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"The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China, ZDepan‘ment of
Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China

The prognostic prediction of hepatocellular carcinoma (HCC) is still challenging. Immune
cells play a crucial role in tumor initiation, progression, and drug resistance. However,
prognostic value of immune-related genes in HCC remains to be further clarified. In this
study, the mRNA expression profiles and corresponding clinical information of HCC
patients were downloaded from public databases. Then, we estimated the abundance
of immune cells and identified the differentially infiltrated and prognostic immune cells. The
weighted gene co-expression network analysis (WGCNA) was performed to identify
immune-related genes in TCGA cohort and GEO cohort. The least absolute shrinkage
and selection operator (LASSO) Cox regression model was applied to establish a risk-
scoring model in the TCGA cohort. HCC patients from the GSE14520 datasets were
utilized for risk model validation. Our results found that high level of dendritic cell (DC)
infiltration was associated with poor prognosis. Over half of the DC-related genes (58.2%)
were robustly differentially expressed between HCC and normal specimens in the TCGA
cohort. 17 differentially expressed genes (DEGs) were found to be significantly associated
with overall survival (OS) by univariate Cox regression analysis. A 12-gene risk-scoring
model was established to evaluate the prognosis of HCC. The high-risk group exhibits
significantly lower OS rate of HCC patients than the low-risk group. The risk-scoring model
shows benign predictive capacity in both GEO dataset and TCGA dataset. The 12-gene
risk-scoring model may independently perform prognostic value for HCC patients.
Receiver operating characteristic (ROC) curve analysis of the risk-scoring model in
GEO cohort and TCGA cohort performed well in predicting OS. Taken together, the
12-gene risk-scoring model could provide prognostic and potentially predictive
information for HCC. SDC3, NCF2, BTN3A3, and WARS were noticed as a novel
prognostic factor for HCC.

Keywords: hepatocellular carcinoma, immune-related gene, overall survival, risk-scoring model, co-expression
network construction
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INTRODUCTION

Liver cancer is the fourth most commonly diagnosed cancers and
sixth in terms of leading cause among the cancer-related deaths in
the world (Villanueva, 2019). Hepatocellular carcinoma (HCC),
accounting for three-quarters of liver cancer, is considered to be
the most prevalent histological type of primary liver cancer (Kim
et al., 2016). HCC is attributed to multiple etiologies, including
chronic hepatitis virus infection and alcoholic or nonalcoholic
fatty liver disease (Yang et al., 2019). Recently, studies found that
the tumor microenvironment (TME) is tightly involved with
tumor development and progression (Chu and et al., 2019).
TME serves a pivotal role in HCC progression, recurrence,
and metastasis. The HCC microenvironment includes various
cells; among all, immune cells are of paramount importance to
not only tumor initiation and progression but also drug resistance
(Zhou et al, 2016). The immune cells and their secretory
substances may create an environment that exacerbates tumor
progression (Zhou et al., 2019).

High-level heterogeneity of HCC adds to the difficulty in
predicting prognosis of HCC (Huang et al, 2019). Immune-
related parameters have been reported to predict the prognosis of
patients with HCC, elucidating that the significance of immune
status for determining the outcomes of HCC (Long et al., 2019).
The presence of CD8+ Cytotoxic T lymphocytes (CTLs) in HCC
tissue is beneficial for better survival situation (Fu et al., 2019).
CSF1R expression in macrophages exerts an essential role in the
interaction between macrophages and HCC cells (Chen S. et al,,
2019). The molecular mechanisms underlying the interaction
between hepatoma cells and macrophages may provide a novel
vision for the therapeutic strategies of HCC (Tian et al., 2020).

