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Oral Squamous Cell Carcinoma (OSCC) remains a cancer with poor prognosis and high
recurrence rate. Even with multimodal treatment options available for OSCC, tumor drug
resistance is still a persistent problem, leading to increased tumor invasiveness among
OSCC patients. An emerging trend of thought proposes that extracellular vesicles (EVs)
play a role in facilitating tumor progression and chemoresistance via signaling between
tumor cells. In particular, exosomes and microvesicles are heavily implicated in this
process by various studies. Where primary studies into a particular EV-mediated
chemoresistance mechanism in OSCC are limited, similar studies on other cancer cell
types will be used in the discussion below to provide ideas for a new line of investigation
into OSCC chemoresistance. By understanding how EVs are or may be involved in OSCC
chemoresistance, novel targeted therapies such as EV inhibition may be an effective
alternative to current treatment options in the near future. In this review, the current
understandings on OSCC drug mechanisms under the novel context of exosomes and
microvesicles were reviewed, including shuttling of miRNA content, drug efflux, alteration
of vesicular pH, anti-apoptotic signaling, modulation of DNA damage repair,
immunomodulation, epithelial-to-mesenchymal transition and maintenance of tumor by
cancer stem cells.
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INTRODUCTION

Oral cancer, categorized under head and neck cancer, consists of cancers occurring in the oral cavity.
Cancers originated from oral cavity, tongue, lip and mouth accumulatively represents the 8th most
common cancer with more than 300,000 cases per annum (D’Cruz et al., 2018; Elaiwy et al., 2020).
There were roughly about 65,410 head and neck cancers cases recorded in the United States in 2019,
which is accountable for 3.7% of new cancers (Kim and Kim, 2020). Besides, the incidence and
mortality rate for OSCC is regional and its prognostic is still unfavourable (Sim et al., 2019). OSCC is
highly mortal despite occurring in a fairly accessible location: the 5-year survival rate stands at only
47–66% as most oral cancer cases were detected at a late stage of malignancy (Siegel et al., 2017).
More than 90% of cases with oral cancer are classified as squamous cell carcinoma (Leite et al., 2018).
Oral squamous cell carcinoma (OSCC) originated from oral keratinocytes. The main risk factors
known to cause oral cancer include tobacco smoking and alcohol consumption, while other
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mutagens such as betel quid chewing, diets of low fruit and
vegetable content, and infections are known to play a causative
role in some oral cancer cases as well (Zain, 2001; Llewellyn et al.,
2004; Bunnell et al., 2010; Alnuaimi et al., 2015). Exposure to
mutagenic substances can cause spontaneous mutations which
induce persistent inflammation in the cells, leading to the
development of precancerous lesions. If left untreated, these
precancerous lesions (known as leukoplakia and erythroplakia)
may further develop into cancerous cells (Belcher et al., 2014).

Current treatments for oral cancer include surgery,
chemotherapy, radiotherapy and immunotherapy (Gharat
et al., 2016). Depending on the stages of the cancer
malignancy, different treatment approaches will be applied.
For the early stages, cancer patients are typically treated with
either surgery or radiotherapy, and patients with an advanced
stage of cancer receive treatment with a combination of
surgery and radiation with or without chemotherapy
(Belcher et al., 2014). Incorporated multimodality treatment
is employed to fully eradicate possible unremoved cancer cells
from the first treatment method and has shown to improve the
overall survival of OSCC patients (Furness et al., 2011).
However, most patients will inevitably experience tumor
progression or disease recurrence which usually
accompanied with an increase of tumor invasiveness. As
reported in many clinical studies, the rate of OSCC
recurrence ranged from 18 to 76%, and the majority
occurred within 2 years post treatment completion (Myers
et al., 2001; Carvalho et al., 2005; Wang et al., 2013). The
treatment choices for recurrent OSCC cases are limited; more
than 80% of loco-regional recurrences which happen within
the first two years are highly associated with poor prognosis
when undergoing salvage surgery (Kernohan et al., 2010). The
factors influencing recurrence rate could be due to how
advanced the disease is when discovered, development of
cells with acquired drug resistance, or the emergence of cell
subpopulations genetically refractory to the drugs (Da Silva
et al., 2012).

Current research on OSCC drug resistance centers around
elimination and inactivation of drug from cancer cells, increased
response to DNA damage, reduced apoptosis and increased
migratory abilities of cancer cells (Wang et al., 2016).These
drug resistance mechanisms are not unique to just OSCC but
are shared across different types of cancer cells. An emerging
trend of thought is the involvement of extracellular vesicles in
mediating these drug resistance mechanism (Khoo et al., 2019).
Extracellular vesicles specifically exosomes and microvesicles
have been heavily implicated in cancer drug resistance by
various studies (Yu et al., 2016; Khoo et al., 2019; Steinbichler
et al., 2019). The aim of this review is to re-examine OSCC drug
resistance mechanisms with the novel lens of extracellular
vesicles.

Chemoresistance in OSCC Cells
Chemoresistance—the resistance of cancer cells to drugs used in
chemotherapy—is a major impediment in cancer treatment as it
causes long term poor prognosis and increases the chance of
metastasis. There are mainly two types of drug resistance in

cancer tumors, which are de novo drug resistance and acquired
drug resistance. De novo drug resistance is present before drug
exposure and selection for drug resistance, while acquired drug
resistance, also known as adaptive drug resistance refers to
resistance that is developed over time after prolonged
exposure to chemotherapy drugs (Hazlehurst and Dalton,
2006). De novo drug resistance arises before drug exposure
due to accumulating mutations over time. Some of these
mutations may have a selective advantage during
chemotherapeutic treatment (Friedman, 2016). Acquired drug
resistance has been modeled in tissue culture by chronic
exposure to a cytotoxic agent, until a stable drug resistance
phenotype is selected. Upon treatment, a pre-existing mutation
that carries a selection benefit to the treated tumor cells becomes
fixed in the population. The longer the treatment, the higher the
likelihood a resistance mutation will be fixed (Friedman, 2016).
Moreover, other adaptive responses, such as decreased
expression of the therapeutic target and activation of
alternative compensatory signaling pathways may arise
during treatment, contributing to adaptive resistance
(Longley and Johnston, 2005). As such, the intuition that an
effective chemotherapeutic drug eliminates the bulk of cancer
cells and induces short-term remission may be misleading as the
elimination process may effectively select for a chemoresistant
subpopulation.

Chemotherapy drugs which are used for the treatment of
OSCC include platinum-based drug e.g., like cisplatin and
carboplatin, taxanes like paclitaxel and docetaxel,
anthracyclines such as adriamycin, epirubicin, pirarubicin,
doxorubicin and antimetabolites such as methotrexate and 5-
fluorouracil (5-FU) (Figure 1). They often work by inducing
molecular cascades which result in cell cycle arrest or cell death in
cancerous tumors. When a chemotherapy drug directly or
indirectly induces damage to DNA, a mechanism known as
the DNA damage response (DDR) is activated to coordinate
various pathways which result either in DNA repair and cell cycle
arrest or apoptosis of damaged cells (Helena Lobo et al., 2007).
Chemotherapy drugs such as paclitaxel and docetaxel act by
stabilizing microtubules, causing a G2M arrest and later inducing
apoptosis (Shah and Schwartz, 2001). On the other hand,
platinum-based drugs acts as a DNA intercalating agent and is
able to cause DNA damage directly, which leads to the activation
of cyclin-dependent kinase inhibitors (CDKIs) and inducing cell
cycle arrest in the G2 phase (Sorenson and Eastman, 1988).
Anthracyclines such as doxorubicin intercalate between DNA
base pairs and inhibits topoisomerase II essential in resolving
supercoiling during DNA replication. In addition,
antimetabolites such as methotrexate and 5-FU inhibit the
action of thymidylate synthase, preventing dTTP production
and DNA replication.

Platinum-based chemotherapy drugs which are commonly
used in combination with 5-FU are still the usual first-line
treatment for OSCC, but the results are far from satisfactory.
In advanced OSCC cases, chemotherapy drugs such as
methotrexate, paclitaxel and docetaxel are more commonly
used either alone or in combination (Specenier and
Vermorken, 2010). Despite initial significant results in the
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survivability OSCC patients, these treatments ultimately fail due
to the development of chemoresistance.

ROLE OF EXTRACELLULAR VESICLES IN
OSCC CHEMORESISTANCE

Extracellular vesicles (EVs) are lipid-bilayer enclosed vesicles that
are naturally released from cells. Over the last decade,
intercellular communication mediated by EVs present a new
paradigm in which chemoresistance mechanisms should be
investigated. Unlike traditional cell-cell signaling via cytokines,
chemokines and growth factors (Ahmed and Xiang, 2011), EVs
contain cellular cargoes such as miRNAs, lncRNA and proteins
that may be endocytosed by other recipient cells. Accumulating
evidence points to these cargoes mediating drug resistance
properties from cell-to-cell in various cancer types.

