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Sequence-based protein homology detection has emerged as one of the most sensitive
and accurate approaches to protein structure prediction. Despite the success, homology
detection remains very challenging for weakly homologous proteins with divergent
evolutionary profile. Very recently, deep neural network architectures have shown
promising progress in mining the coevolutionary signal encoded in multiple sequence
alignments, leading to reasonably accurate estimation of inter-residue interaction maps,
which serve as a rich source of additional information for improved homology detection.
Here, we summarize the latest developments in protein homology detection driven by
inter-residue interaction map threading. We highlight the emerging trends in distant-
homology protein threading through the alignment of predicted interaction maps at various
granularities ranging from binary contact maps to finer-grained distance and orientation
maps as well as their combination. We also discuss some of the current limitations and
possible future avenues to further enhance the sensitivity of protein homology detection.
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INTRODUCTION

The development of computational approaches for accurately predicting the protein three-
dimensional (3D) structure directly from the sequence information is of central importance in
structural biology (Jones et al., 1992; Baker and Sali, 2001; Dill and MacCallum, 2012). While ab
initiomodeling aims to predict the 3D structure purely from the sequence information (Marks et al.,
2011; Adhikari et al., 2015; Wang et al., 2016; Adhikari and Cheng, 2018; Greener et al., 2019; Senior
et al., 2019; Xu, 2019; Yang et al., 2020; Roche et al., 2021), many protein targets have evolutionary-
related (homologous) structures, also known as homologous templates, already available in the
Protein Data Bank (PDB) (Berman et al., 2000). Correctly identifying these templates given the
sequence of a query protein and building 3D models by performing query–template alignment, a
technique broadly known as homology modeling (Altschul et al., 1997; Xu et al., 2003; Wu and
Zhang, 2008; Lobley et al., 2009; Wu and Zhang, 2010; Källberg et al., 2012; Ma et al., 2014) often
results in highly accurate predicted structural models (Abeln et al., 2017). As such, the success of
homology modeling critically depends on the ability to identify the closely homologous template on
the basis of sequence similarity and generate accurate query–template alignment. Intuitively, the
performance of these methods sharply deteriorates when the direct evolutionary relationship
between the query and templates becomes very low, typically when the sequence similarity falls
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below 30%, the so-called distant-homology modeling scenarios
(Bowie et al., 1991; Petrey and Honig, 2005). Protein threading,
the most widely used distant-homology modeling technique,
aims to address the challenge by leveraging multiple sources of
information by mining the evolutionary profile of the query and
templates to reveal potential distant homology and perform
distant-homology modeling to predict the 3D structure of the
query protein.

Existing threading methods exploit a wide range of techniques
ranging from dynamic programming to profile-based
comparison to machine learning (Jones, 1999; Rychlewski
et al., 2000; Xu and Xu, 2000; Skolnick and Kihara, 2001;
Ginalski et al., 2003; Marti et al., 2004; Jaroszewski et al.,
2005; Söding, 2005; Zhou and Zhou, 2005; Cheng and Baldi,
2006; Peng and Xu, 2009; Lee and Skolnick, 2010; Peng and Xu,
2010; Yang et al., 2011; Ma et al., 2012; Ma et al., 2013; Gniewek
et al., 2014). The recent advancement in predicting the inter-
residue interaction maps using sequence coevolution and deep
learning (Morcos et al., 2011; He et al., 2017; Wang et al., 2017;
Adhikari et al., 2018; Hanson et al., 2018; Kandathil et al., 2019;
Yang et al., 2020) has opened new possibilities to further improve
the sensitivity of distant-homology protein threading by
incorporating the predicted inter-residue interaction
information. Fueled by this, several efforts have been made in
the recent past to integrate interaction maps into threading. For
instance, EigenTHREADER (Buchan and Jones, 2017),
map_align (Ovchinnikov et al., 2017), CEthreader (Zheng
et al., 2019a), CATHER (Du et al., 2020), and ThreaderAI
(Zhang and Shen, 2020) have utilized predicted contact maps
in protein threading. DeepThreader (Zhu et al., 2018) has
exploited finer-grained distance maps for query proteins
instead of using binary contacts to improve threading
template selection and alignment. DisCovER (Bhattacharya
et al., 2020) goes one step further by incorporating inter-
residue orientation along with distance information together
with topological network neighborhood (Chen et al., 2019) of
query–template alignment to further improve threading
performance. Here, we provide an overview of the latest
advances in protein homology detection propelled by inter-
residue interaction map threading.

