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IL-6 is usually described as a pleiotropic cytokine produced in response to tissue injury or
infection. As a pro-inflammatory cytokine, IL-6 activates innate and adaptative immune
responses. IL-6 is released in the innate immune response by leukocytes as well as stromal
cells upon pattern recognition receptor activation. IL-6 then recruits immune cells and
triggers B and T cell response. Dysregulated IL-6 activity is associated with pathologies
involving chronic inflammation and autoimmunity, including atherosclerosis. However, IL-6
is also produced and released under beneficial conditions, such as exercise, where IL-6 is
associated with the anti-inflammatory and metabolic effects coupled with physical
adaptation to intense training. Exercise-associated IL-6 acts on adipose tissue to
induce lipogenesis and on arteries to induce adaptative vascular remodeling. These
divergent actions could be explained by complex signaling networks. Classical IL-6
signaling involves a membrane-bound IL-6 receptor and glycoprotein 130 (gp130),
while trans-signaling relies on a soluble version of IL-6R (sIL-6R) and membrane-
bound gp130. Trans-signaling, but not the classical pathway, is regulated by soluble
gp130. In this review, we discuss the similarities and differences in IL-6 cytokine and
myokine signaling to explain the differential and opposite effects of this protein during
inflammation and exercise, with a special focus on the vascular system.
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INTRODUCTION

Interleukin-6 (IL-6) is the principal member of the cytokine IL-6 superfamily (White and Stephens,
2011; Tanaka et al., 2014). This protein is comprised of 212 amino acids and has amass of 21–26 kDa.
As a cytokine, IL-6 participates in the innate immune response (Geiger et al., 1988). IL-6 potently
induces acute-phase proteins, C-reactive protein (CRP), several complement system proteins, and
the coagulation cascade (Geiger et al., 1988; Sproston and Ashworth, 2018). IL-6 also regulates body
thermogenesis by acting as an endogenous pyrogen; stimulates hematopoietic precursor growth; and
promotes T and B lymphocyte differentiation andmaturation (Mihara et al., 2012; Evans et al., 2015).

IL-6 acts not only as a cytokine, however, but also as a myokine, expressed and released by skeletal
muscle during exercise (Raschke and Eckel, 2013). As a myokine, IL-6 acts in a paracrine and autocrine
fashion in skeletal muscle and an endocrine hormone-like fashion to mediate anti-inflammatory and
metabolic processes (Pedersen, 2013). IL-6 triggers an anti-inflammatory response by inducing
expression of anti-inflammatory factors such as IL-1ra (IL-1 receptor agonist) and IL-10 and
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reducing production of the pro-inflammatory cytokines TNFα and
IL-1ß (Eckardt et al., 2014). IL-6 also plays a role in hypertrophic
skeletal muscle growth (Serrano et al., 2008). Metabolic effects of
IL-6 in humans include improved insulin signaling, enhanced
insulin sensitivity, and increased fatty acid oxidation in skeletal
muscle (Catoire and Kersten, 2015).

Most literature on this glycoprotein is related to its
immunoregulatory and proinflammatory actions. A PubMed
search for IL-6 in inflammation and immune response displayed
84,159 articles, while a query on the role of IL-6 as a myokine in
exercise produced only 3,905 results. This disparity is also reflected in
the abundance of information on IL-6 as an immunoregulatory and
pro-pathogenic molecule, with much scarcer data on beneficial IL-6
activity. Despite the wealth of research on IL-6, the exact mechanism
that regulates the balance between its detrimental and favorable effects
remains elusive. The most-accepted theory to explain this dual
behavior involves a complex IL-6-dependent signaling network
comprised of the classical and trans-signaling pathways.