The least absolute shrinkage and selection operator (LASSO)
Cox regression analysis was first proposed in 1997 by Tibshirani,
and simulations indicated that the LASSO could be more accurate
than stepwise selection since LASSO reduces the estimation
variance while providing an interpretable final model
(Tibshirani, 1997). Except that this prognostic model has a
long history, LASSO Cox regression has been widely applied
to construct a prognostic model in multiple researches (Zong
etal., 2010; Liang et al., 2019; Liu et al., 2019; Wu et al., 2019; Yue
et al, 2019; Li et al, 2020; Liang et al, 2020). ImmuCellAI
(Immune Cell Abundance Identifier) is a tool to estimate the
abundance of 24 immune cells from gene expression dataset,
including RNA-Seq and microarray data, and ImmuCellAI
result-based model in tumor immune infiltration estimation
demonstrates high accuracy and unique function (Miao et al,
2020).

Based on the fact that immune cells have significant value in
evaluating the prognosis of various cancers, especially HCC
(Zhuang et al, 2020), this study constructs the prognosis
model of HCC through identifying immune-related genes co-
expressed with immune cells which were associated with the
prognosis of HCC. In this study, Immune Cell Abundance
Identifier (ImmuCellAI), weighted gene co-expression network
analysis (WGCNA), LASSO Cox analysis, receiver operating
characteristic (ROC) curve analysis, univariate Cox analysis,
and multivariate Cox analysis were applied to identify
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immune-related genes in the HCC microenvironment and
construct a risk-scoring model, which exhibited benign
prognostic value in TCGA cohort and GEO cohort. Univariate
and multivariate Cox analyses showed our risk-scoring model
was the independent prognostic factor for overall survival (OS) in
both cohorts. In summary, our risk-scoring model can precisely
predict OS for patients with HCC.

MATERIALS AND METHODS

The flow chart of this study is shown in Figure 1.

Data Collection and Preprocessing

The mRNA expression profiles and corresponding clinical data of
liver cancer samples in The Cancer Genome Atlas (TCGA) were
retrieved from the University of California Santa Cruz Xena
(https://xenabrowser.net/datapages/). 424 samples with mRNA
expression and clinical data were obtained, including 374 HCC
samples and 50 adjacent normal samples. Gene expression data
and corresponding clinical information of GSE14520 datasets,
totally including 209 patients, were downloaded from the Gene
Expression Omnibus (GEO) database. Characteristics of included
datasets are shown in Table 1.

Estimation of Inmune Cell Abundance

ImmuCellAI (http://bioinfo.life.hust.edu.cn/web/ImmuCellAl/)
is a powerful and unique method for accurately estimating the
tumor immune infiltration of 24 immune cell types, especially
T-cell properties. Therefore, gene expression profiles of
GSE14520 and HCC TCGA cohorts were uploaded to
ImmuCellAI to estimate the abundance of immune cells.

Identification of Differentially Infiltrated and

Prognostic Immune Cells

The differentially infiltrated immune cells between tumor tissues
and adjacent tissues were identified using the “limma” R package
in the GSE14520 and HCC TCGA cohorts with a p-value <0.05. A
Kaplan-Meier analysis was conducted to identify immune cells
significantly associated with overall survival (OS). The patients
would be grouped into high expression and low expression
according to the median expression of each immune cell while
conducting the Kaplan-Meier analysis. Overlapping immune
cells with differential infiltration and prognostic value in the
GSE14520 and HCC TCGA cohorts were considered as the hub
immune cells and subjected to construct a related
prognostic model.

Construction of Gene Co-expression
Network

Top 25% genes with the largest variance differences were applied
to construct weight gene co-expression networks in GSE14520
and HCC TCGA cohort, respectively, via utilizing the “WGCNA”
package in R software. The value of soft threshold power was
confirmed at the point of the scale-free topology—R2 exceeding
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FIGURE 1 | Flow chart of data collection and analysis.

Risk plot
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0.85. Genes with similar expression patterns were distributed to
modules via average linkage hierarchical clustering under the
circumstances of the minimum size of module, which was set
to 30.

