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In the past 2 decades, the discovery of a new class of small RNAs, known as tRNA-derived
fragments (tRFs), shed light on a new layer of regulation implicated in many biological
processes. tRFs originate from mature tRNAs and are classified according to the tRNA
regions that they derive from, namely 3′tRF, 5′tRF, and tRF-halves. Additionally, another
tRF subgroup deriving from tRNA precursors has been reported, the 3′U tRFs. tRF length
ranges from 17 to 26 nt for the 3′and 5′tRFs, and from 30 to 40 nt for tRF-halves. tRF
biogenesis is still not yet elucidated, although there is strong evidence that Dicer (and
DICER-LIKE) proteins, as well as other RNases such as Angiogenin in mammal and RNS
proteins family in plants, are responsible for processing specific tRFs. In plants, the
abundance of those molecules varies among tissues, developmental stages, and
environmental conditions. More recently, several studies have contributed to elucidate
the role that these intriguing molecules may play in all organisms. Among the recent
discoveries, tRFs were found to be involved in distinctive regulatory layers, such as
transcription and translation regulation, RNA degradation, ribosome biogenesis, stress
response, regulatory signaling in plant nodulation, and genome protection against
transposable elements. Although tRF biology is still poorly understood, the field has
blossomed in the past few years, and this review summarizes the most recent
developments in the tRF field in plants.
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INTRODUCTION

Transfer RNA (tRNA) is an ancient non-coding RNAmolecule whose canonical role is to bridge the
information contained in messenger RNAs (mRNAs) to protein synthesis (Giegé, 2008).
Furthermore, tRNAs were likely part of an RNA genome replication mechanism in the so-called
“RNA world,” where before the advent of protein synthesis, plants might have retained tRNA-like
motifs in their genomic RNA, which evolved as 3′terminal structures that tagged RNA genome for
replication (Maizels and Weiner, 1994; Giegé, 2008). Not only are tRNAs indispensable for the
translational machinery, but these molecules also play non-canonical roles, for example in apoptosis
inhibition (Mei et al., 2010), breast cancer metastasis, neuronal homeostasis regulation (reviewed by
Schimmel, 2018), as stress sensors and gene regulators through uncharged tRNAs, as well as being
used as primers for reverse transcription by viruses (Phizicky and Hopper, 2010). In the past few
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decades, significant advances in high-throughput sequencing
technologies have enabled the discovery of new classes of
small RNAs in plants. Among them, tRNA-derived fragments
(tRFs) arise as new enigmatic molecular players.

When fragments of tRNAs were first observed, they were believed
to be degradation byproducts. However, an increasing number of
reports have led to a change in this view. Indeed, the accumulation of
tRFs in the cell is unlikely a restricted byproduct of tRNAdegradation
since tRNAs that did not pass quality control are adenylated as a
signal for degradation (Chernyakov et al., 2008; Copela et al., 2008).
Furthermore, tRNAs are cleaved at different positions to generate
tRNA fragments, giving rise to four possible classes according to the
cleavage position. Short fragments that range from 17 to 26
nucleotides (nt) are classified into three categories: 1) 5′tRF:
cleavage at the D-loop at the 5′ end of a mature tRNA; 2) 3′tRF:
cleavage at the T-loop at the 3′end, including CCA; 3) 3′U-tRF:
cleavage at the 3′trailer of the tRNA precursor. The last category, 5′
and 3′tRNA-halves, are cleaved at the anticodon loop and include
longer fragments, ranging from 30 to 40 nucleotides. The latter class
notably includes the tRNA-derived stress-induced RNAs (tiRNAs),
which correspond to the tRNA-halves induced by stress—a
nomenclature commonly used for mammals. In addition to these
categories, internal tRNA fragments (i-tRFs) that range from 19 to
36 nt, were detected only in humans (Telonis et al., 2015; Karousi
et al., 2020). Although there is still no consensus in the nomenclature,
here the 5′tRF, 3′tRF, 3′U-tRF, and 5′or 3′tRNA-halves
nomenclature will be used.