IL-6 SIGNALING

Figure 1 provides a detailed overview of IL-6 signaling. IL-6 binds
to the plasmamembrane-associated IL-6 receptor (IL-6R). IL-6R is
an 80-kDa glycoprotein with a cytoplasmic domain of only 82
amino acids. Given the short span of its intracellular domain, IL-6R
is unable to transduce the signal alone (Varghese et al., 2002). The
IL-6/IL-6R complex associates with the signal transducer

glycoprotein 130 (gp130). In contrast to IL-6R, gp130 has a
277-amino acid cytoplasmic domain containing several
phosphorylation sites and scaffolding motifs where the signal
can be transduced (Wolf et al., 2014). Binding of IL-6 to its
receptor induces gp130 homodimerization and activation (Taga
and Kishimoto, 1997). The active complex recruits the JAK non-
receptor tyrosine kinase, which phosphorylates the tyrosine
residues of gp130 (Babon et al., 2014). gp130 phosphorylation
in turn generates recruitment sites for other proteins such as SHP-
2/ERK and STAT1/3, activating multiple signaling cascades
(Schaeffer et al., 2001). IL-6-dependent ERK activation is
associated with cell proliferation (Daeipour et al., 1993; Saad
et al., 2019). Moreover, STAT3 activation induces inhibitory
molecules such as SOCS1 and SOCS3, which bind to JAK and
gp130, respectively, to generate a negative feedback loop (Narazaki
et al., 1998; Nicholson et al., 2000). This mechanism is known as
the classical IL-6 signaling pathway (Demyanets et al., 2012).

A soluble IL-6R (sIL-6R) has been described in various body
fluids, including blood (Wolf et al., 2016). sIL-6R is preferentially
produced by membrane IL-6R shedding by metalloprotease A
disintegrin and metalloproteinase 17 (ADAM17) (Mullberg et al.,
1993; Riethmueller et al., 2017). sIL-6R is also produced by an
alternatively spliced mRNA in humans, but not mice (Lust et al.,
1992). In circulation, IL-6 can bind to the soluble receptor and exist
as an IL-6/sIL-6R complex, increasing the half-life of IL-6 (RosaNeto
et al., 2009). gp130 is expressed by all cells in the body, whereas
membrane-bound IL-6R is expressed primarily by hepatocytes and
various inflammatory cells, mainly neutrophils, monocytes,

FIGURE 1 | Interleukin-6 classical and trans-signaling. In the classical signaling, interleukin-6 (IL-6) binds to a membrane bound-IL-6 receptor (IL-6R)
triggering the attachment and dimerization of glycoprotein 130 (gp130), followed by the activation of the non-receptor tyrosine kinase JAK that phosphorylates the STAT
transcription factors. The activation of non-canonical signaling pathways, such as SHP-2/ERK, was also described. In the trans-signaling, soluble IL-6R (sIL-6R) was
produced by shedding of the membrane bound IL-6R by ADAM10 or ADAM17. In human, but not in mice, sIL-6R was also produced by alternative splicing. IL-6
interacts with sIL-6R and the IL-6/sIL-6R complex binds a membrane bound gp130, activating the same signaling pathway described for classical signaling. Soluble
gp130 (sgp130) was produced mainly by alternative splicing and also by shedding of the membrane bound gp130 by ADAM17 and A disintegrin. sgp130 binds the IL-6/
sIL-6R complex and selectively inhibits the trans-signaling without affecting the classical signaling. Negative feedback involves the Stat-dependent expression of
SOCS1/2 that inhibit JAK activity. Membrane bound IL-6 was described in hepatocytes and immune cells. Membrane bound gp130 is ubiquitous expressed in all cells.
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macrophages, granulocytes, Kupffer cells, eosinophils, T regulatory
cells (Treg), memory CD4+ T cells, naïve T cells, dendritic cells,
basophils, naïve CD8+ cells, and memory CD8+ cells (Taga and
Kishimoto, 1997; Schmiedel et al., 2018; Monaco et al., 2019).
Therefore, unlike IL-6, the soluble sIL-6R/IL-6 complex can bind
to and stimulate cells that only express gp130. This lastmechanism is
referred to as trans-signaling (Wolf et al., 2016). It has been broadly
accepted that classical IL-6 signaling is associated chiefly with the
immune response and trans-signaling with more systemic processes.
However, this assumptionmay need to be reconsidered, as single-cell
analysis of several tissues, including the heart (Wang et al., 2020),
lung (Vieira Braga et al., 2019), and kidney (Liao et al., 2020), has
identified IL-6R in cardiomyocytes, vascular smooth muscle cells,
fibroblasts, type 1 and 2 alveolar cells, ciliated cells, endothelial cells,
and proximal tubular cells. Nonetheless, proteomic analysis of these
cells must be completed before conclusions can be drawn regarding
the role of the classical pathway in these tissues.