Identification of Hub Modules

The correlations between the module eigengenes (MEs) and the
differential infiltration levels of immune cells were calculated by
Pearson’s correlation test in GSE14520 and HCC TCGA cohort,
respectively, in order to identify the module paramountly
correlating with the hub immune cell infiltration. p-value
<0.05 was set as the cutoff value. Then, intersection of the
modules with consistent correlation direction between
GSE14520 and HCC TCGA cohorts was applied, and the
overlapping genes were run by KEGG pathway enrichment
analysis for identifying their potential functions and hub
modules. The cutoff criterion was adjusted p-value <0.05. The

overlapping genes were considered as hub genes associated with
the hub immune cell infiltration.

Identification of Differentially Expressed

and Prognostic Genes

The differentially expressed hub genes between tumor specimens
and adjacent specimens were identified using the “limma” R
package in the primary cohort with a false discovery rate (FDR)
<0.05 in the TCGA primary cohort. Univariate Cox analysis was
conducted to identify genes closely associated with OS. The
protein—protein interaction network (PPI) for the overlapping
prognostic differentially expressed genes (DEGs) was performed
by the STRING database (version 11.0). Overlapping genes with
the characteristics of differential expression and prognostic value
in the TCGA cohort were extracted to construct a
prognostic model.
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TABLE 1 | Clinical characteristics of the HCC patients used in this study.

TCGA cohort GEO cohort

Number of patients 371 209
Age (median, range) 61 (16-90) 51 (21-77)
Gender(%)

Female 120 (32.3%) 26 (12.4%)

Male 251 (67.7%) 183 (87.6%)
Race

White 185 (49.9%) NA

Asian 158 (42.6%) NA

Black or American 18 (4.8%) NA

Unknown 10 (2.7%) NA
Grade(%)

Grade 1 55 (14.8%) NA

Grade 2 178 (50.0%) NA

Grade 3 120 (32.3%) NA

Grade 4 13 (3.5%) NA

Unknown 5 (1.3%) NA
Stage (%)

| 174 (46.9%) 90 (43.1%)

1] 85 (22.9%) 74 (35.4%)

1} 84 (22.6%) 43 (20.6%)

\% 4 (1.1%) NA

unknown 24 (6.4%) 2 (0.9%)
Child-Pugh(%)

A 222 (59.8%) NA

B 21 (5.7%) NA

C 1(0.3%) NA

unknown 127 (34.2%) NA
Main tumor Size(%)

>5cm NA 75 (35.9%)

<5cm NA 133 (63.6%)

Unknown NA 1(0.5%)
Survival status

OS days (median) 602 1,581

Construction and Validation of the
Prognostic Imnmune Cell-Related
Risk-Scoring Model

Based on the expression of overlapping genes with differential
expression and prognostic value as well as survival data, the
“glmnet” R package was applied for the LASSO Cox regression
analysis to further select and shrink predictors. The optimal value
of penalty parameter (A\) was determined according to 10 cross-
validations. Risk score of each patient was calculated based on the
follo wmg formula: risk score = esum(each gene’s expression X corresponding
coefficient) “The median value of the risk score was considered as the
cutoff value that categorized the patients into high-risk and low-risk
groups. To explore the distribution of different groups, principal
component analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE) were conducted using the “stats” and “Rtsne”
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R package, respectively. Survival rate between two groups was
compared using a Kaplan-Meier survival curve. To evaluate the
model’s predictive ability, a time-dependent ROC curve analysis
was conducted using “survival ROC” package.

Functional Enrichment Analysis

To explore the biological function associated with the risk, the
enrichment analysis of Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) was carried out
on the basis of the DEGs between high-risk and low-risk groups, by
using the “cluster Profiler” R package (Jiang and et al., 2021). The
Benjamini-Hochberg (BH) method was used to adjust the p values.