GRANULARITIES OF PROTEIN
INTER-RESIDUE INTERACTION MAPS

Protein inter-residue interaction maps are predicted at various
resolutions ranging from binary contact maps to finer-grained
distance and orientation maps as well as their combination. A
low-resolution version of inter-residue interaction is a contact
map, which is a square, symmetric matrix with binary entries,
where a contact indicates the spatial proximity of a residue pair
at a given cutoff distance, typically set to 8Å between the Cα or
Cβ carbons of the interacting residue pairs. Inter-residue
distance map is finer-grained in that it captures the
distribution of real-valued inter-residue spatial proximity
information rather than the binary contacts at a fixed cutoff
distance. Recent studies (Xu and Wang, 2019; Xu, 2019) have

demonstrated the advantage of using distance maps in protein
structure prediction over binary contacts as distances carry
more physical constraint information of protein structures
than contacts. The granularities of predicted distance maps
vary from distance histograms to real-valued distances
(Greener et al., 2019; Adhikari, 2020; Ding and Gong, 2020;
Li and Xu, 2020; Wu et al., 2021; Yang et al., 2020). Very
recently, trRosetta (Yang et al., 2020) has introduced inter-
residue orientations in addition to distances to capture not only
the spatial proximity information of the interacting pairs but
also their relative angles and dihedrals. Collectively, inter-
residue distances and orientations encapsulate the spatial
positioning of the interacting pairs much better than only
distances let alone binary contacts.

INTER-RESIDUE INTERACTION MAP
THREADING

Figure 1 shows an overview of an interaction map threading of a
query protein. Generally, threading has four components: (1) an
effective scoring function to evaluate the fitness of
query–template alignment; (2) efficient template searching or
homology detection strategy; (3) optimal query–template
alignments; and (4) building 3D models of query proteins
based on alignments. One of the most important components
of threading approaches is the scoring function, which is
composed of standard threading features ranging from
sequential features such as secondary structures, solvent
accessibility, and sequence profiles to nonlinear features such
as pairwise potentials (Bienkowska and Lathrop, 2005; Brylinski
and Skolnick, 2010). Weights control the relative importance of
different terms. An efficient scoring function should reliably
differentiate a homologous template from the alternatives
because the accuracy of the predicted model significantly
depends on the evolutionary relatedness of the identified
template. The inter-residue interaction map helps to improve
the sensitivity of the threading scoring function by augmenting
the standard scoring terms with additional contributions from the
predicted interactions. Specifically, the score to align the i th
residue of the query protein to the j th residue of the template can
be defined as:

E(i, j) � w1E
interaction
map (i, j) + ∑

k ∈ standard

threading features

wkE
feature
k (i, j)

where the first term accounts for the contribution of the
interaction map and the second term accounts for the
standard threading features with wi being their relative
weights. Typically, the similarity between the predicted inter-
residue interaction map of the query protein and that derived
from the template structure informs the interaction map term in
the threading scoring function. It is worth noting here that the
raw alignment score is biased to protein length (Xu et al., 2003).
As such, most threading methods use a normalized alignment
score in standard deviation units relative to the mean score of all
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templates in the template library for homology
detection—detecting best-fit templates from the PDB.

EMERGING TRENDS IN PROTEIN
HOMOLOGY DETECTION BY
INTERACTION MAP THREADING
With the recent advancement in contact prediction mediated by
sequence coevolution and deep learning, significant research
efforts have been made in the recent past to incorporate
contact information as an additional scoring term into the
threading scoring function for protein homology detection.
For instance, Jones and coworkers developed
EigenTHREADER (Buchan and Jones, 2017) that uses eigen-
decomposition (Di Lena et al., 2010) of contact maps predicted
using classical neural network–based predictor MetaPSICOV
(Jones et al., 2015) to search a library of template contact
maps for contact map threading. Baker and coworkers
developed map_align (Ovchinnikov et al., 2017) that employs

an iterative double dynamic programming framework (Taylor,
1999) for homology detection. map_align takes advantage of
metagenomics sequence databases of microbial DNA (Söding,
2017) and uses contact maps predicted by coevolutionary contact
predictor GREMLIN (Balakrishnan et al., 2011; Kamisetty et al.,
2013) to perform contact map threading by maximizing the
number of overlapping contacts and minimizing the number
of gaps. Recently, Zhang and coworkers developed CEthreader
(Zheng et al., 2019a) using contact maps predicted by deep
learning–based contact map predictor ResPRE (Li et al., 2019).
CEthreader also relies on eigen-decomposition and performs
contact map threading through dynamic programming using a
dot-product scoring function by integrating contacts as well as
secondary structures and sequence profiles. Alongside, we
developed a contact-assisted threading method (Bhattacharya
and Bhattacharya, 2019) that incorporates contact information,
predicted by deep learning–based predictor RaptorX (Wang et al.,
2017), into threading using a two-stage approach. After selecting
a subset of top templates from the template library using a
standard profile-based threading technique in the first stage,