gp130 also exists in a soluble form. Although soluble gp130
(sgp130) is preferentially produced by alternative splicing, it can
also be generated through shedding by ADAM10 and ADAM17
(Wolf et al., 2016). sgp130 interacts with the IL-6/sIL-6R complex
but not with IL-6 alone (Jostock et al., 2001). Therefore, the function of
sgp130 is to selectively capture the IL-6/sIL-6R complex, thus
inhibiting IL-6 trans-signaling without disrupting classical IL-6
signaling (Demyanets et al., 2012; Wolf et al., 2016). In fact, specific
trans-signaling inhibition with sgp130 has been shown to have
beneficial effects in inflammatory diseases and atherosclerosis in
animal models (Morieri et al., 2017). Therefore, it has been
proposed that the anti-inflammatory and regenerative activities of
IL-6 are mediated by classical signaling, while its pro-inflammatory
actions aremediated by trans-signaling (Scheller et al., 2011). However,
this assertion is questionable, as the IL-6/sIL-6R complex stimulates
glucose transport in skeletal muscle, increasing AMPK
phosphorylation (Gray et al., 2009b). Moreover, trans-signaling in
the central nervous system suppresses feeding and improves glycemic
control, effects that seem to be enhanced in obese mice (Timper et al.,
2017).Moreover, because both classical and trans-signaling activate the
same transduction cascades downstreamof gp130 ((Mihara et al., 2012;
Tanaka et al., 2014; Rose-John, 2018), factors differentially involved in
both pathways, such as IL-6R, and sgp130, the kinetics and tissue-
specific expression should be also considered in this discussion.

IL-6 REGULATION OF INNATE AND
ADAPTATIVE RESPONSES

IL-6 controls both innate and adaptative immune responses. In fact,
IL-6-knockoutmice show impaired innate and adaptive immunity to
infection by parasites, bacteria, and viruses (Kopf et al., 1994). IL-6
regulation of the innate immune response involves several elements.
Activation of pattern recognition receptors, such as Toll-like
receptors, induces IL-6 secretion by neutrophils and monocytes
or macrophages (Chalaris et al., 2007). Moreover, stromal
cells—including fibroblasts, myofibroblasts, endothelial cells,
smooth muscle cells, and epithelial and mesothelial cells—also
secrete IL-6 upon pattern recognition receptor activation (West,
2019). Furthermore, activation of the complement system, in

particular the C5a receptor, induces the release of IL-6 in human
osteoblast-like cells (Pobanz et al., 2000) and enhances the release of
IL-6 in neutrophils exposed to lipopolysaccharide (LPS) (Riedemann
et al., 2004). These data suggest a complex interplay between IL-6
and innate immune response activation. On the other hand, IL-6 also
regulates innate immunity by controlling innate immune cell activity
(Jones and Jenkins, 2018). IL-6 triggers the recruitment, adhesion,
activation, differentiation, and survival of neutrophils, tissue-resident
and inflammatory monocytes, and innate lymphoid cell populations
including natural killer cells (Rose-John et al., 2017; Jones and
Jenkins, 2018). Additionally, IL-6R is shed by neutrophils
(Chalaris et al., 2007) and activates trans-signaling of stromal
cells. Activated stromal cells secrete various chemokines through
a NF-κB-dependent mechanism, attracting monocytes and/or
macrophages to resolve inflammation (Hurst et al., 2001). In this
context, the initial neutrophil infiltration activates both classical and
trans-signaling to amplify and modulate the innate immune
response at the infection site.

