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Non-synonymous Single Nucleotide Variants (nsSNVs), resulting in single amino acid
variants (SAVs), are important drivers of evolutionary adaptation across the tree of life.
Humans carry on average over 10,000 SAVs per individual genome, many of which likely
have little to no impact on the function of the protein they affect. Experimental evidence for
protein function changes as a result of SAVs remain sparse – a situation that can be
somewhat alleviated by predicting their impact using computational methods. Here, we
used SNAP to examine both observed and in silico generated human variation in a set of
1,265 proteins that are consistently found across a number of diverse species. The
number of SAVs that are predicted to have any functional effect on these proteins is smaller
than expected, suggesting sequence/function optimization over evolutionary timescales.
Additionally, we find that only a few of the yet-unobserved SAVs could drastically change
the function of these proteins, while nearly a quarter would have only a mild functional
effect. We observed that variants common in the human population localized to less
conserved protein positions and carried mild to moderate functional effects more
frequently than rare variants. As expected, rare variants carried severe effects more
frequently than common variants. In line with current assumptions, we demonstrated
that the change of the human reference sequence amino acid to the reference of another
species (a cross-species variant) is unlikely to significantly impact protein function.
However, we also observed that many cross-species variants may be weakly non-
neutral for the purposes of quick adaptation to environmental changes, but may not
be identified as such by current state-of-the-art methodology.
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INTRODUCTION

The vast majority of human genomic variants are single nucleotide variants (SNVs) (Durbin, et al.,
2010). Coding region variants trivially make up a much smaller fraction of all variation than do non-
coding variants (Lander, et al., 2001). However, the former affect protein structure/function and thus
have a disproportionate effect of molecular function of the cellular machinery. For example, each
individual genome contains approximately ten thousand of nsSNVs (non-synonymous SNVs, which
change the amino acid sequence (Shen, et al., 2013), a combination of which is responsible for a
variety of observed phenotypes, including disease (Peterson, et al., 2013; Hassan, et al., 2019).
Establishing the effect of any given nsSNV, however, is a difficult task. One gold-standard
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experimental approach is saturated mutagenesis (SM) (Wells,
et al., 1985), which induces variants of interest in a gene and
measures the change of resulting protein molecular function.
However, SM is too inefficient to thoroughly study the entirety of
genomic variation. While the recent development of the deep
mutational scanning techniques (Fowler and Fields, 2014) has
facilitated high-throughput functional analysis of coding variants,
experimental annotation of millions of possible nsSNVs in
human genome still remains elusive, Given the inefficiency of
large-scale experimental measurements computational methods
for variant effect interpretation offer a plausible alternative for the
exploration of the human genome.

Genome-wide association study (GWAS) (Visscher, et al.,
2017), as well as the post hoc polygenetic risk scoring
(Torkamani, et al., 2018), has been extensively deployed to
establish the associations between complex phenotypes and
genetic background. GWAS results, however, are by definition
association (not causation) evaluations and are specific to a
phenotype. Evaluating variant effect on molecular function
requires a different type of techniques. Machine learning
models are often used to classify variants into neutral/
deleterious (e.g., CADD (Kircher, et al., 2014), DANN (Quang,
et al., 2014)), benign/pathogenic (e.g., MutPred2 (Pejaver, et al.,
2017), PhD-SNP (Capriotti and Fariselli, 2017)), stable/unstable
(e.g., I-Mutant2.0 (Capriotti, et al., 2005)), and effect/no-effect
(e.g., Envision (Gray, et al., 2018), SNAP (Bromberg and Rost,
2007), SNAP2 (Hecht, et al., 2015)).

Conservation of residues across homologs is often assumed to
indicate structural or functional importance of these residues and
their intolerance to substitution (Kumar, et al., 2009). Thus,
conservation is used as a proxy for variant effect evaluation,
e.g. by tools like SIFT (Ng, 2003) and PROVEAN (Choi and
Chan, 2015), and has been widely incorporated as one of the
features in many other variant effect predictors (e.g., CADD,
DANN, SNAP, PhD-SNP). We previously proposed the concept
of cross-species variants (CSV) analysis (Mahlich, et al., 2017),
which is similar to but intuitively different from conservation
evaluation. Conservation can be directly computed from a
multiple sequence alignment (MSA) of homologs built for
CSV analysis. However, CSVs specifically describe only the
difference between two orthologous reference sequences and
do not summarize overall conservation. For example, if the
amino acid residue at a specific position of a human protein is
glycine, and if the MSA-corresponding position of a mouse
ortholog is leucine, then a CSV at this position of this human
protein would be glycine > leucine. If this particular glycine >
leucine variant also occurs in the human population, the variant is
an observed CSV. As a rule, these types of human variants, i.e. to
residues found in other species, have been presumed to carry no
effect on protein function (Ng and Henikoff, 2001; Ng, 2003;
Calabrese, et al., 2009; Adzhubei, et al., 2010; Shihab, et al., 2013;
Kircher, et al., 2014; Schwarz, et al., 2014; Pejaver, et al., 2020).
After all, if an amino acid is observed in a functional protein of an
ortholog, its substitution into the human version cannot be
expected to drastically affect the function.