EVs can be differentiated into three main categories: exosomes
(30–100 nm), microvesicles (MVs) (100–1,000 nm), and the
more recently discovered ‘oncosomes’ (1–10 μm) (Minciacchi
et al., 2015). These categories are also differentiated by their
mechanism of biogenesis and cellular origins. It is also of
importance to note that EV size distinctions are not absolute
(i.e. MVs may be <100 nm) and methods to distinguish between
exosomes and MVs remain ambiguous from laboratory to

laboratory. Since most studies of EV-mediated
chemoresistance in OSCC have been conducted on exosomes
and MVs, the main focus below will be on these two categories.

Exosomes
Exosomes are the smallest subset of extracellular vesicles
secreted by cells. Their sizes (30–100 nm) vary depending on
the cellular source or sample isolation and preparation methods
(Wu et al., 2015). They were first discovered in maturing
mammalian reticulocytes during the golden era of electron
microscopy. It was observed that maturing reticulocytes
contained large sacs filled with small membrane enclosed
vesicles of nearly uniform size (30–100 nm) within their
cytoplasm (Johnstone, 2005). In both normal cells and cancer
cells, exosomes play a role in the removal of unwanted materials
from the cell and communication between cells via the transfer
of bioactive molecules packaged into the exosomes. The efflux of
exosomes is one way of eliminating cell waste products–the
other way being lysosomal degradation (autophagy) (Baixauli
et al., 2014).

Exosomes originate from the early endosome which
accumulates intraluminal vesicles (ILVs) formed through the
inward budding of its membrane (Colombo et al., 2014). The
endosomes are referred to as multivesicular bodies (MVBs) due to
the multiple ILVs contained in the endosomes. During the inward

FIGURE 1 | The mechanisms of action of some common chemotherapeutic drugs. The main mechanisms are forming DNA crosslinks (cisplatin, carboplatin),
disrupting topoisomerase-II-mediated DNA repair (doxorubicin), promotemicrotubule polymerization and stabilization (paclitaxel, docetaxel), binding to theminor groove
of DNA (trabectedin), inhibiting thymidylate synthase (5-fluorouracil), antimetabolite for pyrimidine nucleoside (gemcitabine) (Larionova et al., 2019).
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budding of the early endosome, proteins, lipids and RNAs are
selectively sorted into ILVs. The MVBs containing loaded ILVs
are either fused with lysosome for degradation or fuse with the
plasma membrane for secretion–the secreted ILVs are referred to
as exosomes (Colombo et al., 2014). The overall biogenesis of
exosomes is presented in Figure 2.

This entire process can either be driven by the endosomal
sorting complexes required for transport (ESCRT) or by other
ESCRT-independent mechanisms such as neutral
sphingomyelinase-dependent ceramide formation. Exosomes
secreted from one cell can fuse with the plasma membrane of
another cell and can be internalized through endocytosis or
pinocytosis, therefore, transferring bioactive molecules from
one cell to another (Théry et al., 2002). The exosomal
contents that are transferred to other cells can affect the
function of the recipient cell. For example, the transfer of
exosomal RNA from antigen-presenting dendritic cells can
stimulate proliferation in T lymphocytes (Segura et al., 2005).
In cancer cells, exosomes play important roles in tumorigenesis,
growth, progression, metastasis and drug resistance (Liu et al.,
2017).

Exosome-Mediated Chemoresistance
Exosomes play many important roles in enabling drug resistance
in cancer cells through multiple mechanisms such as shuttling of
miRNA, drug efflux, anti-apoptotic signaling etc. In order to
understand the effect of exosomes in both donor and recipient

cells, it is imperative to investigate the exosomal cargo being
shuttled between tumor cells.

Exosomal Content (MiRNAs)
Due to the exosome’s ability to transfer diverse loads of proteins,
lipids and nucleic acids between cells, they have been dubbed as
‘Trojan horses’ (Gould et al., 2003). Exosomes secreted by cancer
cells contain various functional nucleic acids such as circular
DNA, mRNA, microRNAs (miRNAs), long noncoding RNAs
(lncRNAs), transfer RNAs (tRNAs), small nucleolar RNAs
(snoRNAs), ribosomal RNAs (rRNAs) and small nuclear
RNAs (snRNAs) (Gajos-Michniewicz et al., 2014). DNA
fragments and mutated mRNA transcripts are involved in the
progression and angiogenesis of primary and metastatic cancers
(Skog et al., 2009; Dvořáková et al., 2013). Cancer-derived
exosomes show specific miRNA and mRNA expression
profiles which vary according to the type of cancer (Ming-Hui
et al., 2015; Yousafzai et al., 2018).

There is a significant body of evidence supporting the theory
that exosomes, in their capacity to act as agents of intercellular
communication, disperse the characteristic of drug resistance
between tumor cells by delivering miRNAs (Zhang and Wang,
2017). MicroRNAs are small single-stranded highly conserved
non-coding RNAs of 20–25 nucleotide length that are involved in
post-transcriptional regulation of gene expression. The main
function of miRNA is to base-pair with target mRNA to
negatively regulate gene expression (Bartel, 2004; Macfarlane

FIGURE 2 | Biogenesis of exosomes. EVs are released to the extracellular environment through direct outward budding or “pinching” of the cellular membranes.
Proteins, RNA, miRNA or other potential exosomal contents will be packed into early endosomes. The inward budding of the early endosomes to form intraluminal
vesicles and the fusion of multi-vesicular body (MVB) with plasma membrane releases exosomes to the extracellular environment. MVB could also fuse with lysosomes
which will degrade their internal contents through autophagy (Raposo and Stoorvogel, 2013).
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and Murphy, 2010). Regulated by cofactors, miRNAs also play a
role in the activation of mRNA translation to regulate protein
levels (Saraiya et al., 2013). Aside from that, they play a major role
in controlling various activities in cells, including cell
differentiation, proliferation, stress response, metabolism, cell
cycle, apoptosis, and angiogenesis thus playing roles in the
regulation of many diseases, including cancers (Jiang et al.,
2009). Table 1 outlines various miRNAs that are implicated in
OSCC chemoresistance along with its cellular effects.

A particular miRNA which has been reported widely in
modulating cancer drug resistance is miR-21. Although the
precise mechanism of action of miR-21 in OSCC has yet to be
fully described, miR-21 is regarded as a key oncogenic factor that
is associated with poor cancer prognosis and are highly expressed
in tissues and blood of OSCC patients when compared to healthy
tissues and blood control (Chang et al., 2008; Wong et al., 2008;
Ren et al., 2014). MiR-21 was shown to be involved in the
regulation of drug resistance in various types of cancers
including renal cancer, breast cancer, leukemia cancers,
glioblastoma, gastric cancer and many other cancer cell lines
(Hong et al., 2013; Yang et al., 2013; Gaudelot et al., 2017). It has
been confirmed that miR-21 induces chemoresistance by
targeting PDCD4 and PTEN, two tumor suppressor genes
(Wei et al., 2016; Liu et al., 2017). PDCD4 is involved in
apoptosis and inhibits tumor progression by acting on eIF4A
and eIF4G, suppressing mRNA translation (Liu et al., 2017)
whereas PTEN diminishes the P13K/Akt/mTOR signaling
pathway which results in tumor growth. It was also shown in
the study by Liu et al. that (previously chemosensitive) OSCC
cells developed resistance after being exposed to exosomes
derived from resistant OSCC cells (which contained miR-21)
(Liu et al., 2017).

The mechanism of miR-21 in OSCC drug resistance may also
be through the regulation of STAT3, a transcription factor
activated by IL-6. MiR-21 is known to affect STAT3 to
promote tumor cell survival, induce anti-apoptotic effect, and
also aid in cell cycle progression and angiogenesis (Iliopoulos
et al., 2010; Xuan et al., 2014). The suppression of STAT3 with a
specific inhibitor was shown to downregulate miR-21 in OSCC
cells and sensitized cisplatin-resistant OSCC cells to cisplatin

treatment (Xuan et al., 2014). This result supports the role of
miR-21 in moderating cisplatin resistance in OSCC and suggests
that STAT/miR-21 pathway can serve as a potential therapeutic
target to develop chemosensitivity in cisplatin-resistant
OSCC cells.

