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The prognosis of patients with gastric cancer (GC) is still unsatisfying. Numerous
markers of gastric cancer stem cells (GCSCs) have been identified and were thought
to be related to cancer aggressiveness. However, the roles of GCSC markers in GC
patients’ prognosis and immune infiltration remain unknown. Expression of GCSC
markers was analyzed using Oncomine and Gene Expression Profiling Interactive
Analysis (GEPIA). Their associations with clinicopathological parameters were analyzed
using UALCAN and LinkedOmics. Alternations and protein expression of GCSC markers
were analyzed by cBioPortal and the Human Protein Atlas databases, respectively. The
prognostic significance of GCSC markers was evaluated using Kaplan-Meier plotter.
Correlations between the expression of GCSC markers and immune infiltration along
with biomarkers of tumor-infiltrating immune cells (TIICs) were assessed combined
Tumor Immune Estimation Resource and GEPIA. GeneMANIA was used to discover
the interactive genes of GCSC markers, and enrichment analysis was performed using
Database for Annotation, Visualization, and Integrated Discovery server. We identified
six GCSC markers significantly up-expressed in GC, compared with normal stomach
tissues. Among them, the overexpression of ICAM1, THY1, and CXCR4 significantly
indicated adverse, while EPCAM indicated beneficial clinicopathological features of GC
patients. The up-regulation of CXCR4 showed unfavorable prognostic significance,
whereas EPCAM and TFRC showed the opposite. The six GCSC markers were all
correlated with the infiltration and activation of distinct TIICs. Especially, ICAM1, THYT,
and CXCR4 showed strongly positive correlations with tumor-associated macrophages.
Besides, chemokine, Toll-like receptor, NF-kappa B, and HIF-1 signaling pathways might
be involved in the regulation of GCSC markers on cancer development. This study
proposed that GCSC markers might be promising targets of GC treatment to weaken
cancer stem-like properties and strengthen anticancer immunity.
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INTRODUCTION

Gastric cancer (GC) is the fifth most frequently diagnosed and the
third leading cause of cancer mortality in the world (Bray et al.,
2018). Due to the occult symptoms, over 60% of GC patients are
diagnosed at advanced stages where curative surgery is impossible
(Thrift and El-Serag, 2020). Chemotherapy and targeted therapy
can improve survival and quality of life of unresectable or
metastatic GC patients, while drug resistance frequently leads to
poor outcomes (Jones and Smyth, 2020; Wei et al., 2020). Over
the last 10 years, immunotherapy has revolutionized the field
of cancer, especially immune checkpoint inhibitors. However,
the clinical efficacy is still unsatisfying in most GC patients
(Smyth et al,, 2020).

Cancer stem cells (CSCs) are proposed to be a small
population of the tumor mass with stem cell properties, which
are believed to be responsible for generation, heterogeneity, and
sustaining growth of cancer, as well as treatment resistance,
recurrence, and metastasis (O’Connor et al., 2014). Abundant
studies demonstrated that CSCs share markers with tissue
stem cells, and biomarkers of gastric CSCs (GCSCs) have
been explored in recent decades (Nguyen et al, 2017). CD44
(CD44) was the first identified marker of human GCSC in
2009. After that, epithelial cell adhesion molecules (EPCAM),
intercellular adhesion molecule 1 (ICAM1, also known as CD54),
aldehyde dehydrogenase 1 (ALDHI), CD90 (THYI), CD133
(PROM1I), transferrin receptor protein 1 (TFRC, also known
as CD71), signal transducer CD24 (CD24), octamer-binding
transcription factor 4 (OCT4), sex determining region Y-box
transcription factor 2 (SOX2), leucine-rich repeat-containing
G-protein coupled receptor 5 (LGR5 or GPR49), homeobox
protein NANOG (NANOG), ATP-binding cassette subfamily B
member 1 (ABCBI), ATP-binding cassette subfamily G member
2 (ABCG2), C-X-C motif chemokine receptor 4 (CXCR4), CD166
(ALCAM), doublecortin-like kinase (DCLKI), integrin alpha-
6 (ITGA6, also known as CD49f), and RNA-binding protein
Musashi homolog 1 (MSI1) were identified (Ishimoto et al., 2014;
Brungs et al., 2016; Bekaii-Saab and El-Rayes, 2017; Nguyen
et al,, 2017; Fu et al, 2020; Lizarraga-Verdugo et al., 2020).
The CSC theory provides a meaningful pointcut that targeting
the vital markers or pathways involved in the maintenance
of CSCs might influence their stem cell-like properties to
eliminate cancer.

