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Circadian rhythm dysfunction occurs in both common and rare neurodegenerative
diseases. This dysfunction manifests as sleep cycle mistiming, alterations in body
temperature rhythms, and an increase in symptomatology during the early evening
hours known as Sundown Syndrome. Disruption of circadian rhythm homeostasis has
also been implicated in the etiology of neurodegenerative disease. Indeed, individuals
exposed to a shifting schedule of sleep and activity, such as health care workers,
are at a higher risk. Thus, a bidirectional relationship exists between the circadian
system and neurodegeneration. At the heart of this crosstalk is the molecular circadian
clock, which functions to regulate circadian rhythm homeostasis. Over the past decade,
this connection has become a focal point of investigation as the molecular clock
offers an attractive target to combat both neurodegenerative disease pathogenesis
and circadian rhythm dysfunction, and a pivotal role for neuroinflammation and stress
has been established. This review summarizes the contributions of molecular clock
dysfunction to neurodegenerative disease etiology, as well as the mechanisms by which
neurodegenerative diseases affect the molecular clock.
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INTRODUCTION

Circadian rhythms are daily cycles of biological processes in living organisms that are regulated
endogenously and function to gate essential molecular, cellular, physiological, and behavioral
activities to discrete times of the day. Circadian rhythms are defined by three properties: (1)
They must have a period of approximately 24 h and continue to oscillate in the absence of
external stimuli, (2) rhythmicity can be reset or “entrained” by external stimuli, and (3) they
are temperature compensated or maintain periodicity regardless of temperature changes across
the physiological permissible range (Dunlap et al., 2004). The central pacemaker in mammals,
known as the suprachiasmatic nucleus (SCN), regulates the timing of circadian rhythms and resides
in the anterior hypothalamus. The SCN controls output timing to peripheral oscillators, such
as organ systems, to coordinate the daily cycling of numerous essential physiological processes.
Examples of peripheral oscillators include the liver, heart and discrete regions of the brain, such
as the hippocampus (Zhang and Sehgal, 2019). In healthy individuals this mechanism functions
to regulate sleep–wake cycles, neuroendocrine activities, and memory (Moore, 2013; Sollars and
Pickard, 2015).
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As previously mentioned, an important feature of a circadian
rhythm is that it can entrained by various external cues to
allow an organism to adapt to changes in the environment. In
humans, an example of this is light exposure when waking. Light,
absorbed by intrinsically photosensitive retinal ganglion cells,
signals through the retinohypothalamic tract to the SCN to reset
the clock by adjusting the timing of the core molecular oscillator
(reviewed below). The SCN then conveys this timing information
to peripheral oscillators such as the heart, liver and lungs
(Dibner et al., 2010; Richards and Gumz, 2012) via the immune,
hormonal, and neurotransmitter signals to generate the proper
timing of rhythmic physiological processes (Moore, 2013; Sollars
and Pickard, 2015). When this system is perturbed, numerous
adverse consequences can occur. For example, exposure to light
at inappropriate times, such as prolonged light exposure to
light-emitting electronic devices before bed, represses melatonin
production and disrupts normal sleep patterns (Chang et al.,
2015). Consistent perturbations of entrainment can lead to
“circadian desynchrony,” a misalignment of the circadian clock
with the external environment that is associated with an increased
risk of numerous diseases and disorders such as cancer, diabetes,
and Alzheimer’s disease (AD) (Sahar and Sassone-Corsi, 2009;
Bass and Takahashi, 2010; Musiek and Holtzman, 2016; Logan
and McClung, 2019). Additionally, extra-SCN clocks exist that
can supersede or override the timing of the core clock (Anne-
Marie Chang et al., 2014). For example, the hippocampus, which
plays a central role in learning and memory function, has an
entrainable circadian clock that can regulate the time-of-day
changes in cognitive efficacy in the absence of descending signals
from the SCN (Hasegawa et al., 2019).