MiR-24 is another highly upregulated miRNA in OSCC
tissues. It regulates a myriad of cellular activities and was
reported to induce cell survival and cisplatin resistance in
tongue squamous cell carcinoma when up-regulated (Zheng
et al., 2015). Frequent dysregulation of miR-24 was observed in
OSCC cells; upon further analysis, it was proven that miR-24
directly inhibits PTEN (a tumor suppressor gene) expression,
resulting in the activation of the PI3K/Akt cell survival pathway
and promoting cell cycle progression (Zheng et al., 2015). Loss-
of-function mutations of PTEN are known to drive the
resistance of cancer cells to many anticancer drugs (Dillon
and Miller, 2014). Knockdown of miR-24 was shown to
restore PTEN expression and resensitize cisplatin-resistant
OSCC cells to cisplatin treatment (Zheng et al., 2015). Other
targets of miR-24 besides PTEN include DND1 (regulates
CDKN1B suppression which enhanced proliferation and
reduced apoptosis in toungue SCC cells) (Liu et al., 2010),
and more recently discovered PER1 (enhances cell
proliferation and cell cycle progression of OSCC cells) (He
et al., 2020). It is interesting to note that He et al., also
proven that miR-24 is a cargo of salivary exosomes derived
from OSCC patients. The increased cell proliferation and
reduced apoptosis mediated by miR-24 counteracts against
chemotherapeutic drug mechanisms such as cell cycle
inhibition and DNA damage-induced apoptosis. Interestingly,
miR-24 also have anti-tumour characteristics in other cancer
types via FOXM1 which suppresses bladder cancer cell
proliferation (Inoguchi et al., 2014) and LPAAT which
suppresses osteosarcoma cell proliferation (Song et al., 2013).
The diverse binding targets of miR-24 in different cancer types
prompts further investigation to elucidate the complete
pathways that miR-24 is involved in OSCC. This is crucial to
increase the feasibility of proposed strategies that
therapeutically targets miRNA in OSCC tissues. Without
sufficient information of miRNA binding targets, it becomes

TABLE 1 | Roles of miRNA in regulation of drug resistance of OSCC.

MicroRNAs OSCC Cell lines Effect References

miR-21 Tca8113/DDP Regulation of STAT3 expression (Xuan et al., 2014)
HSC-3-R Confers cisplatin resistance by targeting PTEN and PDCD4 (Liu et al., 2017)*
CAL27 Reprogram monocytes via NF-κB pathway (Momen-Heravi and Bala, 2018)*

miR-24 CAL27, HSC6 Reduce PTEN expression (Zheng et al., 2015)
SCC25, HSC6 Binds to PER1 and induces cell proliferation and cell cycle progression (He et al., 2020)*

miR-29a-3p SCC9 and CAL27 Promote M2 subtype macrophage polarisation (Cai et al., 2019)*
miR-130b, miR-134, mi491, mi-149 SCC131/R,

SCC084/R
Modulation of EMT and metastasis (Ruma Dey et al., 2016)

miR-155 SCC131 Downregulates FOXO3 and promotes EMT phenotype (Kirave et al., 2020)*
miR-221 Tca8113, UM2 Reduce TIMP3 expression (Chen et al., 2016)
miR-222 UM1 Reduce PUMA expression (Jiang et al., 2014)
miR-1246 SAS, GNM Enhancing cancer stemness and chemoresistance via targeting CCNG2 (Shih-Shen et al., 2018)

STAT3: Signal transducer and activator of transcription 3; PTEN: Phosphatase and tensin homolog; PDCD4: Programmed cell death protein 4; NF-κB: Nuclear factor-κB; EMT: Epithelial-
Mesenchymal Transition; TIMP3: Tissue inhibitor of metalloproteinase 3; PUMA: p53 activates transcription of p53-upregulated modulator of apoptosis; CCNG2: Cyclin-G2.
‘*’ Represents published literature which demonstrated that the respective miRNA was present in OSCC-derived exosomes.
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difficult to predict cellular effects from upregulating or
downregulating miRNA in OSCC tissues.

The discovery of miRNA involvement in chemoresistance is
still novel and studies relating to OSCC are minimal at the
moment. Moreover, one miRNA may target various tumor-
related gene transcripts and the activity of one gene transcript
may be regulated by multiple miRNAs. Thus, it is challenging to
design therapeutic strategies which can efficiently eliminate drug
resistance via a single miRNA (Hong et al., 2013). There are
recent studies detailing the discovery of ‘master miRNAs’ which
target multiple drug resistance pathways (Manabu et al., 2017).
This may be an alternative solution in treating OSCC drug
resistance and requires further investigation. Aside from that,
studies that prove the above discussed miRNAs to be present in
OSCC-derived exosomes are limited. It is important to note that
two populations of extracellular miRNAs exist in biological
fluids–one found in vesicles such as exosomes and
microvesicles; the other is associated with proteins such as
Argonaute (AGO) (Turchinovich et al., 2011). There is a
significant number of studies that do not investigate the
origins of their respective OSCC-associated miRNAs.
Therefore, the role of exosomes in conferring chemoresistance
traits via these miRNAs have to be viewed with skepticism.

Drug Efflux
Multidrug resistance (MDR) is a phenotype in which cancer cells
exhibit simultaneous resistance to multiple chemotherapeutic
drugs. Overexpression of drug efflux transporters of the ATP
binding cassette (ABC) transporter family such as P-glycoprotein
(P-gp) and copper efflux transporters gives rise to the MDR
phenotype in tumor cells (Yoshizawa et al., 2007; Pérez-Sayáns
et al., 2010). Although yet to be proven in OSCC cell lines,
exosomes from resistant tumor cells can transfer P-gp to
chemosensitive cells and confer chemoresistance. Lv et al.
(2014) demonstrated that P-gp expression in sensitive MCF-7
breast cancer cells were higher after incubation with exosomes
isolated from docetaxel-resistant MCF-7 cells (Lv et al., 2014).
However, expression analysis of P-gp in OSCC cells via RT-PCR
revealed that only 18 % of OSCC cases are P-gp-positive
(Friedrich et al., 2004). P-gp expression in other tumor types
such as salivary gland adenocarcinoma and colon carcinoma are
markedly higher than in OSCC (Uematsu et al., 2001; Friedrich
et al., 2004). Nevertheless, P-gp levels in recurrent OSCCs are
higher compared to normal mucosa with lesions at different
stages of tumorigenesis (Jain et al., 1997). Aside from P-gp,
Multidrug Resistance Associated Protein 1 (MRP1) is also
linked to the MDR phenotype as well. MRP1 expression levels
measured via RT-PCR and immunohistochemistry revealed that
20–30 % of OSCC cases have higher than normal expression
(Tsuzuki et al., 1998; Uematsu et al., 2001). These results show
that the set of proteins giving rise to the MDR phenotype in
OSCC cells is different compared to other tumor types.

Platinum-based antitumor drugs such as cisplatin and
carboplatin are the mainstream chemotherapy drugs used
clinically. Ctr1, the major copper influx transporter has been
demonstrated to transport cisplatin and other analogues such as
carboplatin and oxaliplatin. More evidence of two other copper

efflux transporters—ATP7A and ATP7B are also accumulating
(Komatsu et al., 2000; Kuo et al., 2007; Yoshizawa et al., 2007).
Mechanisms for transporting platinum drugs were not known
until evidence of it related to copper homeostasis began to build.
Many cell lines that exhibited resistance to platinum drugs also
showed cross-resistance to copper drugs and vice versa (Safaei
et al., 2005). However, enhanced cisplatin intake via increased
expression of copper influx transporter, Ctr1 does not sensitize
tumor cells to cisplatin nor does it increase cisplatin-DNA adduct
formation (Beretta et al., 2004; Holzer et al., 2004). One plausible
reason is that Ctr1 does not deliver cisplatin in a way that allows it
to access key intracellular cytotoxic targets. The two copper efflux
transporters—ATP7A and ATP7B are located in the trans-Golgi
network (TGN) and are involved in copper-stimulated trafficking
(Didonato and Sarkar, 1997; Camakaris et al., 1999; Prohaska and
Gybina, 2004). Under conditions of excess copper in the
cytoplasm, ATP7A and ATP7B are transported from the TGN
to the plasma membrane to facilitate copper efflux until copper
levels return to normal homeostatic ranges (Hellman and Gitlin,
2002). It is not known if cisplatin levels affect the normal
transportation of ATP7A and ATP7B from the TGN to the
plasma membrane. Moreover, the vesicular transport pathways
between TGN and endosomes are complicated and it is not
known if ATP7A/B is transported to the endosomal
membrane from the TGN in OSCC cells (Progida and Bakke,
2016).