RESULTS

The Immune Cell Abundance Estimation

and Pivotal Immune Cell Identification

The infiltration landscape of immune cells was constructed by
ImmuCellAl and the different abundance of 24 kinds of immune
cells between HCC tissues and non-tumor tissues in the TCGA
and GEO cohort was analyzed by Wilcoxon test. As shown in
Figures 2A,B, majority of immune cells altered significantly in
HCC, such as dendritic cells (DCs), macrophage, monocyte, CD4
T cell, natural killer cell, etc. Specific FDR testing results of each
immune cell between two groups in both cohorts are provided in
Supplementary Table S1. Then we perform the Kaplan-Meier
analysis in order to find the immune cell with prognosis value. There are
eight immune cells and one immune cell with prognosis value in TCGA
and GEO cohort, respectively. After intersection with the differently
infiltrated immune cells and the immune cells with prognosis value in
both cohorts, we discovered that dendritic cells were the unique
immune cells (Figure 2C). The Kaplan-Meier analysis was
conducted in above two cohorts, and a high level of DC infiltration
was founded robustly associated with poor prognosis (Figures 2D,E).
Therefore, DCs were identified as the pivotal immune cells.

Construction of Gene Co-expression

Network

18,545 genes in TCGA and 13,423 genes in GEO with the most
significant expression variance (top 25%) were extracted for
subsequent WGCNA. In the TCGA cohort (Figure 3A), in order
to ensure a scale-free network, the soft-thresholding power parameter
was determined by the lowest power fit scale free index over 0.85,
namely, 8 = 6 (scale-free R2 = 0.85). As for GEO cohort, § = 4 (scale-
free R2 = 0.85) was the lowest power fit scale-free index over 0.85
(Figure 3D). Eventually, genes with similar expression patterns were
grouped into 10 and 8 co-expression modules with different colors in
TCGA and GEO cohort, respectively, via average linkage clustering
(Figures 3B,E). In the TCGA cohort (Figure 3C), there was only one
module (brown: r = 0.1, p = 0.04) significantly positively correlated
with the abundance of DCs. In GEO cohort (Figure 3F), brown
module (r = 04, p = 1e-09), red module (r = 0.21, p = 0.002), black
module (r = 0.24, p = 5e—04), and blue module (r = 0.36, p = 6e—06)
were the four modules that had significantly positive correlation with
the abundance of DC cell.
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Identification of Hub Modules

Intersection of the modules with consistent correlation trend
across TCGA and GEO cohorts was selected in the aim of
identifying hub modules correlated with DC abundance
[positive: brown module (TCGA) N brown module (GSE14520),
brown module (TCGA) N red module (GSE14520), brown module
(TCGA) n black module (GSE14520), and brown module (TCGA)
N blue module (GSE14520)]. As shown in Figures 4A-D, there
were 146 overlapping genes across brown module (TCGA) and
brown module (GSE14520), while almost no overlapping gene in
other intersections. KEGG pathway enrichment analysis indicated
that the 146 overlapping genes were mainly enriched in immune-
related pathways (Figures 4E,F). Therefore, brown modules in
TCGA cohort and brown module in GEO cohort were regarded as
hub modules correlated with DC infiltration, and their overlapping
genes were subjected for the construction of prognostic model.

Identification of Prognostic DC-Related
DEGs in the TCGA Cohort

Among the 146 overlapping genes, 22 genes which were
correlated with OS were obtained based on univariate Cox
regression analysis (Figure 5A). Over half of the DC-related
genes (85/146, 58.219%) were differentially expressed between
HCC tissues and normal adjacent tissues, and 17 of them were
associated with OS according to the univariate Cox regression

analysis (Figure 5B). Among the 17 prognostic DC-related DEGs,
11 were upregulated,, while 6 were downregulated in tumor tissue,
which was visualized using a heat map (Figure 5C). According to
the univariate Cox regression analysis, all of the 17 genes were
significantly associated with the OS of HCC patients, of which 12
indicated poor OS with elevating expression (HR > 1) and five
suggested better OS with decreasing expression (HR < 1)
(Figure 5D). We discovered that IL7R, HMOXI1, NCF2, and
DAB2 were the hub genes among these genes through the PPI
analysis (Figure 5E). Furthermore, we calculated the correlation of
expression level between these genes and found that all the
involved genes were positively correlated (Figure 5F).

