ligand affinity
(n = 49) (Figures 2B,D). The average protein stability and ligand
affinity effects of all mutations mapped onto the pncA structure
(Figures 5A,B), highlight mutations with opposing effects for
protein stability and ligand affinity. These effects are pronounced
for active site residues (I133, A134, H137, C138) (Figures 5C,D).

There were 80 sites within pncA associated with multiple
nsSNPs (>2) (Figures 1B, 2B) which included all active residues
except I133 which was associated with 2 mutations (Figure 1B).
Sites with 2 nsSNPs are considered to be budding resistance
hotspots (n = 33 for protein stability, n = 7 for ligand affinity).
A total of 57 nsSNPs within 5 Å of PZA were considered
to be within the first shell of residues lining the active site
(Table 2). While majority of the mutational sites associated with
more than two mutations comprise of destabilising mutations,
positions 1, 2, 10, 12, 43, 46, 51, 57, 63, 67, 69, 78, 82,
92, 96, 100, 104, 105, 129, 135–138, 142, 149, 164, 168, and
174 comprised of both stabilising and destabilising mutations
(Figure 5C). Similarly, for ligand affinity, most mutational sites
had destabilising mutational effects, with positions 7, 8, 13, 27,

49, 72, 78, 96, 102, 103, 105, 134, 137, 138, and 162 associated
with mutations resulting in mixed stability impact. Position 163
comprised only of mutations with stabilising effects (Figure 5D).
The budding resistance hotspot active site residue I133 contained
both mutations with destabilising effect for protein stability
(Figure 5C), while stabilising for ligand affinity (Figure 5D).
Similarly, for budding resistance hotspots, majority of the nsSNPs
were associated with destabilising effects. For protein stability,
9/33 sites had mutations with mixed stability (positions 15, 32, 61,
66, 76, 114, 127, 153, and 161) (Figure 5C), while only position 20
showed mixed stability effects for ligand affinity (Figure 5D).

Mutations With Extreme Effects
Mutations with extreme effects on protein stability and affinity
are summarised in Table 3. Overall, the most destabilising
mutation according to DUET was L4S, where a change from
a hydrophobic to a polar residue may contribute to disruption
of local conformation (Table 3). The closest most destabilising
mutational effect on protein stability was from A134D (wild-
type residue involved in hydrogen bonding) (Table 3), likely
resulting in electrostatic and steric clashes due to a change
in charge and volume affecting the overall stability negatively.
The most stabilising mutation on protomer stability was from
active site residue Y103D, while the closest such mutation was
C138R (Table 3). The stabilising effect of these mutations on the
protein stability and ligand affinity is thought to result from the
electrostatic interactions working favourably for sites lying within
5 Å of the ligand. The most destabilising mutation according
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TABLE 2 | Mutations close to the active site of PZA.

S. No. Mutation Mutation
class

MAF
(%)

OR P-value OR
adjusted

P-Wald DUET
11G

DUET
outcome

Distance
to

ligand
(Å)

mCSM-
lig

(log
affinity)