Another school of thought supports the idea that cisplatin
efflux via ATP7A/B involves lysosomal exocytosis (Petruzzelli
and Polishchuk, 2019). ATP7A/B residing in the membrane of
endo-lysosome (formed via fusion of endosome and lysosome)
facilitates the influx of cisplatin into the lumen. Subsequent fusion
of the endo-lysosome with the cell membrane releases cisplatin
into the extracellular environment. Safaei et al. (2005)
demonstrated that cisplatin resistant ovarian carcinoma cells
have a lesser endo-lysosome volume and expression of
lysosome-associated membrane proteins (LAMP1 and
LAMP2), implying a marked increase in lysosomal exocytosis
to expel cisplatin (Safaei et al., 2005). However, Safaei et al. (2005)
also discovered that exosomes released from the resistant cells
contain 2.6-foldmore platinum than those released from sensitive
cells (Safaei et al., 2005). An alternate mechanism of cisplatin
efflux via lysosomal exocytosis involves intraluminal vesicles
(ILVs). Transmembrane proteins such as ATP7A/B residing in
the membrane of endo-lysosome can end up in new ILVs formed
via budding of the endo-lysosomal membrane. Cisplatin are
bound to the metal binding sites (MBSs) of ATP7A/B on the
endo-lysosomal membrane which will be incorporated into the
ILV membrane. The cisplatin will then be transported out from
the cells when the ILVs are released as exosomes. Figure 3 below
outlines both mechanisms of drug efflux involving ATP7B. Safaei
et al. (2005) results support the latter mechanism as they reported
a marked increase in exosomal levels of putative cisplatin
transporters, mainly ATP7A and ATP7B (Safaei et al., 2005).
Such a mechanism does not require the transport of cisplatin
across a membrane, but rather requires cisplatin to be bound to
theMBSs of ATP7A/B. Hence, it is likely a less energy-consuming
mechanism of drug efflux.
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Although results from Safaei et al. (2005) have yet to be proven
true in OSCC cells, there is already evidence pointing toward
ATP7B as a key contributor to cisplatin-resistance in OSCC cells
(Safaei et al., 2005). Yoshizawa et al. (2007) demonstrated that
resistant OSCC cell lines, namely HSC-4-R, OSC-19-R and
HOC313-R all have higher expression of ATP7B (Yoshizawa
et al., 2007). Transfection of ATP7B siRNA in OSC-19-R cells
resensitized the cells to cisplatin by a factor of 10.6 (Yoshizawa
et al., 2007). These results were not observed in ATP7A and Ctr1,
pointing to a bigger role played by ATP7B in the context of OSCC
cisplatin resistance. It is plausible that cisplatin efflux in OSCC
cells may follow the lysosomal exocytotic pathway. However,
experiments to measure the volume of lysosome in cisplatin-
resistant and sensitive OSCC cells are needed to prove this theory.
Furthermore, vesicular transport of ATP7B from TGN to endo-
lysosome in OSCC cells remains unproven.

Alteration of Vesicular pH
The difference in pH between intracellular and extracellular pH
plays an important role in the transport of chemotherapy drugs.
Under normal circumstances, extracellular pH in OSCC is
significantly more acidic than in normal tissue (Perez-Sayans
et al., 2009). The acidic environment disrupts the absorption of
chemotherapy drugs (Griffiths, 1991; Negendank, 1992). Studies
conducted by Becelli et al. (2007) found that reversed pH gradient
is an intrinsic tumor phenotype giving rise to drug resistance in
oral cancer (Becelli et al., 2007). The intracellular and

extracellular pH of oral cancer tumor specimens were found
to be lower than normal tissues (Becelli et al., 2007).

It has been widely accepted that the changes in pH are
mediated by vacuolar-ATPases (V-ATPases). V-ATPase is a
multi-subunit ATP driven proton pump that regulates the
intracellular and extracellular pH (Pamarthy et al., 2018).
Aside from regulating the acidity of the tumor
microenvironment from the plasma membrane (Perez-Sayans
et al., 2009), V-ATPases are thought to play a role in vesicular
acidification. Martínez-Zaguilán et al. was unable to trace
V-ATPases in the plasma membrane via
immunohistochemical analysis and concluded that V-ATPases
are not statistically resident in the cell membrane ofMCF-7 breast
carcinoma cells (Martinez-Zaguilan et al., 1999). Resistant MCF-
7 cells showed increased V-ATPase activity as they were capable
of recovering from an acid load without anion exchangers
(Martinez-Zaguilan et al., 1999). The failure to localize
V-ATPase, coupled with the presence of V-ATPase activity
suggests that the measured activity of V-ATPase might be the
consequence of “rapid endomembrane turnover”. Thus, it can be
hypothesized that V-ATPase resides more extensively on vesicle
membrane rather than statically in the plasma membrane. This
hypothesis is yet to be proven experimentally in OSCC cells.
However, it suffices to note that V-ATPase is commonly localized
in vesicular membranes of cancerous cells.

Raghunand et al. (1999) postulated that turnover of acidic
vesicles is an important factor of chemoresistant cells, particularly

FIGURE 3 |Hypothetical mechanisms of cisplatin efflux via lysosomal exocytosis involving ATP7B (A) ATP7B residing in the endo-lysosomal membrane transports
cisplatin across the membrane into the endo-lysosomal lumen. Subsequent fusion of endo-lysosome with the cell membrane releases the cisplatin along with the ILVs.
This proposed mechanism does not involve exosomes for cisplatin efflux. (B) Cisplatin is bound to ATP7B via the MBS. The ATP7B will then be incorporated into the
membrane of a new ILV formed via budding of the endo-lysosomal membrane. The cisplatin will then follow the ILVs out from the cell when they are released as
exosomes (Petruzzelli and Polishchuk, 2019).
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those that do not overexpress P-gp efflux pumps. They have
developed a computational model that accounts for various
resistance mechanisms to weakly basic drugs. They found that
a combination of mechanisms including active transport of drugs
into endosomes, increased endosomal turnover, decreased
endosomal pH and increased cell membrane pH gradient
would yield a drug-resistant phenotype. An example of cells
which show such pattern is MCF-7 cells that are
chemoresistant can lower cytosolic concentrations of weak
base drug such as mitoxantrone (Raghunand et al., 1999).

The regulation of cellular pH on drug resistance is further
proven by another study which discovered that upregulated
proton pump gene expression in cisplatin-resistant cell lines
which resulted in intracellular alkalization and elevated
intracellular pH in the cells. As DNA-cisplatin adducts are
more easily formed under acidic conditions, the increase in
the cellular pH could attenuate its cytotoxicity effect and
induce drug resistance, and this was shown when proton
pump inhibitor synergistically potentiated the cisplatin
cytoxicity (Murakami et al., 2001). Whether or not V-ATPases
are overexpressed in endosomal membrane or ILVs was not
investigated by Murakami et al. (2001). Studies were
conducted to investigate the effect of V-ATPase inhibitors on
sensitizing chemoresistant cells (Murakami et al., 2001;
Kiyoshima et al., 2013). The treatment resulted in lower
acidification of vesicular organelles (detected using acridine
orange stain) and increased apoptosis in three of four OSCC
cell lines, indicating that vesicular acidification is an important
survival mechanism of OSCC cells (Kiyoshima et al., 2013). This
further points to the possibility of improving cytotoxicity of drugs
such as cisplatin by combining it with proton pump inhibitors.
However, it is not well understood if alkalization of vesicles will
affect uptake or efflux of chemotherapy drugs.

Anti-Apoptotic Signaling
Apoptosis is one form of programmed cell death initiated by
apoptotic proteins such as caspases, Bcl-2-associated proteins and
cytochrome C. Malignant tumors are often marked with the
overexpression of anti-apoptotic proteins or signals. Current
molecular markers that hold prognostic and predictive values
are still incapable of resolving the heterogeneity and complexity
of OSCC (Chung et al., 2004). Molecular profiling by gene arrays,
tissue microarrays, immunohistochemistry profiling and cluster
analysis have been the standard of molecular characterization of
tumors.

A study conducted a molecular profiling of 171 OSCC cases
via immunohistochemical analysis and ordered them by
hierarchical clustering and the expression profiles of 23 anti-
apoptotic proteins were investigated. Despite being able to divide
the OSCC cases into two groups—apoptotic and anti-apoptotic,
there was no association between these groups with clinical and
pathological characteristics such as the overall survival of
patients. Thus, there is a knowledge gap in connecting
apoptosis and cancer prognosis that needs to be filled.
However, the analysis did showed a group of pro-apoptotic
proteins that are more prominent and could be use as targeted
therapies (Coutinho-Camillo et al., 2017). The complexity of

apoptosis induction and the influence of individual proteins in
the apoptotic network needs more elucidation and experimental
verification in order to account for the heterogeneity of OSCC
tumors.

Notwithstanding the current lack of understanding between
apoptosis and cancer survival, apoptotic inhibition is still a
chemoresistance trait that needs to be studied in depth. It has
been suggested that exosomes can promote anti-apoptotic signals
in both donor and recipient cells. For instance, Caspase-3, a
protein known as an executioner caspase is responsible for
cleaving cellular substrates that are vital to cell survival,
leading to membrane blebbing and disruption of cytoskeletal
functions. The release of caspase-3 containing membrane vesicles
is thought to facilitate removal of apoptotic proteins in order to
promote cell survival (Böing et al., 2013).