Construction of a Prognostic Model in the

TCGA Cohort

Through LASSO Cox regression analysis, the genes most
contributing to the OS of HCC patients were screened out
among the 17 genes mentioned above. According to the
optimal value of A, 12 predictors were finally identified. Then
the DC-related prognostic model was constructed based on the

following formula: risk score = e(70.497 * expression level of IL7R+-0.692 *
expression level of CD8A+ 0.232 * expression level of CAPG+0.186 * expression level

of PLA2G7+-0.252 * expression level of BTN3A3+0.231 * expression level of
HMOX1+0.031 * expression level of NCF2+0.246 * expression level of
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DAB2+0.234 * expression level of SDC3+0.028 * expression level of MMP9+0.909 *

. " . .
expression level of WARS+0.443 * expression level of CTSC). Accordin g to the

median cutoff value, the patients in the TCGA primary cohort
were stratified into a high-risk group (n = 182) or a low-risk
group (n = 183) (Figure 6A). PCA and t-SNE analysis revealed
that the patients in different risk groups were divided into two
directions (Figures 6B,C). As presented in Figure 6D, high-
risk patients are more likely to die earlier than low-risk patients.
The Kaplan-Meier survival analysis also confirmed that the
high-risk group had a significantly poor prognosis (Figure 6E,
p < 0.001). The time-dependent ROC curves were utilized to
make an evaluation of the performance of the gene signature for
predicting OS and the area under the curve (AUC) achieved
0.767 at lyear, 0.772 at 2vyears, and 0.762 at 3years
(Figure 6F).

Validation of the Prognostic Model in the
GEO Cohort

In the aim of testing the robustness of the model constructed by the
TCGA cohort, we assessed the risk score of each patient in the GEO
cohort with the aforementioned prognostic model. On the basis of the
median value, the patients from the GEO cohort were divided into
high-risk (n = 104) or low-risk groups (n = 105) (Figure 7A). The
patients in the two subgroups were successfully separated confirmed
by PCA and t-SNE analysis (Figures 7B,C). Similarly, patients in the

high-risk group tended to suffer an earlier death (Figure 7D) and
have a significantly shorter survival time than the low-risk group
(Figure 7E, p < 0.001). In addition, the AUC of ROC analysis of the
model at 1 and 2 years were 0.694 and 0.651, respectively (Figure 7F).

Independent Prognostic Value of the Risk

Score

Univariate and multivariate Cox regression analyses were applied
to assess whether the risk score was an independent prognostic
factor for OS. The risk score had significant relationship with OS
both in the TCGA cohort (HR = 3.310,95% CI = 2.418-4.532, p <
0.001, Figure 8A) and the GEO cohort (HR = 4.765, 95% CI =
2.236-10.155, p < 0.001, Figure 8C) according to univariate Cox
regression analysis. As for the multivariate Cox regression
analysis where confounding factors were corrected, it indicated
similarly that the risk score could serve as an independent
predictor for OS (TCGA cohort: HR = 3.031, 95%
CI = 2.205-4.165, p < 0.001; GEO cohort: HR = 2.738, 95%
CI = 1.214-6.174, p = 0.015; Figures 8B,D).

Functional Analyses in the TCGA and the
GEO Cohorts

To clarify the biological functions and pathways correlated with
the risk score, the enrichment analysis of GO enrichment and
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KEGG pathway was implemented based on the DEGs between
the high-risk and low-risk groups in TCGA and GEO cohorts.
According to GO enrichment analysis, the DEGs between risk
groups from the TCGA and GEO cohorts were mainly enriched
in metabolic process (Figures 9A,B). KEGG pathway analysis
also confirmed that the risk score was associated with various
kinds of metabolism pathways (P. adjust <0.05, Figures 10A,B).
The overlapped pathways were marked by red rim, and there
were 25 overlapped pathways among the 30 KEGG pathways after
we compared the functional analyses performed in both cohorts.

DISCUSSION

Our results revealed that high level of DC infiltration was
associated with poor prognosis in patients with HCC, and a
12-gene risk-scoring model that was constructed based on the
DC-related DEGs performed well in predicting OS in GEO cohort
and TCGA cohort.