The Molecular Clock
Numerous excellent reviews have summarized our current
understanding of the molecular circadian clock (Baker et al.,
2012; Partch et al., 2014; Cohen and Golden, 2015; Takahashi,
2017; Patke et al., 2020). Therefore, this review will summarize the
molecular components that are impacted by neurodegenerative
disease. The molecular clock in humans is composed of a family
of core clock genes that are involved in two interlocking feedback
loops; a primary negative feedback loop, and a secondary
stabilizing loop (Li et al., 2013; Patrick-Simon Welz, 2020). The
primary is a transcription-translation feedback (TTFL) loop,
which governs 24-h periodicity. Importantly, this aspect of the
clock mechanism is conserved across almost all living organisms
(Dunlap and Loros, 2017). The TTFL mechanism is initiated
by the transcription factors Brain and Muscle Arnt-Like 1
(BMAL1) protein and Circadian Locomotor receptor Output
Cycles Kaput (CLOCK), which heterodimerize then bind to
enhancer box (e-box) consensus site sequences in the promoters
of the Period (Per1-3) and Cryptochrome (Cry1-2) gene families.
PER and CRY are then transcribed, translated, and ultimately
shuttled back into the nucleus to bind to the heterodimeric
BMAL1/CLOCK complex to repress their own transcription, as
well as the transcription of any clock-controlled genes (CCGs)
that also have e-box (or other clock-regulated) consensus sites.
The secondary loop is centered on the production of BMAL1 and
CLOCK. Here, rhythmic BMAL1 transcription is driven by the

activation and repression of by the RAR-related orphan nuclear
receptor (ROR) and Rev-Erb gene families, respectively, which
competitively bind to retinoic acid response elements (RREs)
within the BMAL1 promoter. Together, this system of feedback
loops regulates periodicity, amplitude, and phase of the molecular
clock (Figure 1) (Bae et al., 2001; Li et al., 2013). In addition to
the roles of core clock genes, the molecular clock is regulated by
rhythmic posttranslational modifications (PTMs). For example,
isoforms of the casein kinase 1 (CK1) gene family phosphorylate
PER in a time-of-day dependent manner to maintain proper
clock timing (Etchegaray et al., 2009; Lee H. M. et al., 2011).
An additional PTM that is characterized by the acetylation of
CLOCK and BMAL1 mediates gene expression by interacting
with histone acetyltransferases (HATs) (Masri and Sassone-Corsi,
2010; Zhang and Sehgal, 2019). All of these mechanisms function
in concert to maintain the proper timing of the central and
peripheral oscillators.

Circadian Rhythms and
Neurodegeneration
Neurodegenerative diseases are characterized by the progressive
loss of neuronal structure and function, usually through neuronal
death, and are caused by both genetic and environmental factors.
The symptoms of neurodegeneration can include loss of motor
control, cognitive decline, and mood changes, depending on the
affected area of the nervous system. One of the early indicators
that the circadian system is impacted by neurodegenerative
disease was the observation that some patients have aggravated
symptomology during the early evening hours, which is known
as Sundown Syndrome. Sundowning is characterized by greater
cognitive deficits and psychotic breakdowns during the evening
hours, disturbed sleep patterns, and difficulty thermoregulating
(Bliwise et al., 1995; Canevelli et al., 2016). These functions
are all controlled by the SCN, indicating a connection between
the cognitive and effective symptoms of dementia and the
molecular clock.