Accumulating evidence proved that tumor-infiltrating
immune cells (TTICs) in the tumor microenvironment (TME)
play critical roles in immune escape and cancer progression,
and could serve as prognostic biomarkers. For example, higher
infiltrating density of CD4+, CD8+ T cells, and fewer FOXP3+
regulatory T cells (Tregs) could predict improved survival of
postsurgical GC patients (Nguyen et al., 2017). Tumor-associated
macrophages (TAMs) constitute over half of the immune cells
in the TME, and a high density of which are associated with
unfavorable outcomes of various cancers (Zhang et al., 2017).
Additionally, it was reported that interplays between TIICs
and GCSCs might promote cancer (Sainz et al., 2016; Sultan
et al,, 2017). A better understanding of the interactions between
GCSCs and immune infiltration may empower new CSC-directed

immunotherapeutic strategies. As yet, the knowledge has not
been fully clarified.

In this study, we comprehensively analyzed the expression,
alternations, clinicopathological relevance, prognostic value, and
correlations with immune infiltration of GCSC markers in
GC. Moreover, the interactive genes of GCSC markers were
discovered and their biological functions were elucidated to learn
the potential regulatory mechanisms of GCSC markers on GC.
The findings of our study will uncover the prognostic values of
GCSC markers in GC patients, and provide novel insights into
the relationships between GCSCs and cancer immunity.

MATERIALS AND METHODS

Analysis of Expression of GCSC Markers

in GC

Oncomine' is an online server analyzing microarrays of 18,000
cancer samples integrating data from published literature, the
Stanford Microarray Database, and the NCBI Gene Expression
Omnibus (GEO) (Rhodes et al., 2007). A meta-analysis of the
mRNA expression of GCSC markers in GC and normal stomach
tissues was performed by the Oncomine server. The threshold
was set as fold change of 1.5, P-value of 0.01, and a rank of the
top 10% of genes.

Gene Expression Profiling Interactive Analysis (GEPIA)® is
a web portal to analyze transcriptome data, based on 9,736
tumors and 8,587 normal samples from the Cancer Genome
Atlas (TCGA) and the GTEx projects (Tang et al., 2017). The
expression of GCSC markers was further confirmed by GEPIA
using GC dataset, with the threshold as P-value of 0.01 and fold
change of 1.5. The significantly high-expressed GCSC markers
overlapping between Oncomine and GEPIA databases were
identified using a Venn diagram, which were included in the
further investigations.

UALCAN (Chandrashekar et al.,, 2017)° and LinkedOmics
(Vasaikar et al., 2018)* are both interactive platforms for in-
depth analysis of cancer omics data from TCGA. Here, these two
databases were used to evaluate the expression of GCSC markers
in GC patients with distinct clinicopathological parameters,
UALCAN was for genders, ages, major stages, and tumor grades;
and LinkedOmics was for TNM stages.

Analysis of Alternations and Protein
Expression of GCSC Markers in GC

cBioPortal® is a comprehensive web resource providing visual and
multidimensional cancer genomics data (Cerami et al., 2012; Gao
et al,, 2013). The “TCGA and Firehose Legacy” dataset including
data of 478 GC cases was selected in this study. The alternation
profiles including mutations, putative copy-number alterations,
mRNA expression (z-scores relative to diploid samples with a

Uhttps://www.oncomine.org/resource/login.html
Zhttp://gepia.cancer-pku.cn
3http://ualcan.path.uab.edu
*http://www.linkedomics.org/
*http://www.cbioportal.org/
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score threshold of £2.0), and protein expression (z-scores with
a score threshold of £2.0) were analyzed.

The Human Protein Atlas (HPA) is a program aiming to map
all the human proteins in cells, tissues, and organs, the resource
of which is openly accessible at https://www.Proteinatlas.org/
(Edfors et al., 2017). The protein expression of GCSC markers
in GC tissues and normal stomach tissues were analyzed using
immunohistochemistry (IHC) staining data from the HPA.
The expression levels of the GCSC markers were quantitated
by staining intensity, categorized into negative (none), weak
(<25%), medium (25-75%), and strong (>75%).