Ligand
outcome

Foldx
11G

Foldx
outcome

ASA RSA Hydro
phobicity

Residue
depth

1 A134D Others 0.01 2.42 1.00E+00 NA NA −2.98 D 3.05 0.58 S 1.03 D 10 0.08 1.87 6.77

2 A134G Others NA NA NA NA NA −1.62 D 3.05 −0.38 D −1.29 S 10 0.08 1.87 6.77

3 A134P Others 0.01 9.70 1.71E-01 NA NA −1.43 D 3.05 0.08 S −5.20 S 10 0.08 1.87 6.77

4 A134T Others NA NA NA NA NA −1.93 D 3.05 0.88 S −0.94 S 10 0.08 1.87 6.77

5 A134V Drug
associated

0.04 19.43 3.68E-03 1.53 3.07E-05 −0.41 D 3.05 0.12 S −1.46 S 10 0.08 1.87 6.77

6 I133S Others 0.01 9.70 1.71E-01 NA NA −3.22 D 3.05 0.58 S 3.30 D 3 0.02 1.97 7.90

7 I133T Drug
associated

0.32 6.44 2.90E-09 0.86 4.86E-03 −2.79 D 3.05 0.70 S 1.58 D 3 0.02 1.97 7.90

8 D8A Drug
associated

0.01 19.41 2.92E-02 NA NA −0.51 D 3.22 −3.27 D 0.54 D 5 0.03 1.63 9.48

9 D8G Drug
associated

0.08 48.69 1.95E-07 1.25 4.42E-02 −0.85 D 3.22 −3.45 D 1.89 D 5 0.03 1.63 9.48

10 D8E Drug
associated

0.03 14.56 1.74E-02 1.19 1.46E-01 −0.79 D 3.22 0.01 S 1.90 D 5 0.03 1.63 9.48

11 D8N Drug
associated

0.05 29.16 1.49E-04 1.24 7.10E-03 −1.18 D 3.22 −1.66 D −1.26 S 5 0.03 1.63 9.48

12 C138G Others NA NA NA NA NA −0.02 D 3.28 −0.01 D 1.12 D 12 0.07 1.17 6.70

13 C138S Drug
associated

NA NA NA NA NA 0.00 D 3.28 0.81 S −0.23 S 12 0.07 1.17 6.70

14 C138W Others NA NA NA NA NA −1.05 D 3.28 0.94 S −1.72 S 12 0.07 1.17 6.70

15 C138Y Drug
associated

NA NA NA NA NA −0.52 D 3.28 0.91 S −0.57 S 12 0.07 1.17 6.70

16 C138R Drug
associated

0.09 116.96 6.10E-10 1.74 4.08E-12 0.10 S 3.28 0.35 S −2.12 S 12 0.07 1.17 6.70

17 H137N Others 0.01 2.42 1.00E+00 NA NA 0.19 S 3.42 −0.12 D 0.40 D 84 0.38 −1.40 4.60

18 H137P Drug
associated

NA NA NA NA NA 0.37 S 3.42 −0.77 D 2.19 D 84 0.38 −1.40 4.60

19 H137Y Others 0.01 2.42 1.00E+00 NA NA 0.86 S 3.42 −0.01 D 0.34 D 84 0.38 −1.40 4.60

20 H137R Drug
associated

0.03 4.85 1.38E-01 0.56 1.21E-04 −0.27 D 3.42 0.47 S 0.49 D 84 0.38 −1.40 4.60
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TABLE 2 | Continued

S. No. Mutation Mutation
class

MAF
(%)

OR P-value OR
adjusted

P-Wald DUET
11G

DUET
outcome

Distance
to

ligand
(Å)

mCSM-
lig

(log
affinity)

Ligand
outcome

Foldx
11G

Foldx
outcome

ASA RSA Hydro
phobicity

Residue
depth

21 D49G Drug
associated

0.05 29.16 1.49E-04 1.66 4.38E-08 −1.16 D 3.45 −3.46 D 0.46 D 7 0.04 −1.53 7.89

22 D49A Drug
associated

0.04 58.33 2.49E-05 1.67 3.17E-06 −0.45 D 3.45 −3.35 D −2.07 S 7 0.04 −1.53 7.89

23 D49N Drug
associated

0.06 77.84 7.23E-07 1.51 3.14E-04 −1.68 D 3.45 −1.93 D −0.33 S 7 0.04 −1.53 7.89

24 D49Y Drug
associated

0.01 9.70 1.71E-01 NA NA −0.74 D 3.45 −1.86 D −2.67 S 7 0.04 −1.53 7.89

25 D49E Drug
associated

0.02 9.70 7.77E-02 NA NA −0.47 D 3.45 0.25 S −0.70 S 7 0.04 −1.53 7.89

26 A102R Others 0.01 2.42 1.00E+00 NA NA −0.70 D 3.50 0.17 S 4.13 D 10 0.08 0.03 5.51

27 A102P Others 0.06 14.58 5.08E-04 0.66 5.33E-04 −1.25 D 3.50 −0.23 D −0.62 S 10 0.08 0.03 5.51

28 A102V Others 0.06 2.43 1.88E-01 0.91 3.00E-01 −0.25 D 3.50 −0.16 D −1.91 S 10 0.08 0.03 5.51

29 A102T Drug
associated

0.01 19.41 2.92E-02 1.75 4.98E-04 −0.72 D 3.50 0.88 S −2.03 S 10 0.08 0.03 5.51

30 F13C Others 0.01 1.21 1.00E+00 0.64 4.31E-03 −2.32 D 3.55 −0.49 D 2.70 D 24 0.10 0.60 6.93

31 F13I Drug
associated

0.03 14.56 1.74E-02 NA NA −1.76 D 3.55 −0.45 D 0.89 D 24 0.10 0.60 6.93

32 F13L Drug
associated

0.06 34.04 2.89E-05 1.37 2.29E-03 −2.03 D 3.55 −0.43 D 1.10 D 24 0.10 0.60 6.93

33 F13V Others 0.01 1.21 1.00E+00 NA NA −2.57 D 3.55 −0.56 D 1.40 D 24 0.10 0.60 6.93

34 F13S Drug
associated

0.03 1.62 5.28E-01 0.60 3.07E-04 −3.10 D 3.55 0.22 S 2.59 D 24 0.10 0.60 6.93

35 K96E Drug
associated

0.08 107.17 3.58E-09 1.75 2.79E-06 −2.12 D 3.98 −0.67 D 6.92 D 8 0.03 −1.87 5.96

36 K96Q Drug
associated

0.03 4.85 1.38E-01 0.64 1.17E-01 −1.32 D 3.98 −0.08 D 1.04 D 8 0.03 −1.87 5.96

37 K96T Drug
associated

0.09 58.47 6.68E-09 1.84 2.25E-13 −0.86 D 3.98 −0.57 D 3.54 D 8 0.03 −1.87 5.96

38 K96M Others 0.01 19.41 2.92E-02 NA NA 0.41 S 3.98 −1.03 D 0.27 D 8 0.03 −1.87 5.96

39 K96N Drug
associated

0.01 2.42 1.00E+00 NA NA −1.16 D 3.98 0.33 S 2.61 D 8 0.03 −1.87 5.96
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TABLE 2 | Continued