FIGURE 1 | Illustration of protein interaction map threading.
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our method subsequently uses eigen-decomposition of the
contact information along with the profile-based alignment
score to select the best-fit template. We further analyze the
impact of contact map quality on threading performance
(Bhattacharya and Bhattacharya, 2020), which reveals that
incorporating high-quality contact maps having the Matthews
correlation coefficient (MCC) ≥ 0.5 improves the threading
performance for ∼ 30% cases in comparison to a baseline
contact-free threading used as a control, while incorporating
low-quality contacts with MCC <0.35 deteriorates the
performance for 50% cases. Yang and coworkers developed
CATHER (Du et al., 2020) by incorporating contact maps
predicted by deep learning–based predictor MapPred (Wu
et al., 2020) along with standard sequential information in the
threading scoring function. Very recently, Shen and coworkers
have developed ThreaderAI (Zhang and Shen, 2020) that
implements a neural network for predicting alignments by
incorporating deep learning–based contact information with
conventional sequential and structural features into the scoring
function.

Building on the successes of contact-assisted threading
methods, Xu and coworkers developed a distance-based
threading method called DeepThreader (Zhu et al., 2018). The
method predicts distance maps by employing deep learning and
then incorporates the predicted inter-residue distance
information along with sequential features into threading
through alternating direction method of multipliers (ADMM)
algorithm. The inter-residue distance is binned into 12 bins: <5Å,
5–6Å, .., 14–15Å, and >15Å. Based on their reported results as

well as the performance evaluation in the 13th Critical
Assessment of protein Structure Prediction (CASP13),
incorporating distance information boosts threading
performance, particularly for distant-homology targets,
outperforming contact-assisted threading methods by a large
margin (Xu and Wang, 2019, 13). Zhang and coworkers have
recently extended CEthreader to develop a distance-assisted
threading method DEthreader introduced during the recently
concluded CASP14 experiment by incorporating a distance-
based scoring term into the scoring function. The method uses
the Cα–Cα and Cβ–Cβ distance distribution, both are binned into
38 bins: 1 bin of <2Å, 36 bins of 2–20Åwith a width of 0.5Å, and 1
bin of ≥20Å. Similarly, Yang and coworkers have extended
CATHER into a distance-based threading approach by
replacing contacts with distances in CASP14.

Powered by the development of the recent deep
learning–based trRosetta method (Yang et al., 2020) for the
prediction of inter-residue orientations and distances, our
recent method DisCovER (Bhattacharya et al., 2020) goes one
step further by incorporating predicted inter-residue orientations
in addition to distances together with the neighborhood effect of
the query–template alignment using an iterative double dynamic
programming framework. The predicted distances are binned
into 9 bins with a bin size of 1Å: <6Å to <14Å by summing up the
likelihoods for distance bins below a distance threshold. The two
orientation dihedrals (ω, θ) are binned into 24 bins with a
width of 15°, and the orientation angle (ϕ) is binned into 12
bins with a width of 15°. Experimental results demonstrate the
improved threading performance of DisCovER over the other

FIGURE 2 | Structural superposition between predicted models using various threading methods (in violet) and the corresponding experimental structures (in gray)
for representative CAMEO targets 6D2S_A of length 289 residues and 6CP8_D of length 164 residues.
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state-of-the-art threading approaches on multiple benchmark
datasets across various target categories, especially for distantly
homologous proteins. Representative examples on CAMEO
targets 6D2S_A and 6CP8_D provide some insights into the
origin of the improved performance. Figure 2 shows our recent
method DisCovER predicts correct folds (TM-score > 0.5) for
both the targets 6D2S_A and 6CP8_D with a TM-score of 0.76
and 0.69, respectively, significantly better than the others.
While the pure profile-based threading method CNFpred
(Ma et al., 2012; Ma et al., 2013) and the recent contact-
assisted threading method CEthreader fail to predict the
correct fold for the target 6D2S_A, DisCovER and the
CAMEO server RaptorX (Källberg et al., 2012; Zhu et al.,
2018), employing the distance-based threading method
DeepThreader (Haas et al., 2019), effectively predict the
correct fold, with noticeably better performance by
DisCovER (an improvement of 0.2 TM-score points) than
the next best RaptorX. We also notice the superior
performance of DisCovER for the target 6CP8_D where
DisCovER significantly outperforms the other competing
methods including the next best CEthreader by 0.18 TM-
score points. It is worth mentioning both the targets are
officially classified as “hard” by CAMEO (Haas et al., 2019),
which warrants a distantly homologous nature in which current
threading methods have limitations. Overall, the results show
that the integration of the orientation information and the
neighborhood effect in DisCovER results in improved
threading, attaining state-of-the-art performance in (distant)
homology detection.