Pathogenic amino acid substitutions are, on average,
functionally more radical than CSVs (Briscoe, et al., 2004;

Miller and Kumar, 2001; Subramanian and Kumar, 2006). A
study of the rhodopsin protein, for example, has revealed that
variants corresponding to CSVs among vertebrates are less likely
to be pathogenic (Briscoe, et al., 2004). Of the 7,293 human-
mouse CSVs in 687 human disease genes, only a small fraction
(2.2%) corresponds to known human disease variants
(Waterston, et al., 2002). Other studies have also estimated
that only about 10% of the human-to-other-species amino
acid substitutions are involved in disease (Kondrashov, et al.,
2002; Subramanian and Kumar, 2006). However, this type of logic
may have precipitated a self-fulfilling prophecy, where CSVs that
were annotated to be neutral in the development of variant effect-
prediction methods (Bromberg and Rost, 2007; Adzhubei, et al.,
2010; Kircher, et al., 2014; Pejaver, et al., 2017; Pejaver, et al.,
2020) could bias the prediction of previously unseen CSV effects
toward neutrality. While unlikely pathogenic, intuitively, a yeast
version of the human protein may be less or more functionally
efficient, may have unexpected structural effects given the rest of
the protein sequence, or may participate in different/additional
molecular pathways. Incorporating taxonomic distances between
the species included in an alignment improves identification of
variant effect (Malhis, et al., 2019). A deeper evaluation of CSVs
in terms of their functional effects may thus be warranted.

We previously reported (Mahlich, et al., 2017) that amino acid
CSVs have less predicted molecular functional effects on average
than human variation recorded by the Exome Aggregation
Consortium (Lek, et al., 2016). Here we extend this analysis,
by investigating human variation in 1,265 proteins that have
orthologs in 20 species spread across the eukaryotic branch of the
tree of life. We evaluate the differences in functional impact of the
variants that are observed within the human population against
those not yet observed, but genetically possible. We show that
common variants favor less conserved positions than rare
variants, indicating a potential need for flexibility in sequence
for the purposes of environment-driven adaptation. We also
assessed the differences in predicted impacts on the function
of human protein of cross-species variants (CSVs; variant amino
acid is found in one of the 20 orthologs) and non-CSVs. We
finally suggest that the lack of functional impact of CSVsmight be
overestimated by the current presumption that evolutionary
persistence suggests functional neutrality.

METHODS

Variant Collection
A total of 93,437 human protein-coding transcripts were
extracted from GRCh37 p.13 assembly (Church, et al., 2011)
in Ensembl BioMart (Kinsella, et al., 2011). From these, we
selected 22,346 longest transcripts per gene. We removed
transcripts from patches/alternate sequences (http://m.ensembl.
org/info/genome/genebuild/haplotypes_patches.html), retaining
19,971 transcripts. For these, we artificially generated all possible
non-synonymous single nucleotide variants (73,813,560
nsSNVs). We downloaded the Genome Aggregation Database
(gnomAD v2, https://gnomad.broadinstitute.org/downloads)
exome data (Karczewski, et al., 2020) and, using SAMtools (Li,
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et al., 2009), mapped the generated nsSNVs to the corresponding
variant allele frequencies where available. We thus collected
2,951,998 variants with gnomAD allele count � 1 and
2,561,015 gnomAD variants with larger allele counts. The
remaining 68,300,547 variants were not found in gnomaAD.
Note that at the time of data collection gnomAD v2 was the
most current version available. The current v3 version of
gnomAD is only slightly different in relevant content as its
reference genome, GRCh38, recapitulates 99% of GRCh37
(Pan, et al., 2019) and most differences between the two are in
the non-coding regions, an area outside this study. We thus
expect that results and conclusions reported here would not
change with this update.