Transfer RNA-derived fragments gained increasing interest
when Lee and Collins demonstrated that during amino acid
starvation, T. thermophila mature tRNAs were cleaved at the
anti-codon loop, generating tRNA-halves in coordination with
the cell cycle progression (Lee and Collins, 2005). Several pieces of
evidence suggest that the accumulation of tRNA-halves is
evolutionarily conserved and that it could be part of a protein
synthesis regulatory pathway that responds to stress and
fluctuates during the life cycle (Haiser et al., 2008; Jöchl et al.,
2008; Thompson et al., 2008; Pederson, 2010; Wang et al., 2016).
The smaller classes of tRNA-derived fragments also rose as
potential regulatory molecules. Like tRNA-halves (or tiRNAs),
smaller tRFs are also associated with stress response, and they
might participate in the RNA interference (RNAi) machinery or
even be integrated into a new RNAi-like pathway. However, there
is still controversy in the field, as tRFs processing by DICER (or
DICER-LIKE) proteins as well as tRFs loading into
ARGONAUTES are not clear (Loss-Morais et al., 2013; Kumar
et al., 2014; Alves et al., 2017; Cognat et al., 2017; Martinez et al.,
2017; Megel et al., 2018). This review focuses on the new findings
on plant tRNA-derived fragments and their implications.

TRANSFER RNA FRAGMENTS
BIOGENESIS

The mechanisms responsible for processing tRNA-derived
fragments are still poorly understood, especially in plants. For
instance, the mechanism by which 3′U-tRFs are processed in
plant cells is likely to be similar to 3′U-tRFs cleaved by the RNase

Z in human cells, but it remains to be experimentally confirmed
(Lee et al., 2009; Haussecker et al., 2010).

In mammalian cells, tRF-halves can be processed by Angiogenin
(ANG), amember of the RNase A family. ANG is primarily localized
in the nucleus, however, it can also be found in the cytoplasm, where
it is associated with RNH1 (RNase H inhibitor 1). RNH1 inhibits
ANG activity in normal conditions but releases ANG under stress
conditions (Yamasaki et al., 2009; Li and Hu, 2012). Rny1p (RNase
in Yeast 1), a member of RNase T2 family in yeast, and the non-
specific single-stranded RNA nuclease T2/S superfamily RNS
(comprising S-LIKE RIBONUCLEASES 1–5) in plants can
process 5′tRFs and 3′tRFs, as well as tRNA-halves (Thompson
and Parker, 2009; Alves et al., 2017; Megel et al., 2018). In plants,
S-LIKE RIBONUCLEASE 1 (RNS1) is upregulated during phosphate
starvation (Bariola et al., 1994) and is tightly regulated in response to
the phytohormone Abscisic Acid (ABA) and to wounding stress
(Hillwig et al., 2008). Arabidopsis RNS1 is responsible for the
production of both 5′tRFs (Ala) and 5′tRNA-halves (Ala and
Asp) (Megel et al., 2018). Furthermore, the expression of T2
RNases is triggered by stress responses, coinciding with the high-
level accumulation of most tRNA-halves. Interestingly, Arabidopsis
RNS1 is expressed in specific tissues and RNS1 may be responsible
for processing tRF-halves in specific cell types and developmental
stages (Nowacka et al., 2013; Alves et al., 2017; Megel et al., 2018).

The major players in small RNA processing are the RNases III
Dicer, Drosha, and, in plants, DICER-LIKE (DCLs). DCL activity
requires double-stranded RNA (dsRNA), which can originate from
hairpin structures or by the synthesis of dsRNA from single-
stranded RNA (Gasciolli et al., 2005; Henderson et al., 2006).
Some specific 5′tRFs and 3′tRFs in mammals are reported to be
Dicer-dependent (Babiarz et al., 2008; Cole et al., 2009; Haussecker
et al., 2010). In plants, DCLs are unlikely to play a constitutive role
in tRF processing (Alves et al., 2017; Megel et al., 2018). However,
DCLs may be involved in tRF processing during specific
developmental stages or in specific tissues. For instance, it was
shown that DCL1 is responsible for the cleavage of specific 19-nt
tRFs inArabidopsis pollen (Martinez et al., 2017). Interestingly, 19-
nt 5′tRFs-accumulate at higher levels in pollen in Arabidopsis,
maize, and rice— as well as in Physcomitrella patens gametophore
and sporophyte — than in other tissues, suggesting specific
processing of tRFs in plant male gametes (Martinez et al., 2017).