S. No. Mutation Mutation
class

MAF
(%)

OR P-value OR
adjusted

P-Wald DUET
11G

DUET
outcome

Distance
to

ligand
(Å)

mCSM-
lig

(log
affinity)

Ligand
outcome

Foldx
11G

Foldx
outcome

ASA RSA Hydro
phobicity

Residue
depth

40 K96R Drug
associated

0.11 19.49 1.66E-07 1.43 2.16E-06 −0.17 D 3.98 0.08 S −0.74 S 8 0.03 −1.87 5.96

41 H71D Drug
associated

0.01 9.70 1.71E-01 NA NA −2.69 D 4.18 −2.50 D 5.75 D 5 0.02 −0.77 6.25

42 H71N Drug
associated

NA NA NA NA NA −2.67 D 4.18 −1.34 D 0.64 D 5 0.02 −0.77 6.25

43 H71P Others 0.01 4.85 3.13E-01 NA NA −2.36 D 4.18 −2.89 D 3.26 D 5 0.02 −0.77 6.25

44 H71Q Drug
associated

0.01 19.41 2.92E-02 1.75 2.12E-04 −2.29 D 4.18 −1.73 D 1.12 D 5 0.02 −0.77 6.25

45 H71R Drug
associated

0.05 1.94 3.42E-01 0.88 2.01E-01 −1.93 D 4.18 −0.83 D −1.52 S 5 0.02 −0.77 6.25

46 H71Y Drug
associated

0.18 25.67 4.52E-13 1.48 5.50E-08 −0.46 D 4.18 −1.96 D −1.78 S 5 0.02 −0.77 6.25

47 H57D Drug
associated

0.73 166.91 2.08E-72 1.24 1.05E-01 −1.85 D 4.56 −1.28 D 1.83 D 16 0.07 −1.30 5.63

48 H57P Drug
associated

0.03 38.85 8.53E-04 1.55 1.16E-02 −1.23 D 4.56 −2.12 D 0.15 D 16 0.07 −1.30 5.63

49 H57Q Others NA NA NA NA NA −1.29 D 4.56 −0.95 D 0.85 D 16 0.07 −1.30 5.63

50 H57R Drug
associated

0.19 254.92 1.02E-20 1.48 9.69E-09 −1.17 D 4.56 −0.28 D 1.25 D 16 0.07 −1.30 5.63

51 H57L Drug
associated

NA NA NA NA NA −0.06 D 4.56 −1.92 D −1.11 S 16 0.07 −1.30 5.63

52 H57Y Drug
associated

0.02 29.13 4.99E-03 2.08 7.92E-06 0.41 S 4.56 −1.16 D −0.15 S 16 0.07 −1.30 5.63

53 W68C Drug
associated

0.04 24.29 7.49E-04 1.75 1.67E-04 −1.45 D 4.97 −1.58 D 2.68 D 45 0.16 −1.10 5.49

54 W68G Drug
associated

0.14 87.93 2.36E-13 1.58 7.39E-11 −2.57 D 4.97 −2.13 D 4.04 D 45 0.16 −1.10 5.49

55 W68L Drug
associated

NA NA NA NA NA −1.62 D 4.97 −2.24 D 0.19 D 45 0.16 −1.10 5.49

56 W68R Drug
associated

0.20 132.41 4.03E-20 1.50 4.26E-09 −1.61 D 4.97 −0.58 D 0.08 D 45 0.16 −1.10 5.49

57 W68S Drug
associated

0.01 9.70 1.71E-01 NA NA −2.67 D 4.97 −1.04 D 2.65 D 45 0.16 −1.10 5.49

Fifty-seven mutations (nsSNPs) lying within 5 Å of PZA and the corresponding GWAS measures of minor allele frequency (MAF), Odds Ratio (OR), P-values, adjusted OR (aOR), and P-values from Wald test corresponding
to aORs, along with structural measures of distance to ligand, DUET, FoldX, ligand affinity values and effect. Wild type residues for mutations highlighted and marked in green are considered to participate in hydrogen
bonding, those in yellow form the catalytic triad, residues in teal (and blue) are involved in substrate binding, while the residues in purple are involved in the iron centre. The columns are coloured to highlight the most
significant column attribute with deeper colours denoting the greatest effects. The dark colours in MAF, OR, and aOR columns indicate the highest values, while P-values are coloured with the darkest colour showing the
most significant values. Values in the DUET, mCSM-lig, and FoldX columns are coloured according to the extent of their respective effects with red indicating destabilising and blue denoting stabilising effects. nsSNPs,
non-synonymous Single Nucleotide Polymorphisms; PZA, pyrazinamide; GWAS, Genome-Wide Association Studies. D, Destabilising; S, Stabilising.
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FIGURE 5 | Protein stability and ligand affinity effects of nsSNPs on pncA structure and by position. Mutational impact of nsSNPs on the pncA protein structure
coloured by average (A) DUET Protein stability (n = 424) and (B) ligand affinity (n = 201). Barplots (C,D) showing the frequency of mutations within the pncA gene.
The horizontal axis shows the mutational positions within pncA and the vertical axis shows the frequency of mutations. Positions on the horizontal axis are coloured
to denote the active site residues: green (residues involved in hydrogen bonding with PZA), yellow (catalytic triad), blue and teal (substrate binding), purple (iron
centre). For a given position, each corresponding mutation (nsSNP) is coloured by the level of stability according to (C) DUET(n = 424) and (D) Ligand affinity
(n = 201) where the horizontal axis denotes amino acid positions in pnca, and is restricted to positions lying within 10 Å of PZA for ligand affinity. Destabilising
mutations are depicted in red and stabilising mutations in blue, where colour intensity reflects the extent of effect, ranging from −1 (most destabilising) to + 1 (most
stabilising). The structural figures (A,B) are rendered using UCSF Chimera (version 1.14). The barplot figure (C,D) is generated using R statistical software (version
4.0.2). nsSNPs, non-synonymous Single Nucleotide Polymorphisms; PZA, pyrazinamide; pncA, pyrazinamidase.