Exosomes can transduce anti-apoptotic signals to recipient
tumor cells via different mechanisms. They can stimulate
recipient cells via signal transduction facilitated by surface
receptors to activate anti-apoptotic pathways (Xu et al., 1998;
Roccaro et al., 2013). Exosomes can transfer receptors such as
CD41 to target cells to trigger integrin-mediated inhibition of
apoptosis by preventing cell detachment from the extracellular
matrix (Boudreau et al., 1996; Wang et al., 2014). Besides that,
exosomes can also transfer transcriptional factors that can induce
activation of anti-apoptotic pathways (Wang et al., 2014).

As discussed above, miRNA plays an important role in
mediating various signaling pathways between tumor cells as a
major exosomal cargo. One of the signaling pathways include
anti-apoptosis. Guo et al. showed that exosomes derived from
cancer-associated fibroblasts (CAF) confers cisplatin resistance to
head and neck squamous cell carcinoma (HNSCC) via exosomal
miR-196a (Guo et al., 2019). HNSCC cells (CAL27 and HN4)
grown on CAF conditioned media (CAF-CM) promoted cisplatin
resistance and cell proliferation compared to media conditioned
from chemoresistant HN4 cells (Guo et al., 2019). Physical
removal of exosomes from CAF-CM by ultracentrifugation
and blocking exosome release via the inhibitors GW4869
reduced the ability of CAF-CM to promote HNSCC cell
survival (Guo et al., 2019). With exosomes proven as the
mode of delivery for cisplatin-resistance promoting factors,
miRNA array analysis of cisplatin treated CAF-derived
exosomes was carried out. The test revealed a marked increase
in miR-196a content (Guo et al., 2019). Subsequent MTT and
colony formation assays showed that miR-196a overexpression
enhanced the growth of CAL27 and HN4 HNSCC cells
transfected with miR-196a (Guo et al., 2019). The target genes
that interact with miR-196a were identified via miRecords
algorithm to be CDKN1B and ING5. RT-PCR revealed that
both genes were inhibited by miR-196a overexpression (Guo
et al., 2019). ING5 is a tumor suppressor protein that inhibits cell
growth and apoptosis (Gao and Han, 2018), whereas CDKN1B is
a cell cycle inhibitor that slows down the progression of cell
division (Cusan et al., 2018). Although the study was conducted
on HNSCC cells and not specifically OSCC, it is worth noting the
effects of CAF-derived exosomes on squamous cell carcinomas.
Moreover, it provides further evidence of the tumor
microenvironment playing an important role in
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chemoresistance and anti-apoptotic phenotype of tumor cells via
delivery of exosomes.

Aside from exosomal enrichment of miRNAs conferring
chemoresistance traits, miRNAs conferring chemosensitivity
will be downregulated in resistant OSCC cells (Kulkarni et al.,
2020). demonstrated that miR-30a was found to be significantly
reduced in exosomes isolated from serum of OSCC patients,
especially post cisplatin treatment. They also identified Beclin1
(autophagic marker) to be a binding target of miR-30a and are
overexpressed in cisplatin-resistant OSCC cells. Exosomes from
cisplatin-resistant cells that have been transfected with miR-30a
mimics, when delivered to naïve cisplatin-resistant cells, caused a
significant downregulation in Beclin1 and Bcl2 (antiapoptotic
marker) expression, resulting in the sensitization of cisplatin-
resistant OSCC cells. Thus, this proves that downregulation of
exosomal miR-30a is a chemoresistance trait in cisplatin-resistant
OSCC cells.

These experiments provide extensive evidence on the role of
exosomes in propagating anti-apoptotic signals, be it from
neighboring OSCC cells or from the tumor microenvironment.
Based on the above studies, the main exosomal content carrying
apoptotic signals are found to be miRNAs. However, the role of
other exosomal contents in mediating anti-apoptotic signals
should also be investigated. This is important as Coutinho-
Camillo et al. (2017) had demonstrated that the pathological

and prognosis characteristics of OSCC cases cannot be predicted
even with the expression profiling of the complete range of
apoptosis-related proteins to date. It is possible that other
exosomal contents may modulate apoptosis in mechanisms
unknown to us.

Modulation of DNA Damage Repair (DDR) mechanisms.
DNA damage repair (DDR) mechanisms play an essential role in
anticancer drug resistance. Drugs such as cisplatin and
carboplatin intercalate between DNA bases and introduce
inter- and intra-strand linkages. These effects result in the
inhibition of DNA synthesis, triggering DNA damage response
and inducing apoptosis (Figure 4). The human DDR mechanism
is regulated by various proteins responsible in recognition of
DNA lesions, nucleotide excision and DNA ligation (Rocha et al.,
2018). Exosomes play a role in modulating the DDR mechanism
in cells under stress. Akiko et al. (2017) demonstrated that
exosomes maintain cellular homeostasis by excreting harmful
cytoplasmic DNA from cells (Akiko et al., 2017). Secretion of
exosomes containing cytoplasmic DNA prevents aberrant
activation of the DDR pathway, which is a precondition of
apoptosis. The DDR response consists of checkpoint
mechanisms that arrest cell cycle to allow the repair of
damaged DNA, and if the severity is high, induce cell death
via apoptosis.

FIGURE 4 | Cisplatin activation and formation of cisplatin-DNA adducts (A) Cisplatin is mono- and diaquated upon entering a cell. (B) Cisplatin can form covalent
bonds with DNA bases. An intra-strand adduct is formed when cisplatin cross links two bases of the same strand, whereas an inter-strand adduct is formed when
cisplatin cross links two bases from different strands. The percentages indicate the frequency of each type of DNA lesion induced by cisplatin (Rocha et al., 2018).

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6298889

Law et al. EVs Regulate Chemoresistance in OSCC

https://www.frontiersin.org/journals/moleculariosciences
www.frontiersin.org
https://www.frontiersin.org/journals/moleculariosciences#articles


Cisplatin and many chemotherapeutic drugs are known for its
ability to induce apoptosis via DDR (Rocha et al., 2018). Akiko
et al. (2017) observed that exosomes released from human diploid
fibroblasts (HDFs) have the potential to activate the DDR
pathway in recipient pre-senescent HDFs depending on the
amount of exosomes present (Akiko et al., 2017). Immuno-
gold labeling of double-stranded DNA (dsDNA) along with
transmission electron microscopy revealed the presence of
DNA in the exosomes of multivesicular bodies (MVBs).
Subsequent DNA sequencing analysis points toward the origin
of these dsDNA fragments being chromosomal and not
mitochondrial. Thus, it was concluded that the DNA
fragments released via exosomes are harmful constituents in
cells. Moreover, the amount of DNA in the exosomes was
enriched when pre-senescent HDFs were treated with DNA-
damaging agents such as doxorubicin (Akiko et al., 2017).

Interestingly, cisplatin-induced DNA lesions that stall
replication forks can result in the formation of DNA double-
stranded breaks (DSBs), resulting in chromosomal DNA
fragments (Rocha et al., 2018). It can thus be hypothesized
that the release of chromosomal DNA-containing exosomes is
a mechanism reducing DDR activation which in the context of
cancer cells, promotes cancer cell survival. It is possible that a
similar mechanism as stated above is utilized by OSCC cells to
reduce aberrant DDR mechanisms and reducing the cell’s
likelihood of undergoing apoptosis. However, similar studies
on OSCC cell lines are needed to verify this. Mutschelknaus
et al. (2016) discovered that tumor-derived exosomes were able to
increase radioresistance in head and neck SCC (HNSCC) cells via
increasing DSB repair (Mutschelknaus et al., 2016).

Although chemotherapy and radiotherapy are distinct from
each other, both therapies induce DNA damage. Moreover, it has
been demonstrated beforehand that exosomes from breast cancer
cells can alter the phosphorylation status of DDR proteins (Dutta
et al., 2014). Exosomes from irradiated and non-irradiated
HNSCC BHY cells were transferred to irradiated BHY cells
(Mutschelknaus et al., 2016). The number of DSB repair foci
in the recipient BHY cells was analyzed and quantified after 6 h
(Mutschelknaus et al., 2016). It was revealed that the number of
repair foci was lower in the cells incubated with exosomes isolated
from irradiated BHY cells, suggesting a quicker rate of DNA
repair induced from these exosomes (Mutschelknaus et al., 2016).
A similar phenomenon occurred in another HNSCC cell line
FaDu (Mutschelknaus et al., 2016). Furthermore, exosomal
release and uptake in HNSCC cells were shown to be higher
under irradiation (Mutschelknaus et al., 2016), suggesting a
putative mechanism involving exosomes which is triggered
when HNSCC cells undergo DNA-damaging stress. It is
important to note however, that (Mutschelknaus et al., 2016)
did not investigate the exosomal content responsible in
promoting the DSB repair.