TRANSFER RNA FRAGMENTS AND GERM
CELLS: KEEPING RETROTRANSPOSONS
IN CHECK
Although transposable elements (TEs) presence and movement
influence genome structure and dynamics, their activity is likely
to disrupt genome stability, thus requiring rigorous control
(Slotkin and Martienssen, 2007; Lisch, 2013). The RNAi
machinery is the main factor in most eukaryotes that protects
the genome from naturally active, or stress-activated, TEs by
using TE-derived small RNAs and piRNAs to degrade TEs
transcripts (Slotkin and Martienssen, 2007; Slotkin et al., 2009;
Martinez et al., 2016; Ramat and Simonelig, 2021). Recently, tRFs
have been reported to be part of the initial trigger for regulatory
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pathways occurring at specific retrotransposons in both plants
and mammals (Martinez et al., 2017; Schorn et al., 2017).

Retrotransposons, retroviruses, and pararetroviruses contain in
their primer binding site (PBS) a region that is targeted by tRNAs,
mainly by the 3′extremity of certain tRNAs that are used as a primer
for retrotranscription (Marquet et al., 1995). In cancer cell lines, a
subset of 22-nt 3′CCA-tRFs halves have a complementary sequence
to retrotransposons such as LINEs (Long Interspersed Nuclear
Elements) and LTRs (Long Terminal Repeats), and these 22-nt
3′CCA-tRFs might interfere with RNA expression by inducing the
RNAi pathway (Kawaji et al., 2008). Inmouse embryonic stem cells,
epigenetic reprogramming takes place, and LTRs are expressed due
to changes in the chromatin conformation, whereas 18-nt 3′tRFs
accumulate and block reverse transcription of those elements by
targeting the PBS, the same mechanism also seems to take place
during viral infection (Schorn et al., 2017; Schorn and Martienssen,
2018). Furthermore, 5′tRFs may also have the ability to regulate
LTRs in mammal’s embryonic stem cells and embryos (Sharma
et al., 2016; Boskovic et al., 2020).

In Arabidopsis, 5′tRFs accumulate in mature pollen grains, a
tissue where TEs are reactivated due to the loss of heterochromatin
during epigenetic reprogramming, a mechanism characteristic of
germinative cells (Figure 1; Slotkin et al., 2009; Martinez et al.,
2017). A good model for studying TE activation and its
consequences on plant development is the Arabidopsis mutant
ddm1, lacking the chromatin remodeler DECREASE IN DNA
METHYLATION 1 (DDM1), which shows global loss of

heterochromatin and hence TEs reactivation (Slotkin et al.,
2009). Interestingly, ddm1 accumulates tRFs not only in mature
pollen grains but also in other tissues such as inflorescences. The
expression of some tRNA genes is likely influenced by the loss of
DDM1, which could partly explain the tRF accumulation in
different tissues in this mutant. Interestingly, the double mutant
ddm1;dcl1 loses tRFs in pollen, suggesting a microRNA-like
pathway in this specific tissue, supporting the hypothesis of a
tissue-specific tRF biogenesis pathway (Martinez, 2017).
Interestingly, Arabidopsis microRNAs miR845 and miR1511
also target LTRs and are evolutionarily linked to tRNA iMetCAT

(Šurbanovski et al., 2016), which produces a 19-nt 5′tRF that
targets the Gypsy element Athila6A (Martinez et al., 2017).
Together, these observations suggest a complex mechanism of
plant TE regulation, which employs distinct small RNA classes.

PROCESSING TRANSFER RNA
FRAGMENTS: AIDING STRESS RESPONSE

The accumulation of tRFs and tRNA-halves in specific tissues and at
specific developmental stages is likely tightly regulated, however,
this regulation is still not well understood (Hsieh et al., 2009; Zhang
et al., 2009; Alves et al., 2017; Cognat et al., 2017). Nevertheless, it is
well established that different stresses can trigger tRNA cleavage to
produce tRFs/tRNA-halves. Fragments from tRNAs were first
observed during amino acid starvation in T. thermophila (Lee