The allele counts of all nsSNVs causing the same single amino
acid substitution (SAV) were further aggregated to represent the
frequencies of individual SAVs (Eq. 1):

freq(SAV) � ∑
k
i�1ni

N
, (1)

where for any codon, n1 . . . nk are counts of the specific SAV-
causing alleles and N is the total numbers of sequenced alleles of
that codon. Note that in the process of aggregation some observed
(allele count >1) SAVs could be derived from the aggregation
from multiple single allele nsSNVs. The aggregation of nsSNV
frequencies into SAV frequencies, resulted in 2,564,652 observed
(allele count >1), 2,918,355 singletons (allele count �1), and
60,601,329 synthetic SAVs in the 19,971 transcripts. Observed
variants were further classified as common (freq (SAV) ≥ 0.01)
and rare (freq (SAV) <0.01).

Collection of Cross-Species Variants
Cross-species variants (CSVs) are the amino acid differences
between the human reference protein sequence and the
orthologous protein sequence of another species. For example,
if the amino acid residue at the third position of the human
protein sequence P is leucine, and if the amino acid residue at the
same position in mouse orthologous protein sequence is glycine,
then the CSV at this position in P would be L3G. Aiming to span
the tree of life with species available in Ensembl BioMart
(GRCh37), we considered 20 species for CSV analysis: yeast
(Saccharomyces cerevisiae), worm (Caenorhabdiis elegans),
fruitfly (Drosophila melanogaster), zebrafish (Danio rerio),
xenopus (Xenopus laevis), anole lizard (Anolis carolinensis),
chicken (Gallus gallus), platypus (Ornithorhynchus anatinus),
opossum (Monodelphis domestica), dog (Canis familiaris), pig
(Sus scrofa), dolphin (Tursiops truncatus), mouse (Mus
musculus), rabbit (Oryctolagus cuniculus), tree shrew (Tupaia
belangeri), tarsier (Carlito syrichta), gibbon (Nomascus
leucogenys), gorilla (Gorilla gorilla), bonobo (Pan paniscus),
and chimpanzee (Pan troglodytes). We identified the
evolutionary distances of these species from Homo sapiens
using the TimeTree database (Kumar, et al., 2017). All protein
coding DNA sequences (CDS) of these 20 species were
downloaded from the Ensembl database (Zerbino, et al., 2018)
(release 94, https://uswest.ensembl.org/info/data/ftp/index.html).
For every human protein coding transcript T, the available

orthologous CDS for each of the 20 species was extracted
using the Ensembl BioMart (Kinsella, et al., 2011). Each
species may have multiple protein coding sequences
orthologous to T, but only the longest one was selected. We
performed multiple sequence alignment (MSA) of T and all its
orthologs using PRANK (Löytynoja and Goldman, 2005), which
translates CDS and aligns protein sequences. Of the 19,971
human transcripts in our set, 1,342 had a full set of the 20
species orthologs in the MSA. In these transcripts (940,328 amino
acids) there were 183,540 observed (49,541 CSVs/133,999 non-
CSVs), 228,774 singleton (52,550 CSVs/176,224 non-CSVs), and
5,118,164 synthetic SAVs (873,011 CSVs/4, 245,153 non-CSVs).

Cross-Species Variant Effect Predictions
We generated SNAP (Bromberg and Rost, 2007) predictions for
all variants in the 1,342 transcripts. SNAP predictions could be
made for 1,265 of the proteins; a set of 77 sequences (832,697
variants) did not yield any predictions due to SNAP’s sequence
length constraints (63 sequences), variant to sequence mapping
errors (3 sequences), and unresolvable errors in the SNAP input
feature extraction pipeline (11 sequences) as well as an
additional 46,840 variants on the remaining proteins. Note
that, as in all other proteins in our set, the vast majority
(93%) of these variants were synthetic (4% singleton and 3%
observed), suggesting that our analyses of effect trends should be
largely unaffected by this missing subset. Thus, the final SNAP
effect prediction dataset contained 4,650,941 variants in 791,040
positions among 1,265 proteins (Supplementary Table S1).
Note that for this study we used the original SNAP tool
instead of the more recent version SNAP2 (Hecht, et al.,
2015). There were two reasons for this choice: 1) SNAP2
used OMIM (Amberger, et al., 2009) disease variants in
training, a choice which does not directly reflect variant
functional effects, and 2) SNAP effect prediction reliability
scores strongly correlate with the functional effect strength
(Bromberg, et al., 2013), an observation that has not been
explicitly made for SNAP2.

Variant Conservation Scores
For all residues of all proteins in our set we computed two types of
conservation scores:

1. We used the PredictProtein pipeline (Yachdav, et al., 2014) to
compute ConSurf (Glaser, et al., 2003) conservation scores.
ConSurf scores are based on MSAs of up to 150 homologous
sequences. Reported scores are normalized so that the average
score over all residues of one protein is zero and the standard
deviation is one. Lower scores indicate more conserved
residues.