DNA lesions resulting from damage induced by cisplatin and
its analogues are repaired mainly via the nucleotide excision
repair (NER) pathway (Rocha et al., 2018). However, a separate
study conducted by Kothandapani et al. revealed that a different
DDR pathway known as base excision repair (BER) is capable of
mediating cisplatin cytotoxicity (Kothandapani et al., 2011).

Using ovarian carcinoma cells, breast cancer cells and HeLa
cells, they demonstrated that BER maintains cytotoxicity of
cisplatin by competing with the productive NER pathway
(Kothandapani et al., 2011). One of the proteins facilitating
the BER pathway is apurinic/apyrimidinic endonuclease 1
(APE1). APE1, a protein shown to be elevated in blood serum
of OSCC patients (Yousafzai et al., 2018). Whether or not the
protein in blood serum originates from exosomes remains
unknown. However, Nath et al. (2017) demonstrated that
APE1 is released from monocytic cells via exosomes (Nath
et al., 2017). The presence of APE1 in isolated exosomes was
examined by western blot analysis which showed that APE1 levels
increased significantly in secreted exosomes compared to whole
cell extract of the monocytic cells (Nath et al., 2017). Thus, it is
possible that cell release of APE1 via exosomes is a
chemoresistance mechanism inhibiting the BER pathway,
allowing OSCC cells to respond to cisplatin-induced DNA
damage via NER. However, this line of thought would need
more experimental investigation based on OSCC models.

In order to prove the role of exosomes in modulating DDR
mechanisms in chemoresistant OSCC, more studies establishing
a direct link are needed. To date, there is only evidence showing
the involvement of OSCC exosomes in mediating DNA repair,
but none in a chemoresistance context.

Immunomodulation by Exosomes
Aside from modulating DDR mechanisms, exosomes have been
shown to possess immunomodulatory effects (Momen-Heravi
and Bala, 2018; Cai et al., 2019). Cellular crosstalk between tumor
cells and their microenvironment which consists of immune cells
such as monocytes and macrophages is important in tumor
progression. Chemotherapeutic drugs such as cisplatin and
doxorubicin inhibit DNA synthesis, which happens frequently
in dividing cells. Thus, dividing immune cells often become
targets of these drugs as well, weakening a patient’s immune
response against tumors. Moreover, tumor cells under
chemotherapy-induced stress are capable of enhancing their
immunosuppression abilities toward immune cells in the
surrounding microenvironment. Baghdadi et al. demonstrated
that Interleukin 34 (IL34) was produced by cancer cells under
chemotherapy-induced stress to enhance local
immunosuppression of tumor-associated macrophages
(TAMs), increasing the ability of cancer cells to evade an
immune response (Baghdadi et al., 2016).

A well investigated pathway which mediates the critical
changes characteristic of innate and adaptive immune
responses is the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) pathway (Hayden et al., 2006). NF-κB is
a family composed of five related transcription factors: p50, p52,
RelA, c-Rel and RelB (Gilmore, 2006). These transcription factors
possess a N-terminal DNA-binding domain that binds to target
DNA sequences called κB sites to regulate gene expression (Jiang
et al., 2009). In a study conducted by Momen-Heravi and Bala
(2018), exosomes from OSCC cells can reprogram monocytes via
the NF-κB pathway (Momen-Heravi and Bala, 2018). They
discovered that exosomes released from CAL27 cells both in
normal and under ethanol conditions contained a high signal of
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miR-21 (Momen-Heravi and Bala, 2018). Exosomes released
from THP1 monocytes however, does not contain a similarly
high level of miR-21, implying a specific sorting mechanism
involved in packaging of miR-21 into exosomes in OSCC cells
(Momen-Heravi and Bala, 2018). Fluorescence-labelled exosomes
from CAL27 cells were observed to be taken up by THP1
monocytes (Momen-Heravi and Bala, 2018). This was further
proven by the observation that Cytochalasin D (an inhibitor of
endocytic pathways and exosome uptake) treatment resulted in
decrease of miR-21 level in THP1 monocytes (Momen-Heravi
and Bala, 2018). Electrophoretic mobility shift assay (EMSA) of
specific NF-κB consensus sequences showed activation of NF-κB
p50 heterodimers in THP1 monocytes (Momen-Heravi and Bala,
2018). It was postulated that exosomes released from CAL27 were
capable of reprogramming the monocytes. Monocyte
chemoattractant protein-1 (MCP1) which molds the tumor
microenvironment and promotes tumorigenesis (Yoshimura,
2017) was shown to increase significantly in recipient THP1
monocytes after co-culture of exosomes derived from CAL27
(Momen-Heravi and Bala, 2018). The level of other pro-
oncogenic factors such as matrix metallopeptidase 9 (MMP9),
cyclooxygenase-2 (COX2) mRNA levels, vascular endothelial
growth factor (VEGF) and interleukin-6 (IL6) were increased
after co-culture with exosomes (Momen-Heravi and Bala, 2018).
However, preliminary size characterization of the EVs released
from CAL27 cells via nanoparticle tracking analysis revealed that
there is a mix of both exosomes and microvesicles. The inference
that THP1 monocytes are reprogrammed by the microvesicles
carrying miR-21 is also viable. Notwithstanding\, these
observations still support the conclusion that exosomes from
OSCC cells are capable of modulating the immune function of
surrounding monocytes and establishing a pro-inflammatory
milieu via miR-21 (Momen-Heravi and Bala, 2018). Chronic
inflammation promotes tumorigenesis by disabling the immune
system from attacking tumor cells, inducing cell proliferation and
genetic instability leading to oncogenic mutations (Xia et al.,
2014).

Aside from monocytes, exosomes from OSCC can also
reprogram macrophages. Cai et al. (2019) demonstrated that
OSCC-derived exosomes containing miR-29a-3p promote M2
subtype macrophage polarization (Cai et al., 2019). Exosomes
isolated from SCC9 and CAL27 OSCC cells were co-cultured with
macrophages (Cai et al., 2019). The expression level of M2
subtype macrophage marker proteins such as CD163, CD206,
Arg-1 and IL-10 increased after co-culturing (Cai et al., 2019).
After that, the conditioned-medium of co-culturing exosomes
and macrophages was used to culture SCC9 and CAL27 cells (Cai
et al., 2019). Transwell assay conducted on SCC9 and CAL27
showed an increase in cell invasion and proliferation, proving that
the M2 subtype macrophage polarization promotes
tumorigenesis and pro-metastatic environment for OSCC cells
(Cai et al., 2019). These results were also supported by Kazumasa
et al. (Mori et al., 2011). They performed immunohistochemical
analysis to identify M2 TAMs in surgically resected OSCC
specimens from 50 patients and discovered a positive
correlation between the proportion of M2 TAMs and the
pathological grade of the OSCC specimen (Mori et al., 2011).

Thus, it can be concluded that immunomodulation mediated by
exosomes is an important topic of investigation and should be
included in the search for therapeutic strategies against OSCC
chemoresistance.

Epithelial-Mesenchymal Transition (EMT)
The epithelial-mesenchymal transition (EMT) is a conserved
process marked by the loss of epithelial characteristics and
gain of mesenchymal phenotype of a cell at a genetic,
epigenetic and morphological level (Greening et al., 2015). It is
characterized by the downregulation of cell adhesion molecules
E-cadherin and β-catenin with the concomitant upregulation of
mesenchymal markers N-cadherin and vimentin (Thomas et al.,
2018). EMT was initially thought to be confined within
embryological development before its conception as a
mechanism endowing metastatic and invasive properties to a
tumor (Greening et al., 2015). During EMT, the epithelial cells
lose apical-basal polarity and epithelial cell-cell contacts such as
tight junctions, adherens junctions and the actin cytoskeletal
architecture are disassembled and reorganized (Lu and Kang,
2019). The resulting mesenchymal cells attain a spindle-shape
morphology and gain motility. The cellular changes are
accompanied by a change in the expression of epithelial genes.
For instance, cells undergoing EMT will express matrix
metalloproteinases (MMPs) to degrade and invade the basal
extracellular matrix (Lu and Kang, 2019). Figure 5 below
briefly outlines the main steps of the EMT process.