Adaptive immune response regulation by IL-6 depends on its
ability to control T helper cell differentiation (Bettelli et al.,
2006). Type 1 T helper (Th1), type 2 T helper (Th2), type 17 T
helper (Th17), and type 22 T helper (Th22) cells are well-
recognized activators of the immune response, while
regulatory T (Treg) cells are known to inhibit T-cell
activation (Chatzileontiadou et al., 2020). Th17 cells,
discovered in 2005, produce IL-17A, IL-17F, IL-22, and
TNFα (Harrington et al., 2005). In mice, incubation of naïve
T cells with transforming growth factor (TGF)-β induces the
Treg differentiation that produces IL-10. These cells therefore
have significant anti-inflammatory and regulatory properties. In
the presence of IL-6, on the other hand, TGF-β promotes Th17
cell differentiation (Bettelli et al., 2008; Korn et al., 2008), and
IL-6-knockout mice cannot generate Th17 cells (Korn et al.,
2008). Moreover, IL-6R shedding upon T-cell receptor
activation has been described (Briso et al., 2008).
Consequently, it can be hypothesized that after initial
activation of classical IL-6 signaling, IL-6 trans-signaling is
required to effectively stimulate Th17 differentiation
(Dominitzki et al., 2007). IL-6 is also involved in B-cell
growth, plasma cell differentiation (Suematsu et al., 1989),
and class switching (Dienz et al., 2009). Finally, IL-6-
deficient mice show diminished antigen-induced increases in
IgG1, IgG2a, and IgG3, but not IgM (Kopf et al., 1998).

Apart from its proinflammatory actions, IL-6 can inhibit
lipopolysaccharide (LPS)-induced TNF-α in cultured human
monocytes (Schindler et al., 1990). Both recombinant IL-6
infusion and exercise inhibit the LPS-induced increase in
TNFα in healthy individuals (Starkie et al., 2003). In a model
of concanavalin A-induced T cell activation-associated hepatic
injury, recombinant IL-6 induces a protective effect by reducing
TNFα production (Mizuhara et al., 1994). Furthermore, in young
healthy individuals, a single dose of IL-6 stimulates IL-1ra and IL-
10 (Steensberg et al., 2003). Because the IL-6 signaling pathway
components were not fully described in these experiments, it is
not possible to determine whether these anti-inflammatory
actions are mediated by classical or trans-signaling. More
work is required to fully elucidate the mechanism involved in
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the switching of pro-inflammatory to anti-inflammatory actions
of IL-6.

EXERCISE AND VASCULAR REMODELING

Cardiovascular diseases (CVD) are mainly triggered by other
vascular diseases, i.e., coronary and cerebrovascular diseases.
CVDs are the leading cause of mortality and morbidity
worldwide (Mensah et al., 2019). Moderate-intensity
exercise is considered essential for maintaining
cardiovascular health (Morris et al., 1953). The beneficial
effects of moderate exercise on traditional risk factors
(obesity, hypertension, diabetes, and hypercholesterolemia)
may explain approximately half of the risk reduction
associated with exercise (Joyner and Green, 2009). It has
been proposed that direct effects of moderate exercise on
the vessels may account for some of the remaining “risk
factor gap” (Joyner and Green, 2009). Training can
stimulate both formation of new capillaries by angiogenesis
and increased conduit artery size by arteriogenesis (Green and
Smith, 2018). Structural adaptations in the vessels, induced by
repeated exercise bouts, involves arterial enlargement without
fibrosis or immune cell infiltration (Green and Smith, 2018).
These data support the idea that exercise induces physiological
vascular remodeling. These changes increase blood flow in
skeletal muscles and other organs to fulfill the nutrient and
oxygen requirements of athletes. This vascular remodeling is
known as the “athlete’s artery” (Green et al., 2012). Various
mediators of exercise-induced vascular remodeling have been
proposed, including vascular endothelial growth factor
(VEGF), angiopoietins 1 and 2, fibroblast growth factor 2
(FGF2), and others (Prior et al., 2003). We suggest that
specific myokines, particularly IL-6, may also participate in
exercise-induced vascular remodeling.

IL-6 AND EXERCISE

Plasma IL-6 levels range from 1 to 10 pg/ml in healthy
individuals. sIL-6R and sgp130, on the other hand, are present
at much higher levels in the plasma, at 25–75 ng/ml and
100–400 ng/ml, respectively (Montero-Julian, 2001; Baran
et al., 2018). IL-6 content in skeletal muscle is low at rest,
with small amounts of IL-6 found mainly in type I fibers
(Plomgaard et al., 2005). Basal IL-6 levels appear to be
regulated by training. Epidemiological studies have found
negative associations between volume of regular physical
activity and basal plasma IL-6 levels (Pitsavos et al., 2005).
Basal IL-6 was also reduced in obese postmenopausal women
subjected to regular aerobic exercise (225 min/week of moderate-
to-vigorous activity) and a hypocaloric diet (Imayama et al.,
2012). Coronary artery disease patients and adults >64 years
old showed similar training-induced effects (Goldhammer
et al., 2005; Kohut et al., 2006). However, other reports have
found no effect of training on basal IL-6 levels (Leggate et al.,
2012; Isaksen et al., 2019).