to ligand affinity was D49G located at ∼3.5 Å (Table 3). The
three subsequent destabilising mutations for ligand affinity were
also all within 5 Å of PZA binding site namely D8G (∼3 Å),
D49A (∼3.5 Å), and D8A (∼3 Å) (Supplementary Table 1), all
arising likely due to the loss of charge and volume interfering
with ligand interaction. The mutation with the greatest stabilising
effect on ligand affinity was G162D, located at ∼8 Å, i.e. outside
the first shell of influence (>5 Å) from the ligand. This is
possibly due to the resulting electrostatic effects and increase in
volume, which may favour hydrogen bond formation with nearby
residues and PZA binding, thereby increasing affinity (Table 3).
The closest most stabilising mutational impact on ligand affinity
was due to mutation A134P, though this was a marginal effect
(Table 3). The most destabilising mutation according to FoldX
was C72W, which is located far away from the active site (∼27 Å).

Interestingly, mutation A134P was the most stabilising according
to FoldX, while the same was estimated to have a destabilising
effect according to DUET (Table 3). All mutations except A134D
and A134P were associated with PZA drug resistance (Table 3).

Relating Structural and GWAS Analyses
The minor allele frequencies for the 424 nsSNPs were mapped
onto their corresponding amino acid positions of the pncA
gene (Supplementary Figure 8). Position 10 had the highest
cumulative minor allele frequency (MAF, ∼2.3%), followed by
position 7 (∼1.2%), position 57 (∼1.0%), position 51 (∼0.6%),
and position 14 (0.5%). The risk of PZA resistance from the
alleles at each SNP was estimated by calculating ORs and P-values
using a GWAS approach. Additionally, adjusted OR (aOR)
which accounted for the confounding effects of lineage were also
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TABLE 3 | Mutations with extreme effects.

Mutational effects Mutation Mutation class MAF (%) OR P-value Distance
to ligand

(Å)

Stability 11G Ligand affinity

Highest OR H51D Drug-associated 0.30 414.61 4.49E-33 5.66 −2.2 −1.82

Most frequent mutation Q10P Drug-associated 2.11 156.23 1.28E-207 6.02 −0.63 −1.77

Most deStabilising for protein
stability (DUET)

L4S Drug-associated 0.25 28.46 5.63E-18 15.33 −3.87 −1.08

Closest destabilising for protein
stability (DUET)

A134D Others 0.007 2.43 1.00 3.05 −2.98 0.58

Most stabilising for protein
stability (DUET)

Y103D Others 0.22 142.33 1.24E-21 5.42 1.18 0.85

Closest stabilising for protein
stability (DUET)

C138R Drug-associated 0.09 116.96 6.09E-10 3.28 0.10 0.35

Most destabilising for ligand
affinity

D49G Drug-associated 0.05 29.16 0.0001 3.45 −1.16 −3.46

Closest destabilising for ligand
affinity

D8G Drug-associated 0.08 48.69 1.95E-07 3.22 −0.85 −3.45

Most stabilising for ligand
affinity

G162D Drug-associated 0.03 38.85 0.0008 8.32 −1.04 2.23

Closest stabilising for ligand
affinity

A134P Others 0.007 9.70 1.71E-01 3.05 −1.43 0.08

Most destabilising for protein
stability (Foldx)

C72W Drug-associated 0.01 19.41 0.03 7.05 27.46 –

Most stabilising for protein
stability (Foldx)

A134P Others 0.007 9.70 1.71E-01 3.05 −5.2 –

Mutations (nsSNPs) with extreme effects on odds ratio, frequency, thermodynamic stability, and ligand affinity. For ligand affinity, only mutations lying within 10 Å of
PZA (pyrazinamide) were considered. nsSNPs, non-synonymous Single Nucleotide Polymorphisms; Å, Angstroms; MAF, minor allele frequency; OR, Odds Ratio; 11G,
Change in Gibbs free energy in Kcal/mol.