There is increasing evidence that suggests EMT contributes to
chemoresistance. Earlier studies have established the connection
between transcription factors regulating expression of EMT genes
and drug sensitivity (Vega et al., 2004; Arumugam et al., 2009;
Kurrey et al., 2009). The studies demonstrated an increase in drug
sensitivity when the transcription factors are repressed. Recent
studies utilizing murine models of pancreatic and breast cancers
demonstrate that EMT is dispensable for metastasis to occur, but
contributes strongly to chemoresistance (Xiaofeng et al., 2015;
Shields, 2018). Clinicopathological studies and
immunohistochemical analysis of OSCC EMT markers have
also supported the idea that EMT is not a necessary step for
metastasis, but may be responsible for other properties such as
chemoresistance and the formation of stem cell-like properties
(Tarin et al., 2005; Chui, 2013; Zidar et al., 2018).

EMT can be mediated by exosomes in OSCC cells undergoing
hypoxic stress. Hypoxia has often been postulated to act as an
environmental pressure resulting in malignant evolution of
tumor cells (Lu and Kang, 2010). The metastatic process of
tumors under hypoxia was accelerated via EMT (Lu and Kang,
2010; Li et al., 2016). Li et al. demonstrated that hypoxic OSCC
cells deliver miR-21 via exosomes to induce EMT in normoxic
cells (Li et al., 2016). Immunoblotting for CD63 revealed that
hypoxia induced exosome release from CAL27 and SCC9 OSCC
cell lines (Li et al., 2016). These exosomes were isolated and
incubated along with normoxic cells. The migration and invasion
of the cells measured using wound healing assays increased (Li
et al., 2016). This along with the increased expression of EMT
marker vimentin proves that exosomes from hypoxic OSCC cells
can induce EMT in recipient normoxic cells (Li et al., 2016).
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MiRNA expression profile and RT-PCR revealed that miR-21 was
expressed higher in hypoxic exosomes compared to normoxic
exosomes (Li et al., 2016). Hence, Li et al. (2016) concluded that
miR-21 was the main mediator inducing EMT changes in
normoxic cells from hypoxic cells (Li et al., 2016). This theory
was further validated by murine xenograft models, where
injection of hypoxic exosomes into the xenograft tumors
increased the growth, weight of tumor and caused an
overexpression of miR-21 compared to normoxic exosomes (Li
et al., 2016).

A recent study conducted by (Kirave et al., 2020) further
elucidated the EMT modulatory properties of OSCC exosomes.
In this study, it was shown that exosomes from cisplatin-resistant
OSCC cells carrying miR-155 are capable of inducing miR-155
overexpression in sensitive OSCC cells. The binding target of
miR-155 was verified via bioinformatics and transfection
experiments to be FOXO3, thereby inhibition of this protein
leads to upregulation of EMT markers. Furthermore, exosomes
derived from cisplatin-resistant cells transfected with miR-155
mimics are shown to be enriched in miR-155. When sensitive
OSCC cells are treated with these exosomes, protein and mRNA
levels of FOXO3 decreased and cisplatin resistance of the cells
were enhanced. These results proved a close link between EMT
and chemoresistance, and the important role played by exosomes
in facilitating EMT in OSCC.

Besides exosomal miR-21 and miR-155, other EMT-
modulating factors which may be potential cargoes of OSCC
exosomes are epidermal growth factor (EGF), CD47, miR-222
and other EMT transcription factors (EMT-TFs) (Nieto et al.,
2016; Ouyang et al., 2017; Fujiwara et al., 2018; Pai et al., 2019). A
separate study done by Chang et al. showed that the miRNA let-
7d, a known tumor suppressor was repressed as EMT-promoting
transcription factors Twist and Snail are overexpressed in OSCC
(Chang et al., 2011). Cell viability experiments showed that
ectopic overexpression of let-7d suppressed the
chemoresistance of OSCC cells to cisplatin and paclitaxel
(Chang et al., 2011). EMT-TFs are known to be exosomal
cargoes (Nieto et al., 2016). Thus, it is possible that EMT-TFs
can be transported as exosomal cargoes to distant cells and
promote EMT and chemoresistance phenotypes. However,
future experiments are needed to establish the presence of
these EMT-TFs in OSCC exosomes and investigate their
effects on recipient cells.

Exosomes From Cancer Stem Cells
The cancer stem cell (CSC) hypothesis postulates that CSCs are
responsible for the maintenance and recurrence of tumors (Yoo
and Kwon, 2015). This small subset of cancer cells possess
properties such as self-renewal, slow replication, intrinsic
resistance to chemotherapy and an ability to give rise to

FIGURE 5 | The overall EMT process. The epithelial-mesenchymal transition (EMT) is the process which tumor cells change from epithelioid to mesenchymal cell
morphology and is marked by a loss of cell polarity, tight, gap and adherent junctions in epithelial cells, resulting in mesenchymal cells that has increased migratory and
invasive capabilities (Li et al., 2019).
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differentiated progeny (O’flaherty et al., 2012). Cellular
dormancy allows CSCs to escape antineoplastic treatment as
they are recruited to the anti-mitotic and quiescent G0-phase
(Kleffel and Schatton, 2013). A lower proliferation rate would
reduce the efficacy of DNA-damaging chemotherapeutic agents.
Several studies of other cancer models have shown that
exosomes are capable of conferring stemness to cancer cells
(Koch et al., 2014; Bliss et al., 2016). Mesenchymal stem cells
(MSCs)-derived exosomes containing miR-222 induced
quiescence in breast cancer cells in vitro and in vivo, thus
conferring drug resistance (Bliss et al., 2016). In an in vitro
model of diffuse large B-cell lymphoma (DLBCL), exosomes
containing Wingless-related integration site (Wnt) signaling
factor from DLBCL can induce a CSC phenotype in recipient
cells (Koch et al., 2014). CSCs are able to endure environmental
stress such as radiation and hypoxia by maintaining their
stemness via exosomes containing Hedgehog, Wnt, β-catenin
and other mRNAs and proteins (Fatima and Nawaz, 2015).
These exosomal cargoes can sustain the self-renewal and
clonogenic properties of CSCs.

CSC-like phenotype can be induced by microRNA such as
miR-146a (Roychoudhury et al., 2018). Roychoudhury et al.
demonstrated that miR-146a overexpression enhances the
stemness of OSCC cells by augmenting CD44 and CD24 levels
(Roychoudhury et al., 2018). CD24 was identified as a functional
target of miR-146a (Roychoudhury et al., 2018). Roychoudhury
et al. (2018) demonstrated that miR-146a confers stemness via
suppression of CD24. Mechanistic analysis revealed that higher
CD24 levels inhibit AKT phosphorylation leading to degradation
of β-catenin, an important factor for cancer stemness
(Roychoudhury et al., 2018). However, studies to verify
whether exosomes isolated from OSCC or the surrounding
population of CSCs contain miR-146a are needed. Whether or
not exosomes play a role in conferring cancer stemness in OSCC
remains an unsolved mystery.

Microvesicles
Microvesicles are heterogenous, membranous sacs that are shed
directly from the plasma membrane of a cell (Raposo and
Stoorvogel, 2013). They are a distinct group of extracellular
vesicles that are much larger in size (100–1,000 nm) compared
to exosomes. Like exosomes, they also carry various forms of
cargo including proteins, miRNA and RNA transcripts.

The biogenesis of microvesicles involves the outward blebbing
and pinching of the plasma membrane. The process is
accompanied by localized changes in the plasma membrane
protein and lipid components which are involved in
modulating membrane curvature (McMahon and Boucrot,
2015). Synergistic action of multiple mechanisms such as
asymmetric partitioning of transmembrane domains, protein
scaffolding and cytoskeletal reorganization both at the
nanoscopic and macroscopic level mediate microvesicle
budding (Harvey and Jennifer, 2005). Due to the heterogeneity
of their size, microvesicles can be generated by various distinct
mechanisms that may partially overlap with those of exosome
biogenesis. For example, sphingomyelinases that convert
sphingomyelin to ceramide are shown to be both responsible

in MVB formation and the budding of microvesicles (Trajkovic
et al., 2008; Bianco et al., 2009).

While it has not been extensively studied, microvesicles have
been shown to modulate drug resistance in cancer cells, making
them another factor to consider in combating drug resistance.
Microvesicles isolated from OSCC have been shown to be larger
and enriched than normal control cells. Their cargo contains
oncogenic miRNA such as miR-21, miR-27a, miR-27b, and miR-
155 (Momen-Heravi and Bala, 2018). One of them, miR-21, has
been strongly evidenced to contribute toward OSCC
chemoresistance via the STAT3/miR-21 axis (Xuan et al.,
2014). Besides that, the miRNA signatures have been
evidenced to induce pro-inflammatory phenotype in the tumor
microenvironment by reprogramming monocytes via the NF-κB
pathway (Momen-Heravi and Bala, 2018).