In this study, we first analyzed the different abundance of
immune cells in HCC samples from GEO dataset and TCGA
dataset, and then run the survival analysis of the differential
immune cells. The results showed that the differential expression
of DCs had a significant effect on OS in patients with HCC. The
high expression of DCs indicates that the prognosis of patients

with liver cancer is worse. Patients with high DC expression show
worse prognosis than patients with low DC expression in HCC.
DCs are regarded as crucial regulators of T-cell responses and
involved in pathology via activating T cells and B cells (Hancock
and et al,, 2014; van Uden et al., 2019). Plasmacytoid dendritic
cells (pDCs) have been documented in multiple primary and
metastatic human cancers (Vermi et al., 2011). Infiltration by
pDC of breast tumor correlates with dissemination and relapse,
suggesting pDC contributes to the progression of breast cancer
(Treilleux et al., 2004). On the contrary, depletion of pDC inhibits
progression and bone metastasis of the breast cancer (Sawant
et al.,, 2012). The administration of DCs has been applied to treat
certain human neoplasms, such as melanoma and breast cancer
(Luo et al., 2014). Zhou et al. (2019) revealed that intratumoral
infiltration by pDCs has a predictive role for poor prognosis in
patients with HCC.

In this study, the genes that co-expressed with DCs in GEO
dataset and TCGA dataset were constructed by WGCNA. We
found that the genes of black module, blue module, red module,
and brown module in the GEO dataset were significantly
correlated with DCs, and the genes of brown module in
TCGA dataset were significantly correlated with DC. When
the four significant DC-correlated modules of GEO dataset
and the significant DC-correlated module of TCGA dataset
were intersected, respectively, 146 genes were extracted as the
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FIGURE 5 | Identification of the candidate DC-related genes in the TCGA cohort. (A) The results of the univariate Cox regression analysis of 146 overlapping genes.

(B) Venn diagram to identify differentially expressed genes between tumor and adjacent normal tissue that were correlated with OS. (C) The heat map of 17 prognostic
DC-related DEGs. (D) The results of the univariate Cox regression analysis between gene expression and OS. (E) The PPI network of 17 prognostic DC-related DEGs
downloaded from the STRING database. (F) The correlation network of 17 prognostic DC-related DEGs.

fundamental genes that co-expressed with DCs, and these genes
were analyzed by KEGG enrichment analysis. Since the genes co-
expressed with DCs are positively correlated, and the high
expression of DC predicts poor prognosis in patients with
HCQG, it is speculated that these 146 genes may also be closely
related to the prognosis of patients with HCC. The enrichment
pathways were mainly related to human T-cell leukemia virus-1
infection, phagosome, Thl and Th2 cell differentiation, natural
killer cell-mediated cytotoxicity, and leukocyte transendothelial
migration, enhancing the reliability of these genes.

Through merging the univariable Cox regression analysis
of 146 genes and differential gene expression analysis of 146
genes, we identified 17 genes retrieved as potential prognostic
factors for constructing prognosis model. Afterward, LASSO
Cox regression analysis was performed for constructing the
risk-scoring model, and 12 genes (IL7R, CD8A, CAPG,
PLA2G7, BTN3A3, HMOX1, NCF2, DAB2, SDC3, MMP9,
WARS, and CTSC) with significant differential expression
were selected. The risk-scoring model has favorable predictive
validity in both GEO dataset and TCGA dataset. The 12-gene
risk-scoring model may be a valuable prognostic factor for
HCC patients. The high-risk group exhibits remarkably lower

OS rate of HCC patients than the low-risk group. The AUC
values of the risk-scoring model in GEO cohort and TCGA
cohort showed benign performance in predicting short-term
survival (1-2 years). Univariate and multivariate Cox analyses
in the two cohorts together suggested that the 12-gene risk-
scoring model performed a better prognostic value than other
factors such as Barcelona Clinic Liver Cancer staging and
TNM stages.