FIGURE 1 | tRNA-derived fragments (tRFs) biogenesis and function. In Arabidopsis thaliana pollen grains, 5′tRFs accumulate due to the expression of DECREASE
IN DNA METHYLATION 1 (DDM1) and are processed by DICER-LIKE1 (DCL1) and loaded into ARGONAUTE1 (AGO1), targeting Long Terminal Repeat (LTR)
transposable elements (TEs). Under stress conditions, plants as Arabidopsis triggers tRFs and tRNA-halves processing intermediated by S-LIKE RIBONUCLEASE 1
(RNS1). 5′tRFs can modulate translation, and the D-loop structure likely plays role in the efficiency of translation inhibition. Meanwhile, tRNA-halves act as signaling
molecules traveling through the phloem-sap from source cells toward sink cells where they accumulate and may disrupt translation. In soybean (Glycine max), rhizobial
tRFs processing is still unknown. However, they are found in symbiotic roots where they are loaded into AGO1, targeting transcripts responsible for root development,
playing an important role in the symbiotic regulation between bacteria and root.
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and Collins, 2005). Reports fromArabidopsis showed tRNA-halves,
3′tRFs, and 5′tRFs accumulation during oxidative stress, indicating
a potentially conserved yet unknownmechanism to cope with stress
(Thompson et al., 2008; Alves et al., 2017).

Plant microRNA accumulation is affected by glucose stress, a key
regulator of developmental processes (Duarte et al., 2013). In
contrast, Arabidopsis tRFs do not seem to respond to mannitol
or glucose stress, suggesting that tRFs might not play a direct role in
growth and development triggered by sugar signaling (Alves et al.,
2017). However, tRFs were shown to be involved in the response to
abiotic stresses such as drought, salt, cold, and heat (Loss-Morais
et al., 2013; Wang et al., 2016; Alves et al., 2017; Byeon et al., 2017;
Byeon et al., 2019). Distinct species respond differently to the same
environmental changes, indicating a mechanism with specific
variables depending on the species. For example, the Arabidopsis
19-nt 5′tRF-ArgCCT is upregulated in response to drought stress
while, in rice, the same tRF, does not differentially accumulate under
drought stress but is upregulated under cold stress (Loss-Morais
et al., 2013; Alves et al., 2017). Similarly, the wheat tRF-TyrGUA

accumulates under heat, drought, salt, and heat stress (Wang et al.,
2016). In Brassica rapa, heat stress for a short time triggers a
reduction of 5′tRF-Glu transcripts and an increase in 5′tRF-Asp
transcripts in leaves, ovules, embryo, and endosperm (Byeon et al.,
2017). Interestingly, the progeny of stressed B. rapa plants also
exhibited differential levels of tRFs: a decrease in 5′tRF-Ala, tRF-Arg,
and tRF-Tyr, and a higher increase in tRF-Asp (Byeon et al., 2019).

Plastid tRFs were also reported in Arabidopsis, where specific
mitochondrial and chloroplastic tRFs were detected and
accumulate outside the organelles, making 1 and 25%,
respectively, of the total tRF content. Moreover, 5′tRFs
originated from these organelles were enriched in AGO1
immunoprecipitation and accumulate during cold stress
(Cognat et al., 2017). Similar to Arabidopsis, the generation of
tRNA-halves and tRFs was reported to be modulated by abiotic
stresses (i.e., heat stress) in B. rapa chloroplasts (Wang et al.,
2011). The correlation between stress response and changes in
tRF accumulation is becoming clearer. Nevertheless, more work
needed be done to unravel the mechanism(s) by which tRFs
participate in distinct plant stress response pathways (Figure 1).

Not only environmental stresses, but nutrients and
phytohormones can influence the production of tRFs. Barley tRFs
undergo changes in abundance under the presence and absence of
phosphorous (Hackenberg et al., 2013), while phosphate deficiency
in Arabidopsis leads to the production of 19-nt 5′tRF-AspGTC and
5′tRF-GlyTCC in roots, but not in shoots (Hsieh et al., 2009). ABA
treatment of tomato leaves leads to an overall decrease in the
accumulation of tRFs, mainly the 20-nt 5′tRF-Ala, suggesting the
implication of this specific tRF in ABA response (Luan et al., 2020).