Recent evidence has established a clear relationship between
neurodegenerative phenotypes and the molecular clock
(Chang and Guarente, 2013; Musiek et al., 2013; Musiek
and Holtzman, 2016; Singh et al., 2018; Lananna and Musiek,
2020). Additionally, chronic perturbations in normal circadian
rhythmicity are also believed to exacerbate neurodegenerative
disease progression (Musiek, 2015). Thus, a bidirectional
relationship between the clock and neurodegeneration exists.
An example of this is the relationship between the clock and
the adrenal glucocorticoid (GC) stress responses. The SCN
regulates the hypothalamus–pituitary–adrenal (HPA) axis,
driving the rhythmic release of adrenocorticotropic hormone
(ACTH). This rhythmicity of ACTH has downstream effects
on ACTH and GC receptor sensitivity that disinhibit the HPA
axis during the waking phase; this disinhibition drives time-of-
day dependent sensitivity to stress exposure. In return, stress
increases the activation of the HPA axis, and the subsequent
production of cortisol. This increased activation of the HPA
axis has downstream effects on the clock by way of increased
distal corticosteroids disrupting sleep (Han et al., 2012). If
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FIGURE 1 | The mammalian molecular clock. A summary of the functionality of the mammalian core clock components that are impacted by neurodegenerative
disease or play a role in pathogenesis.

continual sleep disruptions persist, rhythms in the sleep–wake
cycle itself will be altered, causing irregularities in core clock
timing or circadian desynchrony (CD). Thus, the clock functions
to regulate the stress response, and chronic stress can also
affect the timing of the clock, which could be impacted by
neurodegenerative disease pathology.

The Clock, Output and Oxidative Stress
One of the major output pathways of the molecular clock
feeds into cellular metabolism, including processes such as
redox homeostasis and neuroinflammation. Disruption of redox
homeostasis drives oxidative stress (OS), which is a key
nexus between neurodegeneration and the circadian clock
(Lananna and Musiek, 2020). BMAL1 drives the transcription
of redox genes NAD(P)H quinone dehydrogenase and aldehyde
dehydrogenase 2 (QR2) in the brain (Musiek et al., 2013), which
play vital roles in preventing OS accumulation and neuronal
damage (Musiek et al., 2013; Musiek and Holtzman, 2016).
TTFL factors also mediate antioxidant activity through their
interactions with NAD-dependent deacetylase sirtuin 1 (SIRT1)
(Asher et al., 2008) which is heavily involved in maintaining
cellular redox homeostasis (Asher et al., 2008). SIRT1 activates
the transcription of both BMAL1 and CLOCK in the SCN (Chang
and Guarente, 2013). Its dysfunction is a hallmark of Parkinson’s
disease (PD) (Singh et al., 2017), and emerging evidence

also points to its role in AD pathogenesis. Together, these
findings present a mechanism to explain the circadian impact
on the onset and development of multiple neurodegenerative
diseases and suggest a significant bidirectional relationship
between neurodegeneration and circadian desynchrony that
may provide a target to reduce the risk or severity of
neurodegenerative diseases.

In this review, we will address the role of the circadian
clock in the development and progression of both common
and rare neurodegenerative diseases - specifically in AD,
Lewy body dementia (LBD), PD, Huntington’s disease (HD),
progressive supranuclear palsy (PSP), Pick’s disease (PiD),
and frontotemporal lobar degeneration-tau (FTLD-tau). As
the neuropathology of each disease covered is central to the
circadian rhythm disorders observed in patients, we have chosen
to group each neurodegenerative disease by their associated
proteinopathies.

α-SYNUCLEIN PROTEINOPATHIES

Lewy body dementia and PD are both characterized by neuronal
α-synuclein inclusions known as Lewy bodies. The normal
function of α-synuclein is not well-understood, but evidence
suggests a role in synaptic vesicle mobility (Scott and Roy,
2012). Misfolded α-synuclein results in β-sheet aggregates, which
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are hypothesized to spread in a prion-like manner causing
devastating neuronal damage (Ma et al., 2019). In prion diseases,
misfolded proteins cause the misfolding of their normal protein
counterpart (Walker et al., 2015).