IL7R, whose expression was decreased in HCC, was
considered to be a link to dedifferentiation of HCC and the
top 50 predictor genes (Midorikawa et al., 2002). In our study,
IL7R also downregulated in HCC samples and could be
considered as a protective factor for HCC. CD8A was
identified as one of the top 10 hub genes by bioinformatics
analysis (Zhang and et al, 2017). CD8A showed significant
positive correlation with most immune checkpoint-coding
genes which closely related to the prognosis of HCC (Xu
et al,, 2020). We found the expression of CD8A was decreased
in HCC samples and suggested better prognosis for HCC
patients. CAPG, which could be detected in the cytoplasm of
normal liver tissue and HCC specimens, might contribute to
tumor motility and cancer-associated mortality and be regarded
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Univariate Cox regression analyses in the TCGA derivation cohort. (B) Multivariate Cox regression analyses in the TCGA derivation cohort. (C) Univariate Cox regression
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as a prognostic or diagnostic biomarker for metastatic HCC (Tsai
et al., 2018). Although CAPG expression levels of normal tissues
and tumor tissue without venous invasion were identical, its
expression markedly upregulated in tumor tissue with vascular
invasion compared to those without vascular invasion (Kimura
et al,, 2013). PLA2G7, as one of the secreted phospholipases A2,
might provide potential HCC serological markers due to its
strong upregulation in over half of HCC specimens (Smith
et al., 2003). BTN3A3 has not been reported as its role of
HCC. However, BTN3A3 was considered as a tumor
suppressor gene, which could promote cellular apoptosis of
nonsmall cell lung cancer (Jeon et al, 2016). Besides, high
level of BTN3A3 expression was correlated with better disease-
free survival (DFS) and OS of gastric cancer patients (Pan et al.,
2019). HMOX1 is the inducible isoform of the rate-limiting
enzyme in heme degradation (Gueron et al, 2009). HMOX1
was involved in invasion and metastasis of multiple cancers.
HMOXI1 suppress breast cancer invasion through inhibiting the
expression of matrixmetalloproteinase-9 (MMP9) (Lin et al,
2008). It was proved to be a prognostic factor for HCC
patients with hepatectomy (Yeh et al, 2018). HMOXI might
inhibit the proliferation and metastasis of HCC by regulating the
miR-30 days/miR-107 level (Zou et al, 2016). Hence, the

downregulation of HMOX1 found in this study was fitted with
the results of current researches. At present, research on the
relationship between NCF2 and HCC was still absent. NCF2
potentially provided pathological diagnostics and prognostic
value of cervix carcinogenesis (Lomnytska et al, 2011).
Furthermore, upregulation of NCF2 could promote gastric
cancer, angiogenesis, and metastasis (Zhang et al, 2018).
Disabled homolog 2 (DAB2), as a member of the disable gene
family, has been proven to function as a tumor suppressor that
plays an crucial role in the occurrence and progression of various
tumors (Albertsen et al., 1996), including colorectal cancer (Kleeff
et al, 2002) and epithelial ovarian cancer (Mok et al., 1998).
Besides, DAB2 is highly expressed in tumor-infiltrating tumor-
associated macrophages (Marigo et al, 2020). DAB2 may
attenuate the miR-106b promotion effect on HCC cell
proliferation and migration. Downregulation of DAB2IP is
associated with poor prognosis in HCC patients, which
represents that DAB2IP is a considerable marker for
progression of HCC (Zhang et al., 2012; Chen Y. et al,, 2019).
Until recently, SDC3, as one of the hypoxia-related gene, along
with other 13 genes was found to be a potential prognostic
biomarker for breast cancer (Wang et al., 2020). Zong et al.
(2010) found that overexpression of SDCI inhibits the
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FIGURE 9 | Representative results of GO analyses. (A) GO enrichment in the TCGA cohort. (B) GO enrichment in the GSE14520 cohort.