Analysis of Prognostic Significance of
GCSC Markers in GC Patients

Kaplan-Meier (KM) PlotterS is an online tool for survival analysis
of 54 k genes in 21 types of cancers, the data sources of
which include the GEO, European Genome-phenome Archive,
and TCGA (Gyorfty et al, 2010). KM Plotter was applied
to evaluate the associations between the expression of GCSC
markers and overall survival (OS) and relapse-free survival (RES)
of all GC patients, as well as GC patients with distinct clinical
parameters. All cases were split into two groups by the median of
a gene’s expression.

Analysis of Correlations Between
Expression of GCSC Markers and

Immune Infiltration in GC

Tumor Immune Estimation Resource (TIMER)” is a web
server for the investigation of tumor-immune interactions,
which incorporates 10,897 samples across 32 kinds of cancers
from TCGA (Li et al, 2017). The correlations between
the expression of GCSC markers and infiltration levels of
diverse TIICs, including CD8+ T cells, CD4+ T cells, B cells,
neutrophils, macrophages, dendritic cells (DCs), and myeloid-
derived suppressor cells (MDSCs) in GC were assessed by
TIMER. Furthermore, correlations between expression of GCSC
markers and biomarkers of TIICs were studied using GEPIA.
Correlation strength was measured by correlation coefficient
value referring to the previous studies: 0.00-0.19 is “very
weak”, 0.20-0.39 is “weak”, 0.40-0.59 is “moderate”, 0.60-0.79
is “strong”, and 0.80-1.0 is “very strong” (Pan et al., 2019;
Xiao et al., 2020).

Gene Interaction Networks of GCSC
Markers and Functional Enrichment

Analysis

GeneMANIA® is a web tool for the investigation into associated
genes for quired genes through analysis of physical and functional
associations, such as co-expression, co-localization, and physical
interaction (Franz et al., 2018). We constructed gene interaction
networks for every single GCSC marker gene using GeneMANIA.
Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes

Chttp://www.kmplot.com/
"http://timer.cistrome.org
8http://genemania.org

and Genomes (KEGG) pathway enrichment analysis was
performed for the component genes in each gene interaction
network, using Database for Annotation, Visualization, and
Integrated Discovery (DAVID) server® (Huang et al., 2009). GO
enrichment analysis predicted the biological functions of genes in
three aspects: biological process (BP), cellular component (CC),
and molecular function (MF).

Statistical Analysis

The comparison of gene expression level in cancer and
normal tissues by Oncomine and UALCAN platforms was
conducted using students t-test, that by GEPIA platform
was conducted using one-way ANOVA test, and that by
LinkedOmics platform was conducted using Kruskal-Wallis test.
The association of gene expression and patients” survival was
analyzed using log-rank test, and the survival curve, hazard ratio
(HR), 95% confidence interval (CI), and P-value were generated.
Spearman’s method was applied to evaluate the correlation of
gene expression with immune infiltration level or biomarkers’
expression of TIICs. For all the analyses, P < 0.05 was considered
statistically significant, and a false discovery rate (FDR) <0.05
was an additional criterion for functional enrichment analysis.

RESULTS

Expression of GCSC Markers in GC

Patients

Firstly, to determine the differential expression of GCSC markers,
the mRNA expression of EPCAM, ICAMI1, ALDHI, THYI,
PROM1, TFRC, CD24, OCT4, SOX2, LGR5, NANOG, ABCBI,
ABCG2, CXCR4, ALCAM, DCLKI1, ITGA6, and MSI1 in GC
and normal stomach tissues were analyzed using the Oncomine
and GEPIA databases, respectively. It turned out that eight
GCSC markers were significantly higher expressed in GC
than normal stomach tissues in Oncomine (Figure 1A) and
GEPIA (Figure 1B), respectively. Even though there were some
differences in the results from the two databases, the expressions
of EPCAM, ICAMI1, THY1, TFRC, LGR5, and CXCR4 were
consistently significantly elevated in both databases, so the six
GCSC markers were included in our following study (Figure 1C).
As shown in Figure 1A, significant overexpression of the six
GCSC markers was observed in a total of 29 GC datasets
(Supplementary Table 1). Additionally, they were elevated in
numerous datasets of various cancers.