Nearly all studies conducted to date have demonstrated increased
plasma IL-6 levels in response to various types of acute exercise
(Catoire and Kersten, 2015). A correlation between increased plasma
and muscle IL-6 mRNA has also observed (Catoire and Kersten,
2015). These increases occur exponentially, and the peak, usually
about 100-fold over basal levels, is reached immediately at the end of
the exercise session and quickly returns to pre-exercise levels
(Croisier et al., 1999; Sabaratnam et al., 2018). The magnitude of
the increase in IL-6 levels is related to the type, duration, and
intensity of the exercise, as well as the amount of muscle mass
engaged (Pedersen, 2013; Catoire and Kersten, 2015). Increased IL-6
mRNA expression is normally observed after 30min of exercise
(Steensberg et al., 2002). However, elevations in acute IL-6 mRNA
expression have also been observed in skeletal muscle during high-
intensity training (Eaton et al., 2018).

IL-6 expression is more sensitive to exercise duration than
intensity. In fact, approximately 51% of the variation in IL-6
plasma levels depends on exercise duration (Fischer, 2006;
Robson-Ansley et al., 2009). For some types of exercise such as
running, bicycling, or eccentric training, the most pronounced
increases in plasma IL-6 are observed in association with intense
weight-bearing or endurance drills, which involve several large
muscle groups and deplete glycogen storage (Fischer, 2006;
Catoire and Kersten, 2015). Few studies have evaluated the effect
of training on exercise-induced elevations in plasma IL-6. One study
assessed the effects of a 10-weeks program consisting of 1 h of knee-
extension exercises 5 times per week. A group of seven healthy men
showed less marked elevations in post-exercise skeletal muscle IL-6
mRNA after training, but no change in post-exercise plasma IL-6
(Fischer et al., 2004). Another study showed that resistance training
reduces IL-6 mRNA in skeletal muscle, likely by establishing an
adaptation mechanism that prevents abrupt changes in IL-6
concentration (Gokhale et al., 2007).

In short, exercise induces transitory increases in IL-6, while
inflammation induces more sustained elevations (Fischer, 2006;
Munoz-Canoves et al., 2013). It has been proposed that this
distinction could explain the dual effects of IL-6. Studies
involving athletes who perform chronic, very frequent,
strenuous training, such as highly trained professional athletes,
might clarify whether this kind of exercise could produce a more
chronic increase in plasma IL-6 levels and whether or not such a
change might have detrimental effects.

SIL-6R AND EXERCISE

Physical exercise, in addition to raising plasma IL-6
concentration, can increase levels of sIL-6R and therefore the
IL-6/sIL-6R complex (Gray et al., 2009a). Training also modifies
basal plasma sIL-6R levels. A 12-weeks physical training program
reduced basal plasma sIL-6R in 24 patients with stable congestive
heart failure (Adamopoulos et al., 2002). Moreover, a hypocaloric
diet and exercise reduced basal plasma sIL-6R in 17 obese
postmenopausal women (You et al., 2004). A comparable
decrease was observed in 12 obese males subjected to 2 weeks
of high-intensity intermittent training (Leggate et al., 2012). After
prolonged exercise, IL-6 levels increase transiently, while sIL-6R
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increases persistently, which may partly explain the fatigue at rest
that occurs after physical activity (Robson-Ansley et al., 2009).
Therefore, increased IL-6 trans-signaling would be expected
during exercise. However, a group of 12 healthy subjects
subjected to a submaximal bout of cycling to volitional
exhaustion also showed increased plasma sgp130 levels (Gray
et al., 2008). This effect was not observed with less-intense
exercise (Patterson et al., 2008). These data suggest that both
classical and trans-signaling are activated and regulated during
strenuous exercise by complex interactions among IL-6, sIL-6R,
and sgp130. However, whether the kinetics of induction and
balance of these molecules are responsible for the beneficial
effects of IL-6 induced by exercise remains unknown.