2. We extracted from the list of SNAP input features the
position-specific independent counts (PSIC) (Sunyaev,
et al., 1999). PSIC scores reflect per-residue position-
specific weights considering the MSA-based overall level of
sequence similarity.

We only retained the conservation scores for those variant
positions (104,375) that had both ConSurf and PSIC annotations.
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Conservation scores across variant subsets were used only
once per variant position in the subset. That is, if two rare CSVs
were present at one protein position, conservation for this
position was only used once toward establishing the
distribution of the rare CSV dataset. On the other hand, if a
position contained both a common CSV and a rare CSV, the
conservation score was included separately into distributions of
each subset.

Per-Residue Funtrp Scores
funtrp (Miller, et al., 2019) is a prediction tool that assesses the
expected range of functional effects due to the possible variants at
a given protein position. funtrp classifies sequence positions as
neutral (most variants at this position show weak or no effect),
rheostatic (a full range of variant effects) and toggle (most variants
have a severe effect). funtrp was trained with deep-mutagenesis
data and uses sequence-based features to differentiate between
the three residue classes. We used our publicly available
webservice (https://services.bromberglab.org/funtrp) to identify
funtrp classes for each position of 1,254 of our protein sequences;
predictions for the remaining 11 sequences were not returned by
the method.

Evaluating Statistical Significance
Distribution Differences
For all comparisons of score distributions (e.g. SNAP scores)
across variant classes (e.g. rare vs common), we re-sampled said
distributions 1,000 times to extract 1,000 observations each time.
For each resampling instance, we performed the Kolmogorov-
Smirnov test to test the equity of the distributions, reporting the
associated p-value; the median p-val over 1,000 iterations was
reported.

RESULTS AND DISCUSSION

Many Variants Remain to be Sequenced
Single amino acid variant (SAV) effects were determined by
SNAP (Bromberg and Rost, 2007) (predicted score range for
our variants [−94, + 88]), with negative scores identifying neutral
SAVs (no change in function) and positive scores identifying
non-neutrals/effect SAVs (activating or deactivating changes in
function); score absolute values indicate the reliability of
prediction and, for non-neutral variants, the size of the effect
(Bromberg, et al., 2013). Note that our definition of effect does not
specify whether the effect is detrimental or beneficial to the
organism, but rather reports on the change in wild-type
functionality of the affected protein.

Overall, more variants were predicted to be neutral than effect,
with some difference in fractions of effect variants between
synthetic, singleton, and observed variant subsets
(Supplementary Table S1). The distribution of synthetic
variant SNAP scores was significantly different from that of
singleton and observed variant scores (Kolmogorov-Smirnov,
KS, test p-value; synthetic vs. singleton � 8.7e−04, synthetic vs.
observed � 1.1e−06), while singleton and observed scores were
only slightly different (singleton vs. observed p-val � 0.14). For
synthetic variants (median SNAP score � −12; Figure 1A), i.e.
those that have not been seen in the population, the majority
(60%) were predicted to be neutral. These variants are, thus,
technically observable and may be identified in future sequencing
efforts. Those 40% of the synthetic variants predicted to have an
effect, had on average more severe impact than the effect variants
seen in the human population (combined observed and singleton
sets; 31% effect; Figure 1B). Increased predicted effect of
synthetic variants is in line with the expectation that these are
subject to purifying selection.

Earlier (Bromberg, et al., 2013), we observed a similar trend of
more effect variants in the synthetic than in the observed/singleton set;
i.e. 55% effect in synthetic SAVs in 100 randomly selected enzymes
vs. 46% effect variants in 1000Genomes data (Auton, et al., 2015).
However, the fractions of both the synthetic and observed/singleton of
effect variants in our earlier study were significantly higher than the
corresponding numbers reported here. Furthermore, the SNAP
scores of the synthetic variants reported here and those in
Bromberg were significantly different (p-val 4.0e−15); the scores
of our combined observed/singleton variants also differed from the
scores of 1000Genomes variants (p-val � 3.0e−12).