FIGURE 6 | Correlation between biophysical effects and GWAS measures of Odds Ratio (OR), P-values (P) and minor allele frequency (MAF). Pairwise correlations
between MAF, negative log10 P-value [-Log(P)], Log10 (OR) and (A) Protein stability (DUET) and FoldX for 424 nsSNPs, (B) Ligand affinity of 201 nsSNPs (lying
within 10 Å of PZA). The upper panel in both plots include the pairwise Spearman correlation values along with their statistical significance (*P < 0.05, **P < 0.01,
***P < 0.001). The points in the lower panel represent nsSNPs, coloured according to respective stability effects: (A) nsSNPs with destabilising effect for DUET and
ligand affinity are coloured red, while for FoldX these appear in blue, (B) nsSNPs with stabilising effect for DUET and ligand affinity appear in blue, while for FoldX
these appear in red. The diagonal plots display the histogram of the corresponding parameter. The figure is generated using R statistical software (version 4.0.2).
nsSNPs, non-synonymous Single Nucleotide Polymorphisms; PZA, pyrazinamide; Units for DUET, FoldX and Ligand Affinity (Kcal/mol).
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FIGURE 7 | Density distribution of M. tuberculosis lineages. A total of 4,433 samples belonging to Lineages 1–4, containing 419‘pncA mutations were considered.
The horizontal axis shows the DUET stability values (−1, most destabilising) to blue (+1, most stabilising). while the vertical axis shows the density distribution of M.
tuberculosis lineages coloured by mutation class as either DM (associated with pyrazinamide resistance in orange) or OM (not associated with pyrazinamide drug
resistance which appear in grey). DM mutations comprise of a total of 3,565 samples contributing to 226 mutations, while 868 samples contributing to 193
mutations formed part of the OM mutation class. The figure is generated using R statistical software (version 4.0.2). Abbreviations used: nsSNPs: non-synonymous
Single Nucleotide Polymorphisms, pncA: pyrazinamidase.

analysed (Supplementary Figure 9). The majority of nsSNPs
were linked to increased likelihood of being resistant to PZA
(OR > 1). For unadjusted ORs, this was 96% (310/322), while
for aOR, it was ∼75% (122/163). Wild type position 51 had the
highest unadjusted OR (> 350, P < 10−30), followed by positions
57, 120 (OR > 250, P< 10−19), and subsequently by positions 10,
103, 68, 135, 138, 96, and 180 (OR > 100; P < 10−10) (Figure 1A,

Supplementary Figure 8, and Supplementary Table 1), with
most of these positions being present in the metal binding
and active sites.

When assessing sites in relation to mutational diversity,
active site residues were among the highest, with residues
H51, H57, H71, K96 associated with six distinct mutations,
followed by F13, D49, W68, A134, C138 with five mutation
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each, while residues D8, Y103, H137 were associated with
four distinct mutations and residues I133 associated with two
distinct mutations (Figure 1B). The dominant effect of a highly
frequent mutation (Q10P; MAF = 2.1%, OR = 156.23) in the
population compared to two other mutations observed at the
same position namely Q10R (MAF = 0.13%, OR = 83.01) and
Q10H (MAF = 0.08%, OR = 107.17) (Supplementary Table 1),
makes position 10 prominent in terms of MAF (Supplementary
Figure 8) while sites involved in the catalytic activity and iron
metal centre are more prominent with respect to SNP diversity
(Supplementary Figure 8). These results suggest that mutations
at these structurally and functionally important sites are likely
under selective pressure exerted by the drug resulting in this
observed mutational diversity.

The relationship between structural measures of stability and
OR was visualised as a bubble plot indicating that mutations
associated with greater resistance (high OR) tend not to have
extreme effects (Supplementary Figure 10). Furthermore, this
relationship along with MAF, OR, and P-values was assessed
through Spearman correlations (Figures 6A,B). MAF was
strongly correlated with P-values for all 424 mutations (ρ = 0.78,
P < 0.001) and 201 mutations lying with 10 Å of PZA (ρ = 0.84,
P < 0.001) (Figures 6A,B). As expected, OR and P-values were
strongly correlated (ρ = 0.9, P < 0.001) for all 424 nsSNPs and
201 nsSNPs close to PZA binding site (Figures 6A,B). FoldX
stability and DUET stability values showed moderate correlation
(ρ = 0.45, P < 0.001). The negative sign for the DUET and
FoldX associations is expected since stability changes measured
by these tools have opposite signs (i.e., 11G < 0: destabilising in
DUET vs. stabilising in FoldX). FoldX 11G values showed weak
but significant correlations with OR (ρ = 0.23, P < 0.001), and
P-values (ρ = 0.18, P < 0.01) (Figure 6A), while DUET 11G and
ligand affinity showed weak and insignificant association with OR
(ρ = −0.1, P > 0.05) (Figures 1B, 6A), including adjusted OR
(Supplementary Figures 9A, 8B).

When considering aOR and its relationship with stability
and other structural features [i.e., Accessible (ASA), Relative
Surface Area (RSA), residue depth (RD), and hydrophobicity
values (KD)], there was high correlation (ρ > 0.6, P < 0.05)
with adjusted and unadjusted ORs (Supplementary Figure 9A).
DUET 11G showed moderate positive correlation between
ASA and RSA (ρ > 0.6, P < 0.05), while moderately
negative correlation with RD (ρ∼−0.5, P < 0.05), and weak
negative correlation with KD values (ρ∼−0.2, P < 0.05)
(Supplementary Figure 9A). The same structural features,
however, did not demonstrate correlation with either
FoldX 11G (Supplementary Figure 9A) or ligand affinity
(Supplementary Figure 9B).

