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Missense variants are among the most studied genome modifications as disease
biomarkers. It has been shown that the “perturbation” of the protein stability upon a
missense variant (in terms of absolute ΔΔG value, i.e., |ΔΔG|) has a significant, but not
predictive, correlation with the pathogenicity of that variant. However, here we show that
this correlation becomes significantly amplified in haploinsufficient genes. Moreover, the
enrichment of pathogenic variants increases at the increasing protein stability perturbation
value. These findings suggest that protein stability perturbation might be considered as a
potential cofactor in diseases associated with haploinsufficient genes reporting missense
variants.
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INTRODUCTION

Missense variations may cause loss-of-function by directly perturbing protein-protein
interactions or ablating enzymatic activity or by inducing structural destabilization of the
protein (Stein et al., 2019), which in turn may trigger protein misfolding and degradation.
Many neurodegenerative diseases, such as Parkinson’s disease, are also associated with
destabilization of the corresponding proteins (Wilson et al., 2014). However, there are cases
where missense variations increase protein stability while still being deleterious. As an example,
the variation H101Q in the CLIC2 protein has been associated with a mental disorder and
predicted to make the CLIC2 protein thermodynamically more stable and to interact more
strongly with the ryanodine receptor, obstructing its transport to the cell membrane (Witham
et al., 2011). Therefore, stability perturbations, rather than protein destabilization, can be linked
with disease-causing variations.

Recently, Gerasimavicius et al. have highlighted an improvement in the identification of
pathogenic variations using |ΔΔG| values (Gerasimavicius et al., 2020). However, very little is
known about thermodynamic changes in human protein variants so far (Sanavia et al., 2020),
and the processes establishing whether a variation perturbing the protein stability is or not
disease-related are not clear yet. An extensive comparative analysis has proven that, on average,
variations mostly involved in disease also associated with large effects on protein stability
(Casadio et al., 2011). Although several studies tried to predict the functional or structural
impacts of missense variations, the mechanism of the phenotypic impact through inheritance
modes of the missense variations are still unclear. Indeed recessive variations are mainly
observed in the buried region of protein structures and more likely associated with loss-of-
function, whereas dominant variations are significantly enriched in the interfaces of molecular
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interactions and more difficult to be identified as disease-
related (Guo et al., 2013; Martelli et al., 2016).

One of the most known pathogenic mechanisms for loss-of-
function mutations is haploinsufficiency, a type of genetic
dominance wherein a single functional copy of a gene is
insufficient to maintain normal function. Different theories
have been put forth to explain the cause of haploinsufficiency.
One of them states that growth defects caused by changes in gene
dosage are due to stoichiometric imbalances of protein complexes
interfering with cellular functions (Veitia and Potier, 2015),
whose interactions relying on the relative stoichiometry may
be either cooperative or competitive. An example of this latter
case is the cytotoxic T-lymphocyte-associated protein 4 (CTLA4),
which competes for the same ligands with cluster of
differentiation 28 (CD28), a T-cell activator. An inappropriate
balance of CTLA4 and CD28 can result in T-cell overactivation
by CD28 and autoimmune disease. Recently, it was observed a
fatal heterozygous mutation in CTLA-4, predicted to decrease
protein stability resulting in haploinsufficiency and decreased
CTLA-4 expression in a patient reporting autoimmunity (Evan’s
syndrome), lymphoproliferation and severe infections (Moraes-
Fontes et al., 2017).

In this brief report, we suggest that one possible contribution
to the pathogenic mechanism in haploinsufficient genes can be
related to missense variants perturbing protein stability.