While 1000Genomes variants were observed in 85% (1,072 of
1,265) of the transcripts used in this study, our variant set for

FIGURE 1 | Higher prevalence of effect among the synthetic as
compared to observed and singleton variants. (A) The distribution of
effect predictions for synthetic variants (dark orange; median SNAP � -12) is
significantly more right-shifted toward effect (SNAP ≥0; horizontal line)
than that of observed variants (green; median SNAP � -24) and singletons
(yellow; median SNAP � -20). For all distributions, however, the majority of
predictions are neutral (SNAP <0) (B) Additionally, synthetic variants show an
enrichment of moderate to severe functional effects (SNAP ≥ 23) vs.
singletons and observed variants.
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these proteins was larger, suggesting improved sequencing
coverage and accounting for some effect prediction differences.
Notably, only 36% of the 1000Genome variants in our proteins
had an effect–in line with the 31% effect variants in our observed/
singleton set and 10% less than in the complete 1000Genomes
variant set. Furthermore, of the set of 100 enzymes used in the
Bromberg et al. study to generate synthetic variants, only four
were present in our protein set. Thus, the difference in effect
scores between our earlier study and the current work is most
likely due to the specific genes/proteins selected for this study.
Genes/proteins in our set have orthologs in each of our selected
species, i.e. these are likely ancient and rarely disease-associated
(Moreau and Tranchevent, 2012). As the functions of these
proteins are important for organism survival, they likely
harbor the variants necessary for environment-driven
functional adaptation but do not allow for severe disruption
upon mutation (Key, et al., 2014; Key, et al., 2014; Ilardo and
Nielsen, 2018; Rees, et al., 2020). While the variants in these
proteins may still be extremely deleterious, less than three percent
in our set were of severe effect (SNAP score ≥50; 130,870 variants;
7.2% of all effect variants) and, as expected, most were synthetic
(123,962 variants, 3% of all synthetic), with few found in the
population (6,908 variants, 2% of all singleton/observed).

Given these fractions of effect variants, we expect at least half a
million (neutral syntheticCSVs) and possibly over fourmillion (any
synthetic neutrals and milds/moderates) variants to be possibly
observable, i.e. they may be found with more sequencing. As the
genes considered here are likely ancient and evolutionarily
optimized to resist drastic changes upon mutation, this 12-fold
possible increase in the observable variants (vs those already
observed) suggests an upper bound of increase in the number of
observed/singleton SAVs that may be collected in the future.

Common Variants May Drive Environmental
Adaptations
Despite the fact that common variation is, by definition, widespread
in the population, trivially, the vast majority of unique population
variants are rare. Variant effect trends are therefore dominated by
observations for rare variants, effectively drowning out signal from
common variants. We thus aimed to elucidate the difference
between common (≥1% SAV frequency) and rare variants. For
this part of the analysis we excluded from consideration the
singleton variants, which are a special case of rare variation and
may be disproportionately sequencing errors. We note that
common variants are unlikely to be very deleterious/disease-
causing as they would not stay common. On the other hand,
variants that have no impact on function (neutrals) and very weak
nonneutrals can be fixed in the population at about the same rate
via genetic drift (Kimura and Ohta, 1969).

We also considered the differences between observed cross-
species variants (CSVs) and non-CSVs (Methods). We expected
different evolutionary drivers for the existence of different variant
types (e.g. common CSV vs. rare non-CSV) and, in turn, potential
differences in their impact on protein function. Note that variants
labeled as non-CSVmay still be present in the orthologs of species
that were not assessed here. However, using more species could

also reduce our total protein set if some of the currently used
transcripts are absent in the new species transcriptome.

Common variants are as frequently CSVs as non-CSVs (691
CSVs vs. 683 non-CSVs, Supplementary Table S2). For common
CSVs (reference substituted by variant amino acid), the human
reference amino acid is present in aminority (40%) of all 20 species
orthologs, but more frequently in mammals (48%) and great apes
(59%; Table 1). Note that these fractions were computed as the
number of shared reference amino acids of all residues aligned, e.g.
if for one variant ten of 15 orthologs aligned at the variant position
have the human reference amino acid, while for another variant
four of the 20 orthologs do, the total fraction of reference amino
acid across these variants is 40% (14/35). Given these fairly low
fractions, the variant amino acids of common CSVs are possibly
ancestral, i.e. human variant amino acid could have been the
reference of a potential ancestor. Thus, for humans reinstating the
ancestral residue at this position is likely to be detrimental, as it
would otherwise remain fixed as reference.

For common non-CSVs the corresponding fractions of
reference amino acids across orthologs are 75% (all), 86%
(mammals), and 98% (apes; Table 1). Thus, variant amino
acids of common non-CSVs likely represent somewhat newer
evolutionary developments and are 1) likely to be beneficial
(still effect!) for humans as a whole but may have not been
around long enough to become the reference or 2) are non-
universal adaptations to persistent environmental conditions,
e.g. ethnicity-specific variants (Rees, et al., 2020).