Structural Differences in Drug
Associated Mutations
Comparing stability effect (DUET and FoldX), ligand affinity,
ligand distance, and other structural features (ASA, RSA, RD,
KD) between mutations associated with PZA drug resistance
(DM) and other mutations (OM), revealed statistically significant
differences (P < 0.05) between all features except hydrophobicity

values. The difference in structural features were most prominent
when all 424 SNP mutations were considered (P < 0.0001)
(Figures 4A,B) with lesser significance for ligand affinity
(P < 0.05), ASA (P < 0.01), and RSA and RD (P < 0.001)
values when 201 nsSNPs lying within 10 Å were considered
(Figure 4C). Mutations associated with PZA resistance have
lower DUET (Figure 4A, top left) but higher FoldX stability
changes (Figure 4B, bottom left), and lower binding affinity
(Figure 4C, second from bottom left) compared to OM.
Additionally, it also appears that that while drug mutations
need not necessarily occur at the hydrophobic sites (KD values,
P > 0.05), they tend to lie buried indicated by higher RD values,
and consequently lower surface area (ASA and RSA) compared
to OM (Figures 4A,B).

Distinct Stability Profile for Drug
Mutations and Lineage 1
A total of 419 nsSNPs are lineage specific (L1: 74; L2: 277; L3:
104; L4: 311). The greatest diversity of nsSNPs was observed
in L3 (54.7%), followed by L1 (51.4%) and Lineage 2 (14.7%)
with L4 showing the lowest diversity (14.1%) despite containing
the highest number of samples (Supplementary Figure 6).
Statistical analysis of the DUET 11G distributions revealed
significant differences between all lineages except between
L3 and L4. Lineage differences for DUET 11G were most
prominent between L2 and L4 (P < 0.0001), followed by
L1 and L4 (P < 0.001) (Supplementary Table 2A). Within
each lineage, mutational distributions were significantly different
between DM and OM mutation classes (P < 0.0001) except
L3 (Supplementary Table 2B). Interestingly, a distinct stability
profile was observed for DM mutations within L1. Mutations
associated with drug resistance showed a marked peak around the
extreme end (−0.75 DUET 11G) of the destabilising spectrum
(Figure 7) within L1.

DISCUSSION

Genetic mutations including nsSNPs present within drug-targets
and their activating genes are the main drivers of resistance
development in TB (Schön et al., 2017). The motivation for
investigating the missense mutations within the protein coding
region only of the pncA gene was to enable understanding
of the phenotypic mutational effects in relation to PZA
resistance development. While the exact molecular mechanisms
of PZA resistance are yet to be fully elucidated, the binding
pocket of PZA and its key interactions are well known and
characterised (Petrella et al., 2011; Ali et al., 2020; Sheik
Amamuddy et al., 2020; Khan et al., 2021). This knowledge
was used to guide the molecular docking of PZA to generate
the pncA-PZA complex in the absence of an experimentally
solved structure of the bound complex in Mtb. While docking
generates a variety of ligand conformations (poses), choosing
the “best” pose is based on considerations around key molecular
interactions formed by the ligand, interaction energy of the
docked complex and subject expertise. Using these guides,
docking pose 1 was chosen due to its molecular interactions
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with known key residues and close alignment with previously
published studies (Karmakar et al., 2018; Ali et al., 2020; Khan
et al., 2021). In addition, we analysed the top two docking
poses using the mCSM pipeline (Supplementary Figure 3).
The resulting mutational effects on pncA stability and ligand
affinity did not differ between poses indicating the small
differences in pose did not affect downstream analysis. It also
suggests that due to the small size of the PZA molecule, the
orientation of the aromatic ring within the cavity may have
more flexibility in its orientation and interaction with the
neighbouring residues, but without drastically impacting the
molecular interactions for global protomer stability and ligand
binding affinity.

The molecular motion of pncA assessed by NMA was
visualised to understand the mutational effects with regard
to flexibility (Supplementary Figure 1). Sites displaying high
mutational frequency or association with drug resistance
mutations were not located in regions with high flexibility, with
large molecular motions mainly restricted to the loop region 60–
66. This suggests the molecular motion in pncA does not interfere
with PZA binding as active site residues were not associated with
high fluctuations.

Normal mode analysis shows large scale molecular motions.
Molecular dynamics (MD) studies offer insights into the
finer grained atomic motions and are an excellent way to
investigate molecular mechanisms. However, these studies are
computationally intensive and are difficult to scale for studying
hundreds of mutations. A recent MD study on a subset of
mutations found within our dataset analysed seven pncA nsSNPs
(F94L, F94S, K96N, K96R, G97C, G97D, and G97S) showed
that these destabilising mutations altered the binding pocket,
allowing increased PZA flexibility (Khan et al., 2021). All seven
mutations were associated with PZA resistance and also showed
destabilising effects in our study. A similar study of destabilising
mutations R123P, T76P, H7R associated with PZA resistance
showed that the mechanism of resistance could be through
increasing the flexibility of the region they are located in,
thereby changing the binding pocket volume (Ali et al., 2020).
Another MD study of mutations P54L and H57P showed that
they decrease overall stability along with reduced ligand affinity
leading to PZA resistance (Mehmood et al., 2019). All of these
observations are concordant with our analysis.