Expression of GCSC Markers in GC
Patients With Distinct

Clinicopathological Features

Subsequently, the associations of expression of EPCAM, ICAMI,
THY1, TFRC, LGR5, and CXCR4 with clinicopathological
characteristics in GC patients were investigated using UALCAN
and LinkedOmics platforms. The expression of the six GCSC
markers showed no significant difference in GC patients with

*https://david.ncifcrf.gov/home.jsp
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FIGURE 1 | Transcriptional expression of GCSC markers in GC and normal stomach tissues. (A) A summary of the datasets in which GCSC markers were
significantly up- (red) or down- (blue) expressed in various cancers, compared with the corresponding normal tissues (Oncomine). Numbers in colored cells represent
the counts of datasets. The color depth is paralleled with the median rank of a gene across all the included datasets. (B) Transcriptional expression of GCSC
markers in GC and normal stomach tissues (GEPIA). TPM, transcript per million; *P < 0.01. (C) A Venn diagram identified six highly expressed GCSC markers
overlapped between Oncomine and GEPIA databases.

distinct genders. In terms of age, EPCAM and TFRC were
up-expressed, whereas CXCR4 was down-expressed in senile
(61-100 years old) patients, compared with that in middle-aged
(41-60 years old) patients (P < 0.05) (Table 1). Generally, the
six GCSC markers were significantly elevated in GC samples with
diverse pathological stages and histological grades, compared
with normal stomach samples (P < 0.05). In particular, ICAMI,
THYI, and CXCR4 were higher expressed in GC patients in
Stage II-IV, compared with that in Stage-I patients (P < 0.01)
(Figure 2A); and they were expressed higher in Grade-3 tumors
than that in Grade-2 tumors (P < 0.01) (Figure 2B). In contrast,
a declining trend of EPCAM expression was observed in patients
in advanced stages (Stage II-IV), compared with that in Stage-
I patients. Besides, the expression of EPCAM, TFRC, and LGR5
was higher in Grade-2 tumors, compared with that in Grade-3
tumors (P < 0.05) (Figures 2A,B and Supplementary Table 2).

Moreover, the results from LinkedOmics showed elevated
expression of ICAM1 (P = 2.73E-03), THYI (P = 1.83E-06),
and CXCR4 (P = 3.18E-05) were significantly associated with
advanced T stages (Figure 2C). Overexpression of EPCAM
was linked with favorable N stages (P = 4.101E-02) and M
stage (P = 4.60E-02). No significant finding of TFRC and
LGR5 was identified here. All the above illustrated that the
overexpression of ICAMI, THYI1, and CXCR4 significantly
implied adverse outcomes, whereas EPCAM implied more
optimistic clinicopathological characteristics of GC patients.

Alternations and Protein Expression of
GCSC Markers in GC

Alternations of the GCSC markers in GC patients were
analyzed using cBioPortal. In general, seven types of alternations,
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TABLE 1 | Expression of GCSC markers in GC patients with distinct genders and ages (UALCAN).

Gene name EPCAM ICAM1 THY1 TFRC LGR5 CXCR4

TPM P-value TPM P-value TPM P-value TPM P-value TPM P-value TPM P-value
Gender
Male (n = 268) 517.42 6.51E-01 44.96 7.74E-01 104.98 7.96E-01 68.09 3.54E-01 4.39 7.64E-01 58.22 3.23E-01
Female (n = 147) 476.80 45.23 103.83 69.95 4.56 68.72
Age
21-40 years (n = 4) 563.40 76.71 80.09 89.54 0.20 99.11
41-60 years (n = 128) 420.31 39.48 108.72 56.97 2.94 72.93
61-80 years (n = 253) 543.69 1.66E-06 48.37 8.64E-01 105.93 1.55E-01 72.20 3.88E-03 5.58 5.93E-01 57.86 9.40E-03
81-100 years (n = 25) 515.85 1.42E-02 36.58 1.27E-01 93.64 2.38E-02 84.70 7.24E-02 2.94 7.13E-01 56.80 1.40E-04