Microvesicle-Mediated Chemoresistance
The involvement of microvesicles (MVs) in chemoresistance
properties are not as extensive as exosomes. However, they
have been implicated in intercellular communication within
the tumor microenvironment such as stromal and immune
cells, transport of drug efflux proteins, drug sequestration and
anti-apoptotic signaling (Kim et al., 2005; Abid Hussein et al.,
2007; Gong et al., 2013; Zhang et al., 2014a; Zhang et al., 2014b).
The pathway involved for the microvesicle-mediated
chemoresistance is through the cargoes that is packed into
MVs. Transmembrane, soluble proteins, lipids or nucleic acids
that are packed intoMVs shedding from plasmamembrane could
be endocytosed by recipient cells and results in the delivery of its
cargoes into the recipient cells, thus transferring the information
and influence the cancer development (Bian et al., 2019).

MVs isolated from A2780 ovarian cancer cells were shown to
carry P-glycoprotein (P-gp), a protein overexpressed in
multidrug resistance (MDR) phenotype (Zhang et al., 2014a).
Intercellular transfer of MVs mediate the ‘sharing’ of P-gp which
confers paclitaxel-resistance to recipient A2780 cells. Aside from
that, MVs have also been shown to sequester drugs and reduce the
cytosolic free drug concentration in breast adenocarcinoma and
acute lymphoblastic leukemia cells (Gong et al., 2013). MVs have
also shown to carry anti-apoptotic potential. A study conducted
by Abid Hussein et al. demonstrated that inhibiting the release of
caspase-3-containing MVs triggers endothelial cell detachment
and subsequent apoptosis, thus showing that release of caspase-3-
containingMVs is an important anti-apoptotic mechanism (Abid
Hussein et al., 2007). In addition, MV-carrying EGFR can be
taken up by endothelial cells which in turn activates MAPK and
Akt pathways, this will lead to the endogenous expression of
VEGF, followed by the activation of VEGF receptor-2 and tumor
angiogenesis (Al-Nedawi et al., 2009).

Whether or not MVs of OSCC carry out similar functions is yet
to be investigated. On the other hand, MVs from OSCC have
already been proven to induce apoptosis of T lymphocytes (Kim
et al., 2005). OSCC patients often have a high proportion of T
lymphocytes undergoing apoptosis (Kim et al., 2005). T cells found
at tumor sites often experience dysregulation of signaling factors
such as TCR-ζ downregulation (Reichert et al., 2002). Kim et al.
(2005) demonstrated that Fas Ligand (FasL)-Positive MVs isolated
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from the sera of OSCC patients can induce apoptosis of T
lymphocytes, enabling the OSCC cells with immunosuppression
capabilities (Kim et al., 2005). Aside from that, Momen-Heravi and
Bala (2018) demonstrated that MVs from CAL27 cells carrying
miR-21 are capable of reprogramming monocytes via the NF-κB
pathway (Momen-Heravi and Bala, 2018). However as stated
above, the EVs isolated from Momen-Heravi et al. contain a
mixture of exosomes and MVs (Momen-Heravi and Bala, 2018).

The involvement of MVs in facilitating intercellular
communication, changes in tumor microenvironment and
drug resistance in OSCC needs more investigation. Besides
that, improvements and optimisation of isolation protocols
and methodologies are of paramount importance. There is a
need to achieve an EV subtype yield with the highest purity and
integrity in order to avoid studying MVs and exosomes in the
same context. Characterization methods of EVs need continual
improvement in order to distinguish between MVs and
exosomes. The distinguishing of MVs and exosomes from
each other will avoid wrongly attributing EV cargoes and
signaling pathways to an EV subtype.

CONCLUSION

The involvement of EVs in mediating chemoresistance in OSCC
still requires ample investigation. To date, only a handful of direct
links implicating EV involvement in OSCC chemoresistance have
been established. Nevertheless, these findings provide sufficient
basis that both exosomes and microvesicles play an important
role in several chemoresistance mechanisms. In this review, we
have discussed several roles of EVs in the regulation of
chemoresistance in OSCC including its exosomal content,
drug efflux by EVs, alteration of vesicular pH, anti-apoptotic
signaling transmitted by EVs, modulation of DDR mechanisms,
immunomodulation by exosomes, transport of EMT promoting
genes and lastly, microvesicle-mediated chemoresistance.

In summation of the above findings related to exosomes,
exosomal content such as miR-21 and miR-24 are recognized
as key oncogenic factors mediating OSCC cell survival. Aside
from that, drug efflux by EVs for instance cisplatin efflux
mediated by copper transporters ATP7A and ATP7B remains
an active field of investigation. Novel studies suggest that cisplatin
may be transported out by ATP7B via lysosomal exocytosis, albeit
similar studies done on OSCC are yet to be made. Alteration of
vesicular pH by vacuolar ATPases residing on the
endomembrane presents a viable mechanism of OSCC
chemoresistance as cisplatin sensitivity depends on the acidity
of intracellular environment.

Besides that, exosomes from cancer-associated fibroblasts can
deliver anti-apoptotic signaling miRNAs that alter expression of
genes regulating apoptosis. In addition, exosomal release of
chromosomal DNA may be a potential mechanism utilized by
OSCC to reduce aberrant DDR activation and apoptosis.
Furthermore, exosomes from OSCC have been shown to be
capable in reprogramming monocytes via the NF-κB pathway
and macrophages via miR-29a-3p, thus mediating
immunosuppression of the tumor microenvironment. Aside from

that, an emerging perspective suggests that epithelial-to-
mesenchymal transition is a chemoresistant mechanism in
addition to being a metastatic process. Exosomes from OSCC
cells carrying EMT-promoting cargoes such as miR-21, miR-155
(experimentally proven to confer chemoresistance) and EMT-
transcription factors may confer chemoresistance phenotypes to
recipient cells. Last but not least, exosomal miR-146a are implicated
in enhancing stemness in OSCC cells. Cancer stem cells are known
for self-renewal and low proliferation properties, thus making them
harder targets for DNA-damaging drugs. Findings in relation to
microvesicle-mediated chemoresistance in OSCC however, are
limited. Nevertheless, notable findings of MV-mediated
chemoresistance include apoptosis induction of T lymphocytes
and reprogramming of monocytes by OSCC MVs. However, it is
important that EV characterization methods be standardized across
laboratories to distinguish MVs from exosomes.

In addition to that, the various pathways of biogenesis and
endocytic mechanisms of EVs need to be mapped in order for EV
inhibition to be considered as a synergistic complement to
chemotherapy. Current research has no guarantee that EV
inhibition will fully cripple tumor progression. In addition,
due to the heterogeneity of OSCC cases, there is no guarantee
that a study done on a few OSCC cell lines are fully applicable to
all OSCC cases. Current molecular diagnostics utilizing tumor
biomarkers are unable to accurately predict tumor evolution and
behavior due to intra- and inter-tumor heterogeneity (Ogino
et al., 2012). The complex interactions between tumor cells and
the host cells, which is influenced by genomic variation and
environmental factors such as diet and lifestyle presents a
longstanding impasse in clinical diagnostics and treatment
strategies. With that in mind, it is of paramount importance
that deeper studies probing into the mechanisms of EV-mediated
chemoresistance are carried out to improve the resolution of
molecular characterizations on OSCC cases.
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The role of epithelial-mesenchymal transition in squamous cell carcinoma of
the oral cavity. Eur. J. Pathol. 472 (2), 237–245. doi:10.1007/s00428-017-2192-1

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Law, Khoo, Lim, Goh, Ming, Lee and Goh. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 62988819

Law et al. EVs Regulate Chemoresistance in OSCC

https://doi.org/10.1002/9780470495131.ch10
https://doi.org/10.1007/s13277-015-4683-5
https://doi.org/10.1016/s1368-8375(00)00133-0
https://doi.org/10.1016/j.ejphar.2014.05.026
https://doi.org/10.1016/j.ejphar.2014.05.026
https://doi.org/10.1515/hsz-2016-0308
https://doi.org/10.1515/hsz-2016-0308
https://doi.org/10.1016/j.oraloncology.2015.08.002
https://doi.org/10.1016/j.oraloncology.2015.08.002
https://doi.org/10.1007/s00428-017-2192-1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/moleculariosciences
www.frontiersin.org
https://www.frontiersin.org/journals/moleculariosciences#articles

	Extracellular Vesicle-Mediated Chemoresistance in Oral Squamous Cell Carcinoma
	Introduction
	Chemoresistance in OSCC Cells

	Role of Extracellular Vesicles in OSCC Chemoresistance
	Exosomes
	Exosomal Content (MiRNAs)
	Drug Efflux
	Alteration of Vesicular pH
	Anti-Apoptotic Signaling
	Modulation of DNA Damage Repair (DDR) mechanisms.
	Immunomodulation by Exosomes
	Epithelial-Mesenchymal Transition (EMT)
	Exosomes From Cancer Stem Cells

	Microvesicles
	Microvesicle-Mediated Chemoresistance

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References