Destabilising effects of nsSNPs are thought to be the main
reason for impeding protein function through directly effecting
protomer stability or ligand affinity. However, large stabilising
effects can have an equally deleterious impact on protein
function through rigidification, impeding flexibility and dynamic
molecular motions. This has been implicated more generally
within a disease context (Gerasimavicius et al., 2020) and more
specifically in PZA resistance (Rajendran and Sethumadhavan,
2014). It offers an explanation for the observance of the stabilising
mutation site 103. Drug associated mutations at this site (Y103C,
Y103H, and Y103S) could result from the rigidification of the
binding pocket leading to reduced binding affinity measured as
destabilising PZA affinity.

Mutations within pnca are scattered along the entire gene
length observed in studies (Stoffels et al., 2012; Miotto et al.,

2014; Whitfield et al., 2015). While two other genes, rpsA
and panD have also been linked to PZA resistance, a clear
link between rpsA and PZA resistance is lacking (Shi et al.,
2011; Alexander et al., 2012; Simons et al., 2013; Tan et al.,
2014) although there is increasing evidence to support panDs
association with PZA resistance (Pandey et al., 2016; Werngren
et al., 2017; Gopal et al., 2020). In our analysis, there were
only a few samples with rpsA and panD mutations, therefore
limiting attempts at assessing their synergistic relationship with
PZA resistance. Mutations within the pncA gene and its promoter
remain the most common route to PZA resistance (Dookie
et al., 2018) (Khan et al., 2019). Nearly 70% of the MDR
isolates and 13% XDR isolates had nsSNPs in the pncA coding
region. The burden of pncA mutations in the MDR and XDR
isolates was lower in our analysis compared to 88.0% and
∼20% observed by Pang et al. (2017). In another study, 70%
of the MDR isolates, and significantly higher i.e., 96% of XDR
isolates harboured pncA mutations including nsSNPs (Allana
et al., 2017). An alternative route to resistance for pncA as
a non-essential gene encoding an enzyme that transforms a
prodrug to drug would be by INDELs or mutations leading to
premature stop codons resulting in the protein being degraded
on translation. A recent report analysing the pncAc.85_86insG
frameshift mutation using structural and biophysical analysis
showed the mutation resulted in a truncated and incomplete
protein lacking the active site pocket (Karmakar et al., 2018).
Despite this obvious route to resistance, only 1% samples
in our dataset showed INDELs and stop codons, compared
to 13% of samples that showed missense point mutations
in pncA. This is consistent with the knowledge that nsSNPs
in pncA remain the major route to resistance for PZA
(Khan et al., 2019).

Destabilising effects are considered detrimental to the
downstream protein function (via disruption of drug affinity,
nucleic acid affinity or overall complex stability) and are thus
given higher consideration in classifying mutations (Wylie and
Shakhnovich, 2011). In our analysis, around 85% of mutations
were destabilising for overall protein stability as well as complex
affinity. It is thought that the resistant phenotype is imparted
either through affecting protein folding, instability of the PZase
protein, prevention of coenzyme complex (Gopal et al., 2016)
or loss of virulence factor synthesis (Gopal et al., 2016).
Further, this is thought to come without a high bacterial fitness
cost since pncA is primarily an activator of the PZA drug.
This is similar to a recent observation reported in the katG
gene (target for the anti-TB pro-drug, isoniazid) with a high
proportion of destabilising mutations (Portelli et al., 2018).
Also, a higher proportion 60% (n = 253) of SNP mutations
showed electrostatic changes compared to ∼35% reported by
Portelli et al. (2018). This likely due to the larger sample size of
our dataset.

All active site residues appear to be under drug selection
pressures due to multiple mutations (>2) associated with these
with the exception of I133, considered to be an emerging or
budding-resistance hotspot. In our analyses, there were 22 such
sites while 83 sites within pncA associated with > 2 nsSNPs linked
to PZA drug resistance (categorised as DM). However mutations
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were not restricted to the active site, with less than 50% resistant
variants lying within 10 Å of the active site of PZA, indicating the
possible role of distal residues in resistance development (Portelli
et al., 2018). Mutations associated with drug resistance tend to
have lower stability, lie buried within the structure with lesser
surface area as shown by Karmakar et al. (2020).