IL-6 IN ADIPOSE TISSUE

IL-6 is one of the most-studied myokines associated with
communication between skeletal muscle and white adipose tissue
(Fischer, 2006; Mihara et al., 2012; Raschke and Eckel, 2013; Ahima
and Park, 2015; Timper et al., 2017; Rose-John, 2018). In vitro, IL-6
induces lipolysis in adipocytes and fatty acid oxidation in myotubes
(Carey et al., 2006; Yang et al., 2008). In diabetic patients and
controls, acute IL-6 treatment increases fatty acid turnover (Petersen
et al., 2005). Moreover, administration of tocilizumab, an IL-6R-
blocking antibody, to abdominally obese individuals blocks exercise-
induced reductions in visceral adipose tissue mass (Wedell-
Neergaard et al., 2019). These data suggest that IL-6 induces fatty
mobilization from adipose tissue to the blood, making the fatty acids
available to the muscle during exercise.

In obese ob/obmice, adipocyte-specific deletion of IL-6 induced an
approximately 40% reduction in plasma IL-6 levels (Whitham et al.,
2019). These data suggest that adipose tissue is a major contributor to
basal plasma IL-6 levels in obesity. Accordingly, a significant increase
in the release of IL-6 from visceral vs. subcutaneous fat has been
observed in obese individuals (Jonas et al., 2015). Because adipocytes
express very low levels of IL-6R (Path et al., 2001), IL-6 trans-signaling
is considered the main mechanism of IL-6 action. Inhibition of IL-6
trans-signaling by sgp130 prevents high-fat diet-induced adipose tissue
macrophage recruitment but does not improve insulin resistance
(Kraakman et al., 2015). Furthermore, an adipocyte-specific gp130-
knockout mouse model was used to demonstrate that adipocyte-
specific IL-6 trans-signaling is involved in exercise-mediated
regulation of food intake and weight reduction in mice fed a high-
fat diet (Odermatt et al., 2020). This action could be explained by the
suppression of feeding triggered by IL-6 through the regulation of the
expression of neuropeptides at the hypothalamic arcuate nucleus
(Senaris et al., 2011; Schele et al., 2013).

On the other hand, browning of white adipose tissue is a
promising strategy for treating obesity (Lizcano and Arroyave,
2020). An increased mitochondrial uncoupling protein 1 (UCP1)
level is considered a marker of adipose cell browning (Lizcano and
Arroyave, 2020). Whole-body deletion of IL-6 completely prevents
the increase in uncoupled protein-1 (UCP-1) mRNA and protein
induced by both cold exposure and exercise (Knudsen et al., 2014).
However, it remains unknown whether classical or trans-signaling is
involved in IL-6-induced adipocyte browning.

IL-6 AND ARTERIES

Vascular smooth muscle cells (VSMC) are the main component
of the medial layer of the artery. These cells contract to regulate
blood vessel tone and thus blood flow and pressure (Chiong
et al., 2013). VSMC also have the capacity to secrete molecules,
allowing for synthesis and repair of extracellular matrix
proteins and regulation of vascular wall structure
(Cecchettini et al., 2011). Normal VSMC are non-fully
differentiated cells with very low rates of proliferation and
secretion (Cecchettini et al., 2011). Exercise-induced increases
in arterial diameter due to arteriogenesis are characterized by a
phenotypic switch in VSMC from a contractile to a migratory
and proliferative state (Cui et al., 2009; Poling et al., 2011).
Chronic exposure to flow changes and shear stress leads to
carotid artery wall thinning and increased VSMC proliferation
(Figure 2) (Green et al., 2017). In addition, the release of
growth factors such as PDGF, which induces VSMC migration
and proliferation, has also been detected during exercise
(Green et al., 2017).

IL-6 is produced by a variety of cells in addition to the skeletal
muscle, including monocytes (Gauldie et al., 1987), epithelial cells
(Von Patay et al., 1998), cardiomyocytes (Millan et al., 1987), and
VSMC (Loppnow and Libby, 1990; Viedt et al., 2002). In VSMC,
IL-6 expression is induced by pro-inflammatory stimuli such as
IL-1 (Loppnow and Libby, 1990), the monocyte chemoattractant
protein-1 (MCP-1) (Viedt et al., 2002), oncostatin M (Schnittker
et al., 2013), lipopolysaccharides (Schnittker et al., 2013), CRP
(Hattori et al., 2003), and TNF-α (Garcia-Miguel et al., 2018).
Non-inflammatory stimuli such as PDGF may also induce IL-6