SIGNALING MOLECULES AND
TRANSLATION MODULATORS

Despite the complexity of tRF biology and of the mechanisms
involved in spatio-temporal and stress responses that they appear
to be involved in, deciphering the function of tRFs has improved over
the past few years. The first clue came from pumpkin, where tRNA-

halves, among other small non-coding RNAs (ncRNAs), accumulate
in the phloem sap, probably playing a role in translation inhibition
mechanisms (Zhang et al., 2009). In higher plants, there are only two
tRNA families that contain introns, tRNA-Mete (elongator
Methionine) and tRNA-Tyr (Michaud et al., 2011). Interestingly,
all tRNAs found in the pumpkin phloem sap belong to tRNA genes
lacking introns, indicating that aberrant splicing is not the source of
tRNA-halves production. Intriguingly, although ex vivo processing of
tRNA-Met only occurs in leaves and stems, fragments of tRNA-Met
(still unclear if these fragments derive from tRNA-Mete or Meti,
initiator Methionine) were found in the phloem sap, suggesting that
these tRNA-halves could be involved in long-distance signaling. It is
possible that these tRNA-halves inhibit protein synthesis, as
demonstrated when these tRNA-derived fragments were added to
an in vitro translation system (Zhang et al., 2009). Moreover, in
Arabidopsis, some specific tRFs are found in shoots, yet accumulate
more in roots, despite the tRNA that these tRFs derive from are found
at similar levels in both tissues. This observation, along with the
findings that they accumulate in pumpkin phloem sap, suggest a
possible conserved mechanism for long-distance movement
(Figure 1; Hsieh et al., 2009; Hsieh et al., 2010).

Additional evidence supporting the role of tRFs in translational
regulation was demonstrated in Arabidopsis. In vitro experiments
have shown that several tRNA-derived fragments containing 5′-
TOG-like (5′terminal oligoguanine), such as the tRNA-halves -Ala,
-Leu, and -Cys (Nowacka et al., 2013) or 5′tRF-AlaAGC, 5′tRF-
AsnGUU, are capable of inhibiting translation (Lalande et al., 2020).
In mammals, the four guanines (G) residues at the 5′ end of the
tRNA-half (Ala) enable G-quadruplex formation, a structure
essential for translation repression (Ivanov et al., 2014).
Although G-quadruplex displaces the eukaryotic initiation factor
eIF4G/A in mammal mRNA, thus inhibiting the binding of the
small ribosomal subunit (Lyons et al., 2020), this mechanism has
not been shown in plants. In mammals, inhibiting translation relies
on the ability to form a G-quadruplex structure, and the inhibition
efficiency is correlated with the type of structure, presence of 5′TOG
or 5′ secondary structure (Ivanov et al., 2014; Jackowiak et al., 2017).
Although this might be true for mammalian cells, the same effect
was not observed in Arabidopsis (Jackowiak et al., 2017). Recently,
G-quadruplex structures were detected in Arabidopsis and rice,
with different folding predictions in both species and developmental
stages, suggesting that this structures could be spatio-temporal
specific (Yang et al., 2020). The 4 Gs present in Arabidopsis
tRNA-half (Ala) are not essential to affect protein synthesis. On
the other hand, 2 G residues—that belong to the conserved D-loop
nucleotides in 5′tRF-Ala and 5′tRF-Asn—seem to be necessary,
although the presence of the G residues alone is not sufficient to
explain the specificity of the inhibition (Lalande et al., 2020).
Despite the exciting possibility that some tRFs can interfere with
translation, experiments are usually performed using synthetic
tRNA fragments that lack the post-transcriptional modifications
present in all tRNAs, likely interfering with binding affinity in vivo.
Considering the amount and complexity of post-transcriptional
modifications harbored by tRNAs, collecting post-transcriptionally
modified tRFs from fractions might be the best approach to test the
tRNA-fragment potential role in modulating transcription and
translation (Lalande et al., 2020). Recent new genome-wide
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technologies, such as PANDORA-seq (panoramic RNA display by
overcoming RNA modification aborted sequencing), allow the
identification of previously undetected tRNA-derived small
RNAs (Shi et al., 2021), and they may help to test novel roles of
tRFs in translation. Alternatively, taking advantage of techniques
developed to study microRNA functions, such as short tandem
target mimic (STTM) (Tang et al., 2012) would avoid the tRNA
modifications concerns as a consequence of introducing synthetic
tRNA-fragments molecules.

Indeed, STTM was used to silence specifics tRFs, building
evidence on the tRFs involved in cross-kingdom signaling
between bacteria and plants. Rhizobia, a symbiotic, nitrogen-
fixating bacteria in legume nodules, was shown to regulate
soybean nodules formation using tRFs (Figure 1). The
Rhizobia produces specific 21-nt tRFs, 3′tRFs-ValCAC, 3′tRF-
GlyUCC, and 5′tRF-GlnCUG, that positively regulate soybean
rhizobial infection and nodulation by repressing soybean genes
involved in root and root hair development. Moreover, those tRFs
might be loaded in AGO1, suggesting a mechanism similar to the
canonical biogenesis and action of microRNAs (Ren et al., 2019).