proliferation of mesenchymal tumor cells. In this study, we
revealed that the expression of SDC3 was downregulated in
HCC patients. Matrix metalloproteinases (MMPs), an

important proteolytic event in the invasion and migration of
tumors, is associated with the degradation of the extracellular
matrix (Bonnans et al., 2014). As one of fundamental member of
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FIGURE 10 | Representative results of KEGG analyses (A) KEGG pathways in the TCGA cohort. (B) KEGG pathways in the GSE14520 cohort.
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MMPs family, MMP?9 significantly contributed to the progression
of multiple tumors in the context of overexpression (Yan et al.,
2018; Daiet al.,, 2019; Zhou et al., 2019). Liu et al. (2020) identified
that M2 macrophages promoted HCC cells invasion and

metastasis through upregulating MMP9 expression, which
suggested elevating MMP9 expression was correlated with
immune related cells in TME. WARS, as an aminoacyl-tRNA
synthetase and inhibitor of angiogenesis, encodes the human
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cytoplasmic tryptophanyl-tRNA synthetase (TrpRS) and
participates in protein synthesis and RNA transcription as well
as translation (Tsai et al., 2017). Low expression of TrpRS in
tumor tissue was associated with worse outcomes in patients with
colorectal cancer and pancreatic cancer (Ghanipour et al., 2009;
Paley et al,, 2011). Cathepsin B(CTSB) might be associated with
the growth and metastasis of HCC as an oncogene and serve as a
valuable prognostic marker for HCC patients (Ruan and et al.,
2016; Zhang et al., 2020). Evidence supported that overexpression
of CTSB predicted poor prognosis of numerous cancer patients,
including HCC patients (Ruan and et al., 2016).

Taken together, the 12-gene risk-scoring model may be a valuable
prognostic factor for HCC patients. Among the 12-gene risk-scoring
model, SDC3, NCF2, BTN3A3, and WARS have never been
reported as the prognostic factor for HCC. Although the
prognostic model associated with the 12 genes has not been
reported previously and they could be considered as a valuable
prognostic method for HCC, this study has several limitations. First,
the raw data on HCC that we downloaded from GEO dataset was
limited and incomplete. Second, the long-term survival predictive
value of the 12-gene risk-scoring model was obscured.

CONCLUSION

Our finding revealed that the 12-gene risk-scoring model could serve
as a potential prognostic prediction for HCC. SDC3, NCF2, BTN3A3,
and WARS were noticed as a novel prognostic factor for HCC.
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GLOSSARY

HCC: hepatocellular carcinoma

HBYV: hepatitis B virus

TME: tumor microenvironment

CTLs: cytotoxic T lymphocytes

LASSO: absolute shrinkage and selection operator
ROQC: receiver operating characteristic

PCA: principal component analysis

t-SNE: t-Distributed Stochastic Neighbor Embedding
OS: Overall survival

GEO: Gene Expression Omnibus

TCGA: The Cancer Genome Atlas

ImmuCellAI: Immune Cell Abundance Identifier
MEs: module eigengenes

FDR: false discovery ratefalse discovery rate

BH: Benjamini & Hochberg

PPI: protein-protein interaction network
WGCNA: Weighted gene co-expression network analysis
KEGG: Kyoto Encyclopedia of Genes and Genomes
FDR: false discovery ratefalse discovery rate

DEGs: differentially expressed genes
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BP: biological process

CC: cellular component

ME: molecular function

DCs: dendritic cells

pDCs: plasmacytoid dendritic cells

AUC: area under the curve

DFS: disease free survival

HR: hazard ratio

CI: confidence interval

IL7R: interleukin 7 receptor

CD8A: CD8a molecule

CAPG: gelsolin-like capping actin protein
PLA2G?7: phospholipase A2 group VII
BTN3A3: butyrophilin subfamily 3 member A
HMOX1: heme oxygenase 1

NCEF2: neutrophil cytosolic factor 2

DAB2: disabled homolog 2

DAB2IP: DOC-2/DAB2 interactive protein gene
SDC3: syndecan 3MMPs:Matrix metalloproteinases
MMP9: matrixmetalloproteinase-9

TrpRS: tryptophanyl-tRNA synthetase
CTSC: cathepsin C.
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