METHOD

Dataset
Performance assessment of 13 computational stability predictors,
i.e., FoldX 5.0 (Delgado et al., 2019), INPS3D (Savojardo et al.,
2016), Rosetta (Alford et al., 2017), PoPMusic (Dehouck et al.,
2011), I-Mutant (Capriotti et al., 2005), SDM (Worth et al., 2011),
SDM2 (Pandurangan et al., 2017), mCSM (Pires et al., 2014a),
DUET (Pires et al., 2014b), CUPSAT (Parthiban et al., 2006),
MAESTRO (Laimer et al., 2016), ENCoM (Frappier et al., 2015),
DynaMut (Rodrigues et al., 2018), was investigated for detecting
pathogenicity in (Gerasimavicius et al., 2020), considering |ΔΔG|
values obtained from each predictor on a dataset of 13,508
missense variations from 96 different high-resolution (<2 Å)
crystal structures of disease-associated monomeric proteins
encoded by 100 genes. The dataset includes 3,338 missense
variants which are annotated in Clinvar (Landrum et al.,
2018) as pathogenic or likely pathogenic, associated to
proteins with at least 10 known pathogenic missense
variations occurring at residues present in the structure. These
pathogenic variants are compared against 10,170 “putatively
benign” missense variants collected from gnomAD v2.1
(Karczewski et al., 2020) from the same genes as the
pathogenic variants. In order to highlight whether the
performance obtained by the protein stability predictors might
be influenced by the inheritance mode of the related coding
genes, we annotated them according to the curated lists of
autosomal dominant/recessive and haploinsufficient genes
reported by the MacArthur Lab (https://github.com/
macarthur-lab/gene_lists). The number of variants for each

inheritance mode, split by pathogenic/benign, are 1,217/1,252,
753/1,819, and 635/4,253 for haploinsufficient, dominant, and
recessive genes, respectively.

Performance Evaluation
The assumption is that the |ΔΔG| values provided by the
predictors can be used as a measure of pathogenicity, with
lower values associated with neutral variations. The |ΔΔG|
values are used to compute the area under the receiver
operating characteristic curve (AUC) as the performance
metric as in (Gerasimavicius et al., 2020). In this way, we do
not need to select any specific threshold for the perturbation to
define a pathogenicity score. However, to avoid biases due to the
low proportion of pathogenic variants, here the AUC and the
precision were calculated by averaging the results on balanced
subsets. More precisely, the available pathogenic variants were
matched with a random subset with the same number of benign
variants for 100 times. This procedure was applied to the full
dataset, for each gene separately and for the variants of each
specific inheritance mode (i.e. haploinsufficient, autosomal
dominant and recessive), along with their complement set.
AUCs were always computed on |ΔΔG| values.

RESULTS

Figure 1 shows the AUCs obtained from each predictor and the
mean output of the best two performing methods (FoldX 5.0 and
INPS3D, orange bar in the figure).We also tested all combinations of
the three best predictors, which performed slightly worse
(Supplementary Figure S1,S2). The bars reported in Figure 1
reflect the probability of a randomly chosen disease variant being
assigned a higher-ranking score than a random benign one
(Gerasimavicius et al., 2020). The barplots highlight the
variability in terms of performance among the prediction
stability-based methods, with FoldX 5.0 reaching the best AUC.
It is worth noting that the combination of the scores from FoldX 5.0
and INPS3D increases the AUC performance of 2 percentage points
over FoldX 5.0.

We then evaluated the scores by grouping the gene variants
according to their inheritance mode (i.e. autosomal dominant/
recessive or haploinsufficiency) in order to provide a biological
interpretation. Interestingly, we found that the performance is
significantly higher in haploinsufficient genes (Figure 2, top
panel), while it is lower in not haploinsufficient dominant
genes (Figure 2, central panel). Recessive genes show no
significant differences from non-recessive genes. (Figure 2,
central and bottom panels).

Since stability change is one of the possible disease
mechanisms to be linked with potential pathogenicity, we do
not expect a high predictive power for small ΔΔG values.
However, we can expect an enrichment of pathogenic variants
at increasing protein stability perturbations. This hypothesis is
confirmed in Figure 3, where we observed that variants with very
high |ΔΔG| values tend to be strongly enriched in pathogenic
variants. In general this is valid for all genes, but much more for
haploinsufficient genes.
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This result suggests that it is possible to generate a highly
specific test for pathogenicity by selecting the variants according
to a fixed threshold for the predicted |ΔΔG|. However, choosing
the best |ΔΔG| threshold is highly dependent on the type of
predictor used. When considering the best performing one,
i.e., the mean between FoldX 5.0 and INPS3D |ΔΔG| values,
we see that a threshold of 4.4 kcal/mol yields a precision (positive
predictive value) of 96%.