Even though evidence of AGO proteins and tRFs network is
growing, mechanisms and validation of its interaction are
however not well established. Indeed, translation repression
appears to be independent of mRNA sequence, suggesting an
RNAi-independent pathway (Lalande et al., 2020). Furthermore,
tRFs can associate with actively elongating polyribosomes, but
not efficiently with ribosomal subunits, supporting the possible
existence of an unknown yet conserved tRF-mediated translation
regulation, even though the mechanisms by which tRFs associate
with active polyribosomes are unknown (Lalande et al., 2020). In
human cells, data suggest that 3′tRFs affect the 30S ribosomal
subunit 5′ external transcribed spacer, reducing 18S rRNA levels
(Kim et al., 2017). tRNA-halves are thought to interact directly
with the ribosomal machinery, and it is therefore unlikely that
these molecules are incorporated into AGOs and participate in
the RNAi pathway (Martinez, 2017; Lalande et al., 2020). In
contrast, 19-nt 5′tRFs in Arabidopsis inflorescence and pollen are
loaded into AGO1 to target Gypsy (LTRs) elements. This
observation is an indicative of a specialized function in
germinative cells (Martinez et al., 2017) as discussed previously.

DISCUSSION AND CONCLUSION

The biogenesis and mechanisms of plant tRNA-fragment are
poorly understood. Recently, the field expanded and brought to
light new and exciting knowledge. The RNS family is responsible
for processing some tRFs and tRNA-halves (Alves et al., 2017;
Megel et al., 2018), but DCL1 might play an important role in the
male gamete-specific tRF biogenesis, where they likely help
control TEs and may participate in a miRNA-like pathway
(Martinez et al., 2017). Specific nuclear and plastid tRNA-
halves, 5′ and 3′tRFs were demonstrated to be part of the
stress response-associated pathways, although the mechanisms
are unclear and vary among different plant species (Wang et al.,
2011; Loss-Morais et al., 2013; Wang et al., 2016; Alves et al.,
2017; Cognat et al., 2017; Byeon et al., 2017; Byeon et al., 2019). In

vitro and ex vivo experiments are leading the way to demonstrate
the potential role of tRNA-derived fragments in the control of
transcription and translation (Hsieh et al., 2009; Zhang et al.,
2009; Hsieh et al., 2010; Lalande et al., 2020), although data to
uncover these mechanisms are yet to be demonstrated. Cross-
kingdom transcription modulation was revealed between
Rhizobia and soybean, where tRFs produced by the bacteria
are capable of silencing specific host genes (Ren et al., 2019).
Despite the lack of a mechanistic pathway, this evidence is
important and demonstrate a potential application of tRFs in
improving specific agronomic traits. AGO role in the tRF
pathway is still to be determined (Martinez et al., 2017; Ren
et al., 2019; Lalande et al., 2020), and reports should be addressed
carefully to eliminate ambiguous conclusions. The confirmation
that tRFs could function in a microRNA cannonical patway
would potentially make it easier to understand the biological
role of these RNA fragments due to the extensive knowledge in
the microRNA field.

tRNA-derived fragments are intriguing molecules composing
an additional layer of small RNA-mediated regulation conserved
in several organisms. The evidence so far suggests that possible
biogenesis mechanisms and biological roles go hand in hand.
tRNA-halves and tRFs may require different RNases for
processing, depending on the tRNA isotype, tissue, and
species, that such specificity is required by their biological
roles and, thus that there is no unified mechanism to describe
this class of small RNAs. On the other hand, tRNAs are
primordial molecules and, therefore, it is conceivable that tRFs
were part of an ancient regulatory mechanism in the “RNA
world,” their conserved and essential roles eventually being
complemented or substituted by other pathways. Both tRNAs
and their derived fragments are difficult to study due to their
complex structures and numerous chemical modifications.
Modern high-throughput sRNA sequencing technologies (such
as PANDORA-seq) are slowly bypassing these caveats to generate
reproducible large-scale data. Advances in direct RNA
sequencing could help unravel the mechanistic secrets
associated with these ancient and crucial molecules and piece
together the mysteries of the tRNA-derived fragments.
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