FIGURE 2 | IL-6 signaling in vascular remodeling induced by
exercise. High intensity and long duration exercises induce a large plasma
level increase of interleukin-6 (IL-6), and a modest increase in soluble IL-6
receptor (sIL-6R) and soluble glycoprotein 130 (sgp130). However,
basal levels of sIL-6R and spg130 are at least hundred times higher than those
of IL-6. IL-6 activates classical signaling, whereas the complex IL-6/sIL-6R
activates trans-signaling. Trans-signaling is specifically regulated by sgp130.
The role of IL-6 signaling and trans-signaling in vascular remodeling induced
by exercise is unknown.
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expression in VSMC (Roth et al., 1995). Acute exercise increases
IL-6 mRNA levels in adipose tissue (Holmes et al., 2004),
suggesting that exercise-dependent plasma IL-6 might also
originate from tissues other than skeletal muscle (Catoire and
Kersten, 2015). However, it remains to be seen whether exercise
also induces IL-6 in VSMC.

Human VSMC constitutively express small amounts of both
membrane-bound IL-6R and gp130 (Klouche et al., 1999).
However, stimulation with the IL-6/sIL-6R complex provoked
a marked upregulation of gp130, suggesting induction of IL-6
trans-signaling (Klouche et al., 1999). Moreover, treating cultured
VSMC with IL-6 alone also induces cell proliferation and
migration (Morimoto et al., 1991; Wang and Newman, 2003),
reduces VSMC contractility (Ohkawa et al., 1994), and induces
matrix metalloproteinase (MMP)-9 and MMP-1 production
(Zhu et al., 2000). These data suggest that both classical and
trans-signaling mechanisms are at play in VSMC (Klouche et al.,
1999). However, no study to date has clarified whether IL-6 and/
or IL-6/sIL-6R induce exercise-dependent artery remodeling in
vivo (Figure 2).

IL-6 IN VASCULAR DISEASES

Pathological changes in the VSMC phenotype have been widely
described in the development and progression of neointimal
formation, hypertension, and atherosclerosis (Campbell and
Campbell, 1985; Cecchettini et al., 2011). Pathological
vascular remodeling is characterized by narrowing of the
vessel lumen, mobilization of muscle cells to the intima,
exacerbation of extracellular matrix production (fibrosis), and
infiltration by immune cells (Renna et al., 2013). In addition to
increased proliferation and migration rates, VSMC phenotypic
switching involves increased extracellular matrix component
production, altered expression of contractile proteins, and
production of proteases and pro-inflammatory cytokines
(Campbell and Campbell, 1985). Processes such as
proliferation, contraction, secretion, and migration in VSMC
are affected by a wide range of factors, including mechanical
forces, reactive oxygen species, extracellular matrix
components, contractile agonists such as angiotensin II,
endothelial-VSMC interactions, transforming growth factor
(TGF)-β1, PDGF, and many other growth factors (Campbell
and Campbell, 1985; Cecchettini et al., 2011).

Plasma IL-6 levels are used as a marker for CVD such as
coronary artery disease and atherosclerosis (Kinlay and Egido,
2006). Elevated IL-6 expression has also been detected in
atherosclerotic lesions (Schieffer et al., 2000).
Administration of IL-6 to male mice fed normal or high-fat
diets exacerbated atherosclerosis (Huber et al., 1999).
Moreover, treating ApoE-deficient mice with an IL-6-
reducing agent (Am80) resulted in smaller lesions as
compared to untreated mice (Takeda et al., 2006). These
results may be associated with the pathological effects of IL-
6. However, opposite effects were observed in atherosclerosis-
prone C57BL/6 and ApoE-deficient mice. Increasing IL-6
levels reduced atherosclerotic lesion size in both animal

models (Loppnow et al., 2011). Consistent with these
results, Schieffer et al. observed reduced monocyte
recruitment and increased lesion size in ApoE- and IL-6-
deficient as compared to wild-type mice (Schieffer et al.,
2004). Ovariectomized female ApoE/IL-6-knockout mice fed
a normal diet for one year also developed larger lesions than
IL-6-expressing wild-type mice (Elhage et al., 2001). The last
three results suggest that IL-6 protects against, rather than
promoting, atherosclerotic lesion formation. Therefore, more
studies dissecting the IL-6-induced classical and trans-
signaling is required to clarify the beneficial and
detrimental effects of this protein in the vascular bed.