Unlike common variants, rare CSV variants are nearly three-fold
less commonplace than non-CSVs. However, just as for common
variants, rare non-CSV reference amino acids are present in
orthologs at a higher frequency than CSV references (83% non-
CSV vs. 68% CSV). The preponderance of non-CSV reference
amino acids across all species highlights these variants as likely of
recent origin, and therefore possibly of any amount (a full range) of
effect. Rare CSV variant amino acids, on the other hand, may be
ancestral, although the likelihood of this is greatly diminished as
compared to common variants (68% rare vs. 40% common
reference amino acid across orthologs). If they are ancestral,
their extensive elimination from the population would suggest
deleterious effects (purifying selection). Independent appearances
of the variant in human (as rare variant) and in another species (as
reference) is unlikely, but also possible. In this case, the variant
amino acid would likely be neutral or slightly deleterious in human.

Further comparing the frequencies of occurrence of reference
amino acids across orthologs suggests that rare variants occur at
more conserved positions than common variants; reference amino
acids of CSVs vs. non-CSVs were present across all species for 68% vs.
83% for rare variants and 40%vs. 75% for common ones. Evaluation of

TABLE 1 | Prevalence of human reference amino acids in CSV positions across
orthologs.

Rare Common

CSV (%) Non-CSV (%) CSV (%) Non-CSV (%)

Apes 98 99 59 98
Mammals 83 93 48 86
All 68 83 40 75
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conservation of variant positions using ConSurf (Glaser, et al., 2003)
confirmed this observation (Figure 2; lower score means more
conserved position; KS p-val CSV rare vs. common � 3.2e−08,
non-CSV rare vs. common � 1.5e−09). The protein positions
harboring rare variants were on average more conserved (103,609
positions; median ConSurf score � −0.11) than positions with
common variants (1,013 positions; median ConSurf score � 0.36).
Note that there are only a few 247) positions for which both rare and
common variants are present, and these are also only weakly conserved
(median ConSurf score � 0.34). A similar trend was observed using
PSIC scores (Sunyaev, et al., 1999) of variant positions (Figure 2;
higher score means more conserved position; median PSIC score of:
rare � 0.80, common � 0.55, both � 0.59; KS p-val CSV rare vs.
common � 4.4e−16, non-CSV rare vs. common � 4.2e−07).

This is an unexpected result, as variants in conserved positions
are often assumed to have an effect, while rare variants, both CSV
and non-CSV, are less frequently predicted to have an effect than
the corresponding common variants (rare vs. common effect
variants: 10% vs. 20% CSVs and 36% vs. 40% non-CSVs;
Supplementary Table S2). Here we point out that more severe
effect (several high score outliers) vs. more frequent effects (many
variants have some effect) indicate different score distributions but
may result in similar summary statistics (e.g. distribution means).
Thus, although common variants have an effect more frequently
than rare variants (Figure 3A), the former are less frequently
severe (SNAP ≥50; 6% rare vs 3.6% common effect variants;
Figure 3B). Furthermore, rare non-CSVs are enriched in
moderate effect variants (SNAP ≥25) vs. common non-CSVs

that are mostly mild. Common CSVs, on the other hand, carry
more moderate effects than rare CSVs (Figure 3B). Note that as
CSVs in general score tend to be predicted neutral more often than
non-CSVs (Supplementary Figure S1, the preponderance of high-
scoring common CSVs vs. non-CSVs reinforces the likely
adaptational value of common CSVs proposed above. The
propensity of rare variants to cause severe effects highlights
them as likely culprits of disease. However, rare variants make
up nearly three quarters of variation overall and are clearly not
restricted to being disease-causing. In fact, they cover a complete
range of effect–from strongly effect to reliably neutral (Figure 3A).

In an effort to validate our observations of effects of common
variants we used funtrp (Miller, et al., 2019) – a method that
trained to recognize the range of variant effects possible at a single
protein position. It classifies positions into 1) neutrals, where
most variants have no effect on protein function, 2) toggles, where

FIGURE 2 | Rare variants more frequently found in conserved
protein positions. Rare variants (blue) are more frequently found in
conserved positions (ConSurf ≤0) than common variants (purple).
Furthermore, non-CSVs (hatched fill) are more frequently present in
conserved positions than CSVs (solid fill). Similarly, rare variants carry higher
PSIC scores than common variants.