Our study compares results from two different computational
stability predictors: mCSM and FoldX (Schymkowitz et al.,
2005). Unsurprisingly, most mutations were found to have a
destabilising effect (Supplementary Figure 11). FoldX reported
∼85% (vs. ∼80% estimated by DUET) nsSNPs with destabilising
effect. The range for absolute 11G values was greater for FoldX
(median: 2.0; range: −5.2, 27.46) compared to DUET (median:
−0.1; range: −3.9, 1.2). There was however, 77% agreement
between FoldX and DUET outcomes (data not shown).
Interestingly, drug associated mutations displayed higher FoldX
11G predictions compared to mCSM-DUET 11G predictions.
A possible explanation for this is the differences in the underlying
parameters the different methods use. FoldX constructs mutant
structures by mutating the target residue and searching for the
optimal conformation by iteratively altering the position of the
neighbouring side chains. The stability of the mutant structure
is estimated using an empirical force field made of several
energy terms. This compares to DUET where estimates of the
structural effects are based on differences between the wild-type
environment and pharmacophore atomic changes resulting from
the mutation, without the need to generate mutant structures.
With this in mind, it appears that the DM mutations have
larger local perturbations in the mutated region considered
by FoldX, resulting in higher 11G predictions compared to
the lesser effects of surface area considered by DUET. Drug
resistance mutations displaying smaller surface area compared
to their susceptible counterparts were also observed in recent
studies investigating nsSNPs in Mtb genes (Portelli et al., 2018;
Karmakar et al., 2020) indicating the role of compensatory
mutations, alleviating any fitness penalty in the development of
the drug resistance phenotype. The extent of the contribution
of surface area in these methods is reflected in the observation
of moderate correlations between DUET and structural features,
and the weaker associations between FoldX and structural
features (Supplementary Figure 9A). Structural associations for
ligand affinity were also observed to be weak (Supplementary
Figure 9B) most likely due to the role of factors involved in short-
range interactions (like Van der Waal’s forces) not considered
in our analysis. A similar view emerged in the recent study by
Karmakar et al. (2020) where no significant differences were
observed for PZA binding affinity.

It has been suggested that frequently occurring mutations may
not confer extreme changes in biophysical stability measures,
with mild stability effects offering local fitness advantages
(Portelli et al., 2018). Our data presented us with the opportunity
to test this theory empirically by assessing relationships of
stability with GWAS measures of MAF, OR, and P-values. At
a glance, it appears that mutations with high OR tend be
less extreme in their impact on protein stability and ligand
affinity (Supplementary Figure 10). However, we did not find
any significant association with high frequency mutations and

extreme changes in stability or affinity parameters (Figure 6).
One possible explanation is that the fitness landscape is gene and
function specific, optimised differently for genes directly coding
for drug targets and for non-essential genes like pncA. Another
major consideration is that resistance is often acquired through
a stepwise ordinal accumulation of mutations (Woodford and
Ellington, 2007; Ismail et al., 2019). The genetic background can
dramatically influence fitness effects associated with mutations
(Wong, 2017). Consequently, the mutational impact differs when
occurring against a sequence background of extant resistant
mutations, a phenomenon known as epistasis (Wong, 2017).
Since resistance development is a balanced interplay between
fitness effects and cost of resistance, epistasis warrants due
consideration in efforts to understand and limit the evolution of
multi-drug resistance.

The use of mCSM suite of tools has the advantage of
studying global (protein stability) as well as local effects (ligand
affinity, protein-protein interaction, and protein nucleic-acid
interaction). Additionally, it also provides the methodological
consistency for comparing molecular effects and benefits
application of machine learning methods (ML) to explore
greater mechanistic details. While computationally intensive,
ML methods would benefit from using tools such as DynaMut
(Rodrigues et al., 2018) which account for protein molecular
motions when estimating mutational effect on protein stability.
Additionally methods which consider anti-symmetric properties
of mutational impact i.e., 11G (A → B) = −11G (B → A)
like DeepDDG (Cao et al., 2019) and INPS-MD (Savojardo et al.,
2016) have the potential to build robust predictive models and
improve the “learning” capability of ML methods in the context
of machine learning.

Mtb lineages have been associated with virulence, disease
transmission, drug resistance, and clinical outcome (Ford et al.,
2013; Reiling et al., 2013; Novais et al., 2017; Correa-Macedo et al.,
2019; Oppong et al., 2019; McHenry et al., 2020). Lineage specific
differences between lineages 2 and 4 have recently been noted in
the development of TB drug resistance, especially related to MDR
and XDR strains (Oppong et al., 2019). Our study highlighted
the most significant differences between L2 and L4 with respect
to protomer stability demonstrating the biophysical phenotypic
manifestation of these underlying genotypic changes. The
observance of a distinct peak for destabilising mutations related
to drug resistance within L1 suggests that the extreme mutational
consequences of such mutations in the “ancient” lineage 1 may
be rapidly giving way to other “modern” M. tuberculosis lineages
linked to MDR and XDR-TB and virulence.

Our study is based on a well-characterised clinical dataset
sourced globally from over 35 K clinical isolates, and leverages
the availability of robust metadata (lineage, geography, DST, etc.)
for each isolate. We show that the framework used in our work
allows us to investigate the interrelationships between genomic
features from GWAS analysis and the biophysical measures of
nsSNPs, helping to contextualise the underlying bacterial fitness
and mutational landscape. The need to consider multiple stability
predictors with different underlying principles to validate these
associations has also been highlighted. Lineage associations of
drug resistance, and their biophysical consequences, require
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further investigation and the functional characteristics of
mutations should be validated in future experiments. We hope
such a framework can be used to understand and inform
therapeutic and stewardship efforts.
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