The expression level of genes was presented with the median of transcript per million (TPM). The P-values for 61-80- and 81-100-year-old patients were compared
with the 41-60-year-old patients, those of which with statistical significance are in bold. The data of patients in 21-40-year-old was not analyzed due to the

insufficient sample size.

including missense mutation, truncating mutation, amplification,
deep deletion, mRNA overexpression, protein high-expression,
and protein low-expression of the GCSC markers were observed
in a total of 174 out of 478 (36%) of GC samples; and mRNA
overexpression occurred the most frequently. EPCAM, ICAM1,
THY1, TFRC, LGR5, and CXCR4 were altered in 31 (6.5%), 23
(4.8%), 23 (4.8%), 60 (12.6%), 50 (10.5%), and 17 (3.6%) of all
samples, respectively (Figures 3A,B).

Following this, the expression of GCSC marker protein in
normal stomach and GC tissues was verified using IHC data from
the HPA database, except for CXCR4, whose data was still in
preparation. As exhibited in Figure 3C, EPCAM, ICAM1, THY1,
TFRC, and LGR5 proteins were strongly, moderately, negatively,
strongly, and moderately expressed in GC tissues; which
were weakly, negatively, weakly, moderately, and moderately
expressed in normal stomach tissues, respectively. In a word,
EPCAM, ICAM1, and TFRC proteins were expressed higher in
GC than normal stomach tissues, while THY1 and LGR5 proteins
were expressed at similar levels in two kinds of tissues.

Prognostic Significance of GCSC

Markers in GC Patients

Wondering whether the expression of GCSC markers affects GC
patients’ prognosis, survival analysis was performed using KM
Plotter. As shown in Figure 4A, GC patients with high expression
of EPCAM (OS: HR = 0.69, P = 0.024; RFS: HR = 0.41, P = 0.012)
and TFRC (OS: HR = 0.71, P = 0.043; RFS: HR = 0.4, P = 0.0067)
had both better OS and RFS. Nevertheless, high expression of
CXCR4 (OS: HR = 1.64, P = 0.0032) was associated with worse
survival of GC patients. No significant prognostic indication was
found for ICAM1, THY1, and LGR5.

Since the outcomes of cancer patients differ greatly with the
clinical parameters, we further assessed the prognostic value of
GCSC markers in GC patients with distinct clinicopathological
statuses. Concisely, EPCAM upregulation indicated both
favorable OS and RFS of male GC patients and patients in
advanced stage (Stage III) (P < 0.05). High-expression of TFRC
was associated with better OS of male GC patients, and better
RFS of GC patients in Stage II, patients with Grade 2 tumors,

as well as females (P < 0.05). Overexpression of CXCR4 was
correlated with both unfavorable OS and RFS of male patients;
paradoxically, it implied better RFS of female patients (P < 0.05).
Besides, no prognostic significance of ICAMI, THY1, and LGR5
was found in this part (Figures 4B,C). Taken together, the
findings suggested that up-expressed EPCAM and TFRC might
serve as favorable prognostic indicators, while CXCR4 might be
an unfavorable one for GC patients.

Correlations Between Expression of
GCSCs Markers and Immune Infiltration

in GC

Subsequently, correlations between expression of GCSC markers
and immune infiltration in GC were investigated by TIMER
server. Tumor purity is defined as the proportion of cancer
cells in tumor admixture, which can influence the evaluation
of immune infiltration. In this study, all the correlation
analyses about immune infiltration had been adjusted with the
corresponding tumor purity (Aran et al, 2015). It turned out
that the expression of EPCAM (P = 2.31E-02) was positively,
while ICAM1 (P = 8.02E-05), THYI1 (P = 1.95E-04), and CXCR4
(P = 6.38E-05) were negatively correlated to the tumor purity
(Figure 5A), suggesting the expression of EPCAM might be
mainly from cancer cells, while the latter three genes might be
from the cells in the TME.