FIGURE 3 | Common variants aremore frequently effect than rare
variants, but rare variants are more frequently severe. (A) The
distribution of common CSV and non-CSV predictions (purple) is more right-
shifted (more effect) than that of rare variants (blue). Furthermore, (B) rare
non-CSVs (blue dashed line) are more often of moderate and severe effect
than common non-CSVs (purple dashed line). However, common CSVs are
more often of mild-moderate effect than rare CSVs. Due to small numbers of
variants at each SNAP score (x-axis), frequencies are calculated in intervals of
10, e.g. 0 ≤ SNAP <10; points are centered in the interval.
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most variants have severe or knockout effects, and 3) rheostats,
where variants cover a range of effect strengths. Overall, funtrp
classes reflected SNAP predictions well; median SNAP scores of
variants in neutral, rheostat, and toggle positions were −33, −18,
and 12, respectively. Common variants were more often found in
neutral positions as compared to rare ones (66% vs. 56%,
Figure 4A). However, of the effect positions (i.e. rheostat and
toggle), common variants preferred rheostats (77% common vs.
69% rare variants). As most toggles are conserved (Miller, et al.,
2019), this observation is in line with the above finding that rare
variants 1) are more likely than common ones to be in conserved
positions and 2) that they carry more severe functional effects.
Common variants in rheostatic positions, on the other hand, were
likely used in evolution to fine-tune functions of affected proteins.

Variant Effect Reflects Evolutionary Time of
Reference Amino Acid Origin
We asked whether variant effect is related to the likely
evolutionary time of appearance of the human reference. For
each species X, we collected all effect variants in our dataset where
the human and X reference amino acids were identical. For
mammals, the median effect strengths of the variants affecting
these positions were similar. For other species, however, the
variant effect was correlated with increasing evolutionary
distance between human and the specific species (Figure 5).
This correlation held true for CSVs and non-CSVs, as well as for
synthetic, singleton or observed variants.

Notably for non-CSVs, median effect scores increased more
rapidly over evolutionary time than for CSVs. This trend was
expected, as variants whose reference amino acids are present in
evolutionarily distant species likely disproportionately affect
conserved ancestral amino acids. For example, a shared human
and yeast reference amino acid is likely present across all or most
species in our set. Thus, a CSV at this position (if say, fly amino acid
is different) would indicate some flexibility at the position, but a non-
CSV would elicit the functional effect associated with the disruption
of stringent conservation. However, we found that conservation of
the variant position is unlikely the sole contributor to the observed
effect gradient. The trend, albeit less pronounced, remained visible if
only the variants in positions of low conservation (ConSurf score
≥0.5) were used in the analysis (Supplementary Table S2).
Importantly, a clear distinction between CSVs and non-CSVs was
also still evident, indicating that even in non-conserved positions
CSVs and non-CSVs are distinguishable.

Self-Fulfilling Prophecy: Are Cross-Species
Variants Really Neutral?
As mentioned previously, CSVs were less often predicted to have
an effect than mutations to an amino acid that is not present in
other species (non-CSVs); this observation was true for both
synthetic and observed human variation (Supplementary Table
S1). The absolute difference in median SNAP scores between
CSVs and non-CSVs was 38 (mean �30) for synthetic variants
and 32 (mean �27) for the observed–a full 14–21% of the entire
scoring range ([−94, + 88]). CSV scores are most often neutral
across all three categories of variation (i.e. synthetic, singleton,
observed), while the distribution of non-CSV scores is much more
widespread (Figure 6). An biological explanation for this
observation is that CSVs are indeed more likely to be neutral
with respect to protein function, as is expected from their
persistence in homologs (Kondrashov, 1995; Sunyaev, et al.,
2001). However, another explanation for this stark difference
could then be the fact that SNAP was trained using a dataset of
cross-species orthologous enzyme variants deemed neutral. Only
30 of these enzymes were in our set of 1,265 proteins and, thus,
are not expected to dramatically impact our observations.
However, if SNAP learned input feature patterns specific to
CSVs, others could be labeled neutral without ever being seen
in training. Thus, SNAP could fail to recognize CSVs that have a
functional impact without introducing the organism to selection
pressures, i.e. functionally non-neutral, but physiologically
neutral. In fact, these may be the so called “fuel for evolution”
(Bromberg, et al., 2013; Fu, et al., 2013) – the pool of weakly
nonneutral variants necessarily present in the population for the
purposes of quick adaptation to a changing environment.

In our earlier work we had determined a SNAP threshold of 23
as the upper functional impact limit to the absence of
physiological visibility. We have confirmed this threshold for
this data set as well, as the score where the fraction of possible/
expected variants exceeds those observed (Figure 6). Of the
observed effect CSVs, 76% are in this mild functional effect
range, while 58% of all effect non-CSVs are as well. This
significantly larger fraction of mild effect CSVs than effect

FIGURE 4 | Common variants prefer neutral positions more than
rare variants. Neutral positions (green shading) are enriched in common
variants (purple) as opposed to rare variants (blue) (66% vs. 56% - actual
variant counts shown as numbers in the bars). The fraction of rare
variants in rheostatic positions (blue shading) is higher than the corresponding
fraction of common variants. However, the ratio of common variants in
rheostat positions vs. toggles (pink shading) is higher than that of rare variants.
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non-CSVs suggests that the former are more likely the functional
variants necessary for adaptation.