Most of the variants are predicted to be destabilizing by the
predictors, and this prevents us from analyzing the effect of the
stabilizing variants separetely. Conversely, when only the
predicted destabilizing variants are considered (Supplementary
Figure S3), the trends are similar but slightly higher to those
reported in Figure 3.

DISCUSSION

Genetic dominance originates from a variety of unrelated
mechanisms (Veitia and Potier 2015). One of those is
haploinsufficiency, namely the intolerance of a gene to the loss
of one allele. As a consequence, the relative protein dosage is half
of the normal level, which is not sufficient to ensure a normal
function and consequently causes the pathological phenotype.
Possible genetic causes are, for example, the deletion of one allele
or protein-truncating variants that may induce nonsense-
mediated decay of transcripts.

The better performance ofΔΔG predictors in haploinsufficient
genes suggests that missense variants causing significant changes
in protein stability may play a relevant role in disease

development when genes are haploinsufficient. It does not
seem far-fetched to argue that variants causing strong ΔΔG
perturbations are likely to yield a non-functional protein, thus
becoming loss-of-function variants, which are the main driver of
pathogenicity in haploinsufficient genes. On the other hand, the
lower performance on non-haploinsufficient dominant genes
shows that this role does not extend to other dominance
mechanisms, which are often activated by “gain-of-function”
variants, where the mutated protein actively interferes with the
gene function. This may suggest that ΔΔG perturbations are not
predictive of “gain-of-function” effects.

Figure 3 shows that protein stability-based methods are able to
predict pathogenic variants in haploinsufficient genes at high
precision (>96%) using thresholds on |ΔΔG| values above
4.4 kcal/mol. However, since ΔΔG perturbation is only one of the
many molecular mechanisms affecting pathogenicity, we do not
expect to gain in sensitivity by decreasing the |ΔΔG| threshold:
missense variants predicted to cause only modest ΔΔG changes may
cause disease by other mechanisms like compromising the protein
interaction capabilities. On the other hand, significant ΔΔG
perturbations can shift the protein far from its dynamically active
state, making the protein non-functional. Indeed, we confirmed that
perturbing variants (predicted to be either very destabilizing or
stabilizing) have a high probability of being pathogenic. Thus, by
choosing an appropriate |ΔΔG| threshold (which is dependent on
the specific ΔΔG predictor), we can turnΔΔG predictors into highly
precise pathogenicity predictors for haploinsufficient genes.

While the absolute value of the ΔΔG was used for all analyses, it
would have been interesting to analyze variants predicted to
increase or decrease stability separately. This would have allowed

FIGURE 1 | Barplots displaying the performance (AUC) of all the ΔΔG predictors and the consensus (orange) of the best two performing methods (FoldX5.0 and
INPS3D). The bars represent the mean AUC obtained by averaging balanced subsets (the available pathogenic variants were matched with a random sample with the
same number of benign variants for one hundred times).
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us to check if stabilizing variants could be associated for instance
with gain-of-function mechanisms, differently from destabilizing
variants. However, a high proportion of the variants in our dataset
were predicted to be destabilizing, leaving an insufficient number of
stabilizing and especially highly stabilizing variants for a robust
statistical analysis. This interesting question should be addressed in

the next future when more data will be available by correctly
mapping annotated variants to protein structures.

In conclusion, large ΔΔG perturbations in haploinsufficient
gene products appear to be a significant factor in the
pathogenicity assessment of the missense variants. Therefore,
we recommend complementing the state-of-the-art pathogenicity

FIGURE 2 | Performance of top performing predictors, (i.e. FoldX 5.0 and INPS3D, Rosetta and PoPMuSiC along with the combined scores of the first two) split by
haploinsufficient, dominant without haploinsufficiency and recessive genes. P-values of the pairwise comparison between each gene group and its complement by the
Mann-Whitney U test are reported at the bottom of the x-axis.
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predictions with one of the best performing ΔΔG predictors, at
least for haploinsufficient genes, when looking for possible
disease causes. High |ΔΔG| values indicate that protein
stability perturbation is a reasonable cause of the observed
pathological condition.
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