The expression of ICAMI, THYI, and CXCR4 were
conformably positively correlated with the infiltration level
of CD8+ T cells, CD4+ T cells, B cells, neutrophils, macrophages,
and DCs (except for ICAMI1 with CD4+ T cells and THY!
with B cells), but negatively correlated with that of MDSCs
(P < 1.10E-04). Interestingly, the correlations between EPCAM
expression and the infiltration of these TIICs was in an opposite
way of ICAMI, THYI, and CXCR4 (P < 0.05). Furthermore,
the expressions of TFRC (P = 3.16E-05) and LGR5 (P = 3.39E-
02) were both positively correlated with the infiltration of
MDSCs; but TFRC was negatively, while LGR5 was positively
correlated with the infiltration of CD4+ T cells (P < 0.01).
Notably, the correlation strength of ICAMI expression with
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FIGURE 2 | Expression of GCSC markers in GC patients with distinct clinicopathological parameters. Expression of GCSC markers in GC patients with diverse (A)
pathological stages, (B) tumor grades, and (C) pathological TNM stages. The box plots and P-values in graphs A and B were from UALCAN, while those in graph C
were from LinkedOmics; “P < 0.05, **P < 0.01, ***P < 0.001.

infiltration of DCs (r = 0.622, P = 6.10E-42) and CD8+ T
cells (r 0.612, P 2.97E-40), THYI with macrophages
(r = 0.669, P = 1.60E-50), also CXCR4 with DCs (r = 0.585,
P = 3.45E-36) were strong.

Correlations Between the Expression of
GCSCs Markers and Biomarkers of TIICs

in GC

To further confirm the participation of TIICs, the correlations
between the expression of GCSCs markers and biomarkers of

TIICs in GC were analyzed using GEPIA. The biomarkers of
all TIICs covered in the last step were investigated, along with
monocytes, M1/M2 macrophages, subsets of T cells, including
helper T cell (Th) 1, Th2, Th17, follicular helper T cell (Tth),
regulatory T cell (Tregs), and exhausted T cells. Consistent with
the results from TIMER, the expression of ICAM1, THY1, and
CXCR4 was positively, while EPCAM was negatively correlated
with the expression of almost all biomarkers of B cells, T
cells, neutrophils, macrophages, monocytes, and DCs (P < 0.05)
(Figure 5B and Supplementary Table 3). Notably, the expression
of ICAMI, THY1, and CXCR4 consistently displayed strongly
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LGR5 were CAB030012, HPA004877, CAB068244, HPA028598, and HPAO12530, respectively. The IHC data of CXCR4 was still in preparation.

positive correlations with the expression of signatures of M2
macrophages (CD163, VSIG4, and MS4A4A), monocytes (CD86
and CD115), Tregs (CCR8 and TGFBI), exhausted T cells (TIM3),
neutrophils (CD11b), TAM (IL10), and DCs (NRPI and CD1Ic)
(P < 9.0E-30). Until now, we could summarize GCSC markers
that might modulate immunity through extensive modulation of
immune infiltrates in the TME of GC.

Functions of the Gene Interaction
Networks of GCSC Markers

To understand the biological functions of these GCSC markers,
a gene interaction network was constructed for each gene
using GeneMANIA. Twenty interactive genes were identified for
each GCSC marker gene; thus, a gene interaction network was
composed of a total of 21 genes (Figures 6A-F). Subsequently,
functional enrichment analysis was performed for all constituent
genes in each network using DAVID platform. The five most
significantly enriched or all GO-CC, GO-BP, and GO-MF terms
were shown as bar plots. It was uncovered that the interactive
genes of EPCAM, ICAMI, THY1, LGR5, and CXCR4 were
all components of the external cell membrane. Beyond that,
EPCAM’s interactive genes participated in the maintenance of cell
polarity, negative regulation of DNA damage response, protein
transport, and positive regulation of apoptosis (Figure 6A).
ICAMI’s and THYT’s interactive genes were both responsible for
cell adhesion, and ICAMT’s interactive genes also partook in the

cellular response to interleukin-1 (IL-1) and binding of RNA
polymerase II and integrin (Figures 6B,C). TFRC’s interactive
genes were components of transferrin receptor complex and
majored in iron ion homeostasis (Figure 6D). LGR5’s interactive
genes were involved with cellular ions homeostasis (Figure 6E),
while CXCR4’s interactive genes regulated chemokine-mediated
inflammatory response and G-protein coupled receptor kinase
activity (Figure 6F).

Furthermore, all the significantly enriched KEGG pathway
terms of the total six gene interaction networks were presented
in Figure 6G, which expounded that they were related to
the processes of transcriptional disorder in cancer, cytokine-
cytokine receptor interaction, cell adhesion, etc. Specifically,
signaling pathways of chemokine, Toll-like receptor, cancer,
nucleotide-binding  oligomerization ~domain (NOD)-like
receptor, nuclear factor (NF)-kappa B, and hypoxia inducible
factor-1 (HIF-1) were involved.