Although CSVs are more frequently (vs non-CSVs) predicted
to be mild in effect, they also vastly outnumber non-CSVs in the
neutral score range. Curiously, there is almost no difference
between the synthetic and observed CSV score distributions.
However, only 5% of all possible CSVs in our set are observed
in the human population–not much more (percentage-wise) than
all possible non-CSVs (3%; and fewer in the absolute sense with
∼42K observed CSVs and ∼144K observed non-CSVs). It thus
remains unclear whether functional constraints are indeed
weaker for (often biochemically similar substitutions of amino
acids in) CSVs.

Evaluating prediction bias is difficult in the absence of a gold-
standard data set and one of neutral CSVs doesn’t exist. While
funtrp uses site conservation as input, it was not trained to
recognize individual variant effect and thus could be used to
elucidate our findings. In other words, funtrp forgoes the broad
generalization of assigning neutrality to cross-species variants on
the basis of the evolution-guided inference (e.g. SNAP and other
methods (Ng and Henikoff, 2001; Ng, 2003; Calabrese, et al.,
2009; Adzhubei, et al., 2010; Shihab, et al., 2013; Kircher, et al.,
2014; Schwarz, et al., 2014; Pejaver, et al., 2020).

In line with our earlier observations, funtrp found that most
protein positions in our set are neutral. The distribution of
synthetic, singleton, and observed variants across position
classes was very similar for CSVs (62/30/8% neutral/rheostat/
toggle; Supplementary Table S3). Non-CSVs maintained an
average 50/33/17% ratio of neutrals/rheostats/toggles, with
observed non-CSVs more frequently found in neutral and
rheostat positions than singletons or synthetic variants
(Supplementary Table S3). Thus, both CSVs and non-CSVs
were about as likely to localize to rheostatic positions, but non-
CSVs were less frequently found in neutrals and twice as often in
toggles. Note that while not all variants in neutral positions are
necessarily functionally neutral, and non-neutral positions may
have some neutral variants, only 62% of observed CSVs are found
in neutral positions, while SNAP predicts 90% of observed CSVs
to be functionally neutral.

Two conclusions from these results are salient: 1) as expected,
CSVs are indeedmore frequently neutral than non-CSVs and 2) it
appears that SNAP (and likely other predictors) tends to
overestimate CSV neutrality. Thus, we suggest that cross-
species variants may carry mild to moderate functional effects
and should be evaluated accordingly.

FIGURE 5 | Impact of variants sharing reference amino acids with other species correlates with evolutionary distance. Mean SNAP scores (y-axis) are
computed for CSV (green line) and non-CSV (red line) synthetic (left panel), singleton (middle panel), and common (right panel) variants, according to per-species human-shared
reference amino acids. Species are placed along the x-axis (logarithmic) according to their distance to ancestor shared with human.

FIGURE 6 | Observed variants enriched in mild effects. Both
observed CSVs (green solid line) as well as non-CSVs (green dashed line) are
enriched in mild effect variants over their synthetic counterparts (orange
CSVs–solid line, non-CSVs–dashed line).
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CONCLUSION

We investigated a set of single amino acid substitutions (SAVs) in
evolutionarily persistent, likely ancient, proteins, i.e. those that we
expect to be optimized to tolerate variation. We found that despite
the enrichment in severe effects of synthetic vs observed variants, a
large proportion of SAVs might still be found upon broader
sequencing of the population. Moreover, we expect that only a
small fraction of variants that have yet to be sequenced will have a
severe impact and/or be disease causing. We further observed that
common variants favor poorly conserved sites. This lower
conservation, indicative of more tolerance toward variation,
might be providing enough “wiggle” room for environmental
adaptations. Rare variants are, on the other hand, are often
found in more conserved positions, explaining their enrichment
in severe effects in comparison to common SAVs. Curiously, it
appears that our ancient proteins have been optimized to the point
where disrupting a conserved site does not immediately cause a
functional disruption, as seen in the majority of rare variants
predicted to be neutral. Finally, we suggest that cross-species
variants (CSVs) might indeed be more often neutral than non-
CSVs however not as consistently as currently expected.
Ultimately, however, this question can only be answered
through the development of an effect predictor that is does not
make a priori assumptions of CSV neutrality and, which is
somewhat harder, does not rely on conservation.
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