Pulmonary artery hypertension (PAH) involves various
medical conditions in which the pulmonary circulation
blood pressure is significantly increased (Mclaughlin et al.,
2009). Mechanisms involved in the genesis of PAH include
hypoxia-induced pulmonary artery smooth muscle cell
(PASMC) proliferation and cell death resistance, leading to
pathological narrowing of the pulmonary circulation and a
consequent increase in pulmonary artery blood pressure
(Parra et al., 2017). Increased numbers of macrophages are
present within the pulmonary lesions of patients with severe
PAH (Gerasimovskaya et al., 2012). In mice, hypoxia induces
macrophage activation, triggering the proinflammatory milieu
characteristic of PAH (Vergadi et al., 2011). IL-6 is proposed as
one of the primary cytokines involved in the pathogenesis of
PAH and hypoxia-induced pulmonary hypertension (Groth
et al., 2014). Moreover, mice with lung-specific IL-6-
overexpression show increased pulmonary vascular
remodeling, characterized by increased muscularization of
the proximal arterial tree (Steiner et al., 2009). This
condition is due to the induction of PAMSC proliferation
and inhibition of apoptosis (Steiner et al., 2009). This effect
of IL-6 is similar to those described for non-pulmonary
arteries described above. Conversely, in whole-body IL-6-
deficient mice, hypoxia fails to induce PAH (Savale et al.,
2009). Because serum levels of IL-6 and sIL-6R, but not spg130,
are increased in PAH patients, it is thought that IL-6 trans-
signaling may be involved in PAH pathogenesis (Jasiewicz
et al., 2015). However, this relationship has yet to be
demonstrated.

IL-6 has also been implicated as a mediator of other
respiratory diseases, including pneumonia, acute respiratory
distress syndrome, and Covid-19 (Chalmers et al., 2019;
Herold et al., 2020; Liu et al., 2020). In these patients, acute
pulmonary injury is associated with a hyper-inflammatory state
that predicts a worse clinical outcome (Spadaro et al., 2019;
Herold et al., 2020; Liu et al., 2020). However, inhibiting IL-6
signaling to limit cytokine-dependent lung injury, using
sarilumab or tocilizumab for example, has only been
explored in Covid-19 patients (Rossotti et al., 2020; Sinha
et al., 2020), rheumatoid arthritis-related interstitial lung
disease (Manfredi et al., 2020; Vacchi et al., 2020), and PAH
(Hernandez-Sanchez et al., 2018). More systematic studies
clarifying the inflammatory and vascular remodeling effects
of IL-6 in the lung is required to fully understand the role of
this cytokine in pulmonary diseases.
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PROJECTIONS

Repetitive strenuous exercise induces artery remodeling to fulfill
the nutrient and oxygen demands of the skeletal muscles. This
vascular remodeling is likely elicited by myokines. Although IL-6
is the myokine that has received the most research attention, the
complex nature of IL-6 regulation, which involves interplay
among several molecules including IL-6, IL-6R, gp130, sIL-6R,
and sgp130, makes it challenging to dissect the cytokine and
myokine actions of IL-6. Moreover, plasma levels of these
molecules are tightly regulated depending on exercise type,
duration, and intensity. Because the secretion of IL-6 is also
triggered by glucagon-like peptide 1, an incretin released by food
intake (Shirazi et al., 2013), and IL-6 induces suppression of food
intake and reduction of body weight, an interesting cross-talk
between exercise and food consumption could exist through the
regulation of IL-6 levels. New strategies involving IL-6 regulation
by food intake should be interesting to explore. Although IL-6
induces VSMC dedifferentiation in vitro, more detailed and
controlled experiments are required to clarify the suspected
role of IL-6 in exercise-induced vascular remodeling. Such

studies may unravel the mechanisms involved in the beneficial
effects of exercise-induced IL-6, and the findings could be used to
intervene in both the pro-inflammatory and detrimental actions
of IL-6, leading to new treatments for IL-6 dependent chronic
inflammatory diseases.
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