DISCUSSION

Despite dramatic progress in diagnosis and treatment, the
prognosis of GC patients remains poor, primarily blamed
on the frequent treatment resistance, following relapse
and metastasis. The CSCs are believed to contribute to
the inefficacy of conventional therapies, for their quiescent
nature, capabilities of anti-apoptosis, DNA damage repair, and
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FIGURE 4 | Prognostic significance of GCSC markers in GC patients (KM Plotter). (A) The survival curves show the associations between the expression of GCSC
markers with OS and RFS of all GC patients. Forest plots show the associations between the expression of GCSC markers with (B) OS and (C) RFS of GC patients
with different clinicopathological parameters. P-values with statistical significance are in bold. OS, overall survival; RFS, relapse free survival; HR, hazard ratio; Cl,
confidence interval.

diminished uptake and/or enhanced efflux of drugs (Zhao,
2015). In this scenario, eliminating CSCs should be an effective
strategy to eradicate cancer, otherwise, recurrence might be
unavoidable (Sainz et al, 2016). Up to date, most studies
were conducted in cell lines or mice, reports describing roles
of GCSC markers in GC patients were limited (Fu et al,
2018). In this study, the ever-reported GCSC markers were
comprehensively analyzed in aspects of expression, alternations,
prognostic significance, as well as their interactions with immune
infiltration in GC patients.

From the start, six GCSC markers, EPCAM, ICAMI,
THYI, TFRC, LGR5, and CXCR4 were identified significantly
high-expressed and frequently altered in GC, compared
with normal stomach samples. Among them, we that
found upregulation of ICAMI, THY1, and CXCR4 was associated
with pathological and histological advancement of GC patients,
but only CXCR4 showed unfavorable prognostic significance.
Consistent with the previous studies, CXCR4 had been widely
reported as an unfavorable prognostic indicator of various
cancers, including GC. CXCR4 was elevated in GC and was
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closely associated with cancer progression and metastasis (Xiang
et al,, 2017; Jiang et al, 2019). Surprisingly, we found that
CXCR4 over-expression indicated better RFS of female GC
patients, which needs further explorations with larger sample
sizes. ICAM1 was ever identified as an unfavorable prognostic
biomarker in earlier studies (Jung et al., 2012; Chen et al., 2020).
High THYI expression was reported to relate with aggressive
clinicopathological features of GC cases (Numakura et al., 2019),
and the silencing of which would inhibit the malignant traits and
enhance apoptosis of GC cells (Wu et al., 2019). However, we
found that ICAM1 and THYI had no prognostic significance.
The previous studies demonstrated that EPCAM
overexpression was an independent unfavorable prognostic
factor and was linked with larger tumor size and lymph node
metastasis in GC patients (Chen et al., 2016; Dai et al.,, 2017).
Unexpectedly, we found that EPCAM upregulation suggested

more optimistic clinicopathological characteristics and outcomes
of GC patients, even for the advanced-stage patients. In fact,
the beneficial role of EPCAM in prognosis had been observed
in ovarian cancer (Woopen et al., 2014) and pancreatic cancer
(Meng et al., 2015) before. Besides, TFRC high-expression
implied better histological differentiation status and favorable
prognosis of GC patients. Our findings could be supported by an
earlier study that TFRC—cells represented high tumorigenicity,
multipotency, invasiveness, and treatment resistance (Ohkuma
et al, 2012). Even though it was demonstrated that LGR5
overexpression might contribute to the progressive clinical
features and poor OS of GC patients (Zheng et al, 2013;
Chen et al., 2016; Huang et al.,, 2016), we had no similar findings
in this study. To summarize, our findings highlighted that the
up-expression of CXCR4 as unfavorable, whereas EPCAM and
TFRC as favorable prognostic biomarkers of GC patients. Some
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findings inconsistent with the previous studies might lie in the
intrinsic heterogeneity of cancer and different quantification
methods. Therefore, more investigations with larger sample sizes
are still required.