THE ROLE OF SEQUENCE DATABASES IN
INTERACTION MAP THREADING

The prediction of inter-residue interaction maps depends heavily
on the availability of homologous sequences. As such, the role of
the sequence databases is becoming increasingly important in
protein homology detection via interaction map threading. In
addition to the well-established whole-genome sequence
databases such as the nr database from the National Center
for Biotechnology Information (NCBI), UniRef (Suzek et al.,
2015), UniProt (The UniProt Consortium, 2019), and Uniclust
(Mirdita et al., 2017); emerging metagenome sequence databases
from the European Bioinformatics Institute (EBI) Metagenomics
(Markowitz et al., 2014; Mitchell et al., 2018) and Metaclust
(Steinegger and Söding, 2018) are playing a prominent role. For
example, Wang et al. (2019) have demonstrated the applications
of marine metagenomics for improved protein structure
prediction. map_align uses the Integrated Microbial Genomes
(IMG) database (Markowitz et al., 2014), containing around 4
million unique protein sequences, to reliably predict high-quality
models for distant-homology Pfam families of unknown
structures. Another recent method for generating protein
multiple sequence alignments, DeepMSA (Zhang et al., 2020),
combines whole-genome and metagenome sequence databases
and reports improved threading performance, particularly for
distant-homology proteins. Newer sequence databases are getting

larger and diverse. For example, BFD (Steinegger et al., 2019), a
recent sequence database, is one of the largest sequence databases
containing 2 billion protein sequences from soil samples and 292
million sequences of marine samples. Another very recent
sequence database MGnify (Mitchell et al., 2020) contains
around 1 billion nonredundant protein sequences. As such,
the availability of evolutionary information of distant-
homology proteins is getting enriched, likely leading to
improved prediction accuracy of inter-residue interaction
maps and hence more accurate interaction map threading for
distant-homology protein modeling.

DISCUSSION

While the use of interaction maps is the main driving force
behind the improved threading performance, the optimal
granularity and information content of the predicted
interaction maps remain elusive. Existing works consider
various distance bins (Zhu et al., 2018; Bhattacharya et al.,
2020) and subsets of predicted interactions either based on top
predicted pairs sorted based on their likelihood values or using
arbitrary likelihood cutoffs (Bhattacharya and Bhattacharya,
2019; Zheng et al., 2019a). A robust mechanism for defining
and selecting interacting residue pairs can be beneficial to
existing threading methods. Another challenge is how to
integrate heterogeneous sources of available information
from multiple interaction map predictors and/or sequence
databases in a singular framework for unified interaction
map threading. Finally, the use of multiple templates
(Cheng, 2008; Peng and Xu, 2011; Meier and Söding, 2015)
and meta-approaches (Wu and Zhang, 2007; Zheng et al.,
2019b) possibly coupled with model quality assessment
methods (Ray et al., 2012; Uziela et al., 2016; Uziela et al.,
2017; 3; Alapati and Bhattacharya, 2018; Karasikov et al., 2019;
Baldassarre et al., 2020; Eismann et al., 2020; Shuvo et al., 2020)
and potentially aided by structure refinement (Bhattacharya
and Cheng, 2013a; Bhattacharya and Cheng, 2013b;
Bhattacharya and Cheng, 2013c; Bhattacharya et al., 2016;
Bhattacharya, 2019; Wang et al., 2020; Heo and Feig, 2020)
can collectively improve the accuracy of distant-homology
protein modeling.

Recent CASP experiments have witnessed dramatic recent
advances by DeepMind’s AlphaFold series (Senior et al., 2019;
Senior et al., 2020) in ab initio protein structure prediction,
significantly outperforming the other groups. The success of
AlphaFold series is primarily attributed to the successful
application of deep neural networks for accurately predicting
inter-residue spatial proximity information coupled with end-to-
end training, significantly improving the accuracy of protein
structure prediction (Pearce and Zhang, 2021). The integration
of deep learning into various stages of protein modeling
represents an exciting future direction that shall have a
transformative impact on distant-homology protein modeling
via interaction map threading, complementing and
supplementing ab initio protein structure prediction methods
developed by DeepMind.
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