Parkinson’s Disease
Parkinson’s disease is a neurological motor disorder characterized
by uncontrollable tremors and difficulty initiating voluntary
movements. Presently, the precise etiology of PD is unclear,
although genetics can play a central a role – specifically
through the mutation of the Parkin gene (PRKN). During PD
pathogenesis, significant cell death occurs among dopamine
producing neurons of the substantia nigra, leading to this loss
of motor function. Lewy bodies aggregate in the basal ganglia
and neocortex (Walker et al., 2015). As it progresses, patients
with PD develop cognitive decline, dementia, as well as mood
and behavioral disorders. Additionally, circadian dysfunction
also occurs in PD and is characterized by many sleep-related
pathologies, such as excessive drowsiness, insomnia, night
terrors, REM cycle disruptions, and sleep fragmentation (Petit
et al., 2017; Trenkwalder et al., 2017). Furthermore, circadian
dysfunction coupled with neuroinflammation is a risk factor
for PD. Lauretti et al. (2017) subjected C57BL/6 mice to
abnormal light-dark cycles (20:4 LD) prior to administering a
PD-inducing neurotoxin. Circadian-disrupted mice had severe
neuroinflammation and a greater degradation of motor skills,
indicating that circadian dysfunction is a potential risk factor
for PD. This effect was recapitulated in a rat model, where PD
pathology was induced or exacerbated in one of three ways: by
injection of lipopolysaccharide, injection of rotenone, or injection
of both reagents (Li et al., 2019). All three groups exhibited
similar loss of dopaminergic neurons and neuroinflammation. Of
the nine core clock genes evaluated, six had decreased expression
levels in all three groups. Circadian disturbances have also been
shown in an α-synuclein overexpressing (ASO) mouse model of
PD (Kudo et al., 2011). There were selective deficits in circadian
activity such as lower waking activities and more fragmented
sleep patterns. ASO mice had normal Per2 expression and
lower daytime firing rates in the SCN neurons, which have also
been observed in HD models (Smarr et al., 2019). Importantly,
ASO mice showed no negative effects in their light adaptation
responses, indicating that photic entrainment remained intact.

There is evidence that PD and the molecular clock are also
connected at the genetic level (Gu et al., 2015). A screen of eight
key core clock genes in sizable populations of PD patients and
healthy controls revealed a significant association between PD
risk and clock gene SNPs. Of all the screened genes, BMAL1 and
Per1 had the greatest number of PD-associated SNPs. Different
PD subtypes were also correlated with specific haplotypes in the
identified BMAL1 SNPs. This indicates that SNPs in TTFL genes
are risk factors for PD that could potentially serve as biomarkers
to aid PD diagnosis and treatment. However, the core clock may
be affected by the same factors that increase the risk of developing
PD. For example, the PRKN mutation may influence crosstalk
between the TTFL and mitochondrial bioenergetic pathways.
Fibroblasts taken from two genetic PD patients exhibited
dampened oscillations in bioenergetic activities, reduced rates

of mitochondrial oxygen consumption, and dysregulated TTFL
factor expression patterns - CLOCK, CRY1, and CRY2 were
upregulated while PER2 was downregulated in these cells (Pacelli
et al., 2019). Epigenetic modifications may also play a role in
aberrant clock gene expressions. A screen of seven key TTFL
genes in the leukocytes of PD patients showed that the Neuronal
PAS Domain Protein 2 (NPAS2) promoter is hypomethylated
compared to healthy controls. NPAS2 performs a similar function
to CLOCK, as it can heterodimerize with BMAL1 to drive
circadian rhythmicity. Cry1 conversely showed greater promoter
methylation, while none of the remaining five genes showed any
change in methylation (Lin et al., 2012).

In addition to increasing clinical evidence that human
PD patients exhibit deregulation of BMAL1 (Breen et al.,
2014; Gu et al., 2015), there is a decrease in expression of
BMAL2 which is a paralog of BMAL1 (Ding et al., 2011).
BMAL2 is not essential for normal clock functionality, but
knockout of BMAL1 can be rescued by the constitutive
expression of BMAL2 in mice, indicating paralog compensation.
Additionally, Gu et al. (2015) speculate that lowered BMAL1
levels are a result of PD-induced dopamine deficiency. This
postulation is supported by studies in a rat model of PD
(Gu et al., 2015). Here, 6-hydroxydopamine (6-OHDA), a
potent neurotoxin that destroys dopaminergic and noradrenergic
neurons, induced a PD-like phenotype, which caused an increase
in levels of acetylated SIRT1 and BMAL1, decreased Per and
Cry expression, and an alteration of neuronal antioxidant
activity (Wang et al., 2018). Furthermore, treatment with
the antioxidant Resveratrol partially rescued this abnormal
phenotype. Based on these results, it is possible that core
clock abnormalities contribute to reduced antioxidant capacity
in PD. To further outline the potential circadian component
in PD, a study from Liu et al. (2020) shows inactivation
of BMAL 1 in MPTP-treated mice results in significant
reduction of dopaminergic neurons, and decreased levels of
tyrosine hydroxylase, dopamine, and 3,4-dihydroxyhenylacetic
acid content in experimental mice. Increased activation of
the neuroinflammatory response was observed in vivo and
in vitro, thereby suggesting BMAL1 may have a neuroprotective
effect in the depletion of dopaminergic neurons and disrupted
BMAL1 may accelerate PD pathology (Liu et al., 2020). “These
studies taken as a whole suggest that selectively targeting
TTFL factors with pharmaceuticals or other chronotherapies
may succeed in alleviating symptoms in PD patients. However,
inconsistencies concerning the impact of PD on the core
clock components clouds our current understanding of the
relationship between PD and the clock. Further investigation of
this connection is needed before a therapeutic strategy can be
developed.”

Lewy Body Dementia
LBDs are the second most common type of degenerative
dementia affecting the elderly (Petit et al., 2017). A pilot
study investigating clock gene disturbances in dementia patients
found that LBD patients had a higher frequency of aberrant
methylation patterns of core clock genes compared to other
dementia patients (Liu et al., 2008). Among the nine genes
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examined, Per1 and Cry1 were methylated in dementia patients
but not in healthy controls. LBD patients had somewhat
greater disturbances of locomotor circadian rhythmicity than
AD patients (AD is discussed in further detail below); however,
there was no association between behavioral disturbances and
gene methylation in any of the dementia groups (Liu et al.,
2008). Interestingly, the circadian sleep disturbances associated
with LBD appear more severe than in AD, which was initially
shown by Harper et al. (2004). This data was supported by
more recent findings where a 70% increase in REM sleep
behavior disorder (RBD)-like symptoms, including increased
daytime drowsiness, was observed in LBD as compared to AD
and controls (Cagnin et al., 2017). However, further research is
necessary to understand the molecular mechanisms that underlie
these behavioral observations. RBD has been proposed to be a
precursor stage of synucleinopathies, some patients exhibiting
signs of RBD full years prior to any neurodegenerative symptoms
(Brown, 1994; Zhang et al., 2020). To evaluate the involvement
of clock genes in RBD, Weissova et al. (2018) investigated 24-h
melatonin blood profiles in RBD patients and healthy individuals.
RBD patients did not have circadian rhythmicity for key clock
genes Per2, BMAL1, and rev-Erbα, as compared to healthy
individuals. Additionally, melatonin profiles of RBD patients
were delayed by 2 h, and habitual sleep phases were delayed by
1 h. These results suggest that altered expression of Per2, BMAL1,
and Rev-Erbα combined with delayed melatonin secretion could
be responsible for RBD (Weissova et al., 2018). Interestingly,
melatonin may also be involved in the progression of HD,
discussed later in this review.

TAUOPATHIES AND β-AMYLOIDOSIS

Tauopathies are a class of neurodegenerative diseases that
arise when the protein tau, which functions to stabilize
the microtubules of neurons, becomes misfolded and forms
pathogenic intracellular aggregates that cause neurodegeneration
(Irwin, 2016) and contribute to memory cognitive deficits (Lee
V. M. et al., 2011). Genetic abnormalities such as missense
mutations, SNPs, pathogenic haplotypes, and deregulated
alternative splicing have all been implicated in tau pathogenesis
(Caillet-Boudin et al., 2015; Irwin, 2016). These changes can
induce structural instability, reduce tau’s microtubule binding
capacity (Strang et al., 2019), increase intracellular concentrations
of free-floating phosphorylated Tau (pTau), and contribute to
the formation of neurofibrillary tangles (NFTs). Clinical evidence
indicates that the SCN is also damaged by tau aggregation
(Stopa et al., 1999) and circadian disturbances in the behavior of
tauopathy patients suggest an imbalance in the TTFL (Anderson
et al., 2009). In addition to tauopathy, a defining hallmark of
some neurodegenerative diseases, like AD, is the presence of
β-amyloid plaques, which are composed of toxic extracellular
aggregates of amyloid beta (Aβ). The amyloid precursor protein
(APP) is cleaved by both β-secretase (BACE1) and γ-secretase to
generate Aβ and are associated with the secretion and aggregation
of toxic Aβ (Luo et al., 2001; Steiner et al., 2018; Yuksel and Tacal,
2019). As amyloid plaques aggregate, they can also exacerbate

tauopathy, driving further pathogenesis (Gan et al., 2019; Busche
and Hyman, 2020).

Alzheimer’s Disease
Alzheimer’s disease is one of the most heavily researched
neurodegenerative diseases due to its rapidly increasing
prevalence, mostly because humans are living longer and AD
is primarily a disease that affects those 65 years of age and
older (Xia et al., 2018). In the United States alone, AD cases are
projected to reach 14 million by 2050 (Hebert et al., 2013). Risk
factors such as aging and OS are both tightly intertwined with the
core clock. It is well known that aging leads to oxidative damage
(Zhang et al., 2015; Gomes et al., 2017; Mecocci et al., 2018).
In normal aging, several cellular processes are attenuated over
time. This senescence is caused by a chronic state of low-level
stress, induced by both genetic and environmental factors.
However, AD patients generally have markedly higher OS levels,
which are thought to contribute to more rapid degeneration
(Chen and Zhong, 2014). In healthy individuals, TTFL factors
mediate antioxidant processes in many organ systems, and the
maintenance of redox homeostasis in the brain is essential in
staving off neurodegeneration. It is unclear whether OS causally
contributes to circadian dysfunction or vice versa. Most likely,
feedback between the two pathologies contributes to both. Thus
far, changes in the expression of PER and BMAL1 seem to have
the strongest connections to aging and OS.

As previously mentioned, the TTFL is an evolutionarily
conserved mechanism. Therefore, much insight into the
relationship between the clock and neurodegenerative disease
can be gained by evaluating this relationship in an organism
with much simpler genetics and nervous system. For example,
in the model organism Drosophila melanogaster there is only
one Per gene, whereas in mammals there are three (Per1–
3). This redundancy can lead to confounds such as the
paralog compensation (Baggs et al., 2009). In Drosophila, Per
regulates sleep patterns and working memory (Dissel et al.,
2015). Furthermore, high expression of PER is associated with
neuroprotective effects against oxidative damage (Krishnan et al.,
2009). Ablation of Per accelerates neurodegeneration (Krishnan
et al., 2009, 2012). When subjected to hyperoxia, Per knockout
flies had greater oxidative damage, impaired antioxidant stress
responses, neurodegeneration, and shortened lifespans. OS also
induces aberrant sleep patterns such as those seen in aged
AD patients. Over time, the sleep–wake cycle amplitudes
decreased in OS-challenged flies, and the circadian rhythm
loses its endogenous control, becoming temperature-dependent
(Koh et al., 2006). Flies in a cooler environment also showed
markedly slower neuronal degeneration during sleep cycles. This
could be related to the lowering of core body temperature
that occurs in healthy mammalian sleep cycles (Harding et al.,
2019). Additionally, age-related losses of circadian rhythmicity
in peripheral tissues have been