After that, we observed that the expression of GCSC markers
was correlated with the infiltration and biomarkers expression of
TIICs in the TME of GC. High expression of ICAM1, THY1, and
CXCR4 was positively, while EPCAM was negatively correlated
with the infiltration level and biomarkers expression of T cells,
B cells, neutrophils, macrophages, and DCs. In particular, the
expression of ICAMI, THY1, and CXCR4 exhibited strongly
positive correlations with the biomarkers of M2 TAMs, TAM,
monocytes, Tregs, and DCs. Furthermore, the expression of

TFRC and LGR5 was positively, whereas ICAM1, THYI, and
CXCR4 were negatively correlated with the infiltration of MDSCs.

It is acknowledged that CD8+ T cells are the main undertakers
of anticancer immunity, a high infiltration level of which
indicates better treatment response and prognosis (Liu et al,
2015; Solinas et al, 2017). On the contrary, TAMs, Tregs,
and MDSCs are the major immunosuppressive constituents in
the TME. TAMs can be polarized into M1- and M2- types
(Solinas et al., 2017); M1 TAMs enhance immunity surveillance
by producing proinflammatory cytokines; while M2 TAMs
operate oppositely by producing anti-inflammatory cytokines
(Gambardella et al., 2020). A high abundance of M2 TAMs was
usually associated with worse OS in various cancers, including

Frontiers in Molecular Biosciences | www.frontiersin.org

10

May 2021 | Volume 8 | Article 626966


https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles

Linet al.

Gastric Cancer Stem Cell Markers

GC (Yin et al., 2017), and the conversion of M2- to M1l-
type might induce tumor regression (Hagemann et al., 2008).
Additionally, emerging evidence indicated M2 TAMs could
foster cancer stemness in various cancers (Raggi et al, 2016;
Zhang et al., 2017). The increased number of Tregs, especially the
FOXP3+ ones, has been applied as an independent risk factor of
cancer relapse for their roles in immunity tolerance (Rezalotfi
et al,, 2019). In a recent study, co-culture with Tregs might
increase LGR5 expression in GC cells, which conferred poor
prognosis (Liu X. S. et al.,, 2019). Evidence proved that GCSCs
could affect the balance of Th17/Treg, which was considered
a promising diagnostic indicator of CSCs’ activation (Rezalotfi
et al., 2019). MDSCs can dampen the proliferation and function
of T cells via secreting inhibitory molecules or depriving their
essential nutrient substances (Kumar et al., 2016). Furthermore,
MDSCs can induce the generation of Tregs and TAMs to
promote CSC properties synergistically (Ugel et al., 2015; Peng
et al, 2016; Ruiu et al., 2019). DCs are antigen-presenting
cells specialized in T cells trigger, however, subpopulations of
DCs can act both immune- stimulatory and suppressive in
cancer, depending on the secretion of inflammatory cytokines
(Volovitz et al., 2016). A study announced that plasmacytoid
DCs in peripheral blood and tumor tissue forecasted poor
outcomes of GC patients (Liu X. et al, 2019). Whereas,
another study indicated DCs loaded with mRNA of CSC-
like cells from GC patients might stimulate effective immune
responses (Bagheri et al., 2019). Hereto, we could conclude that
GCSC markers would affect the clinicopathological features
and even prognosis of GC patients by directly affecting
cancer cells and modulating the immune microenvironment.
We speculated that high-expression of ICAMI, THYI,
and CXCR4 might incline to promote immunosuppression,
whereas EPCAM and TFRC tended to enhance immunity
surveillance. The interplay between CSCs and the immune
microenvironment is a promising breakthrough point for cancer
therapy. Targeting CSCs can curtail cancer aggressiveness,
and it is an attractive strategy to adjust anticancer immunity
at the same time.

At last, the results of GO functional annotation revealed that
EPCAM’s interactive genes were responsible for cell polarity and
regulation of DNA damage response. The interactive genes of
ICAM1 and THYI were both involved in cell adhesion, and
the former also regulated cellular response to cytokine and
mRNA translation. TFRC’s and LGR5’s interaction networks
consistently partook in cellular ions homeostasis. And CXCR4
mainly acted as a chemokine-mediated inflammatory regulator.
The KEGG enrichment analyses elucidated that signal pathways
of chemokine, Toll-like receptor, cancer, NOD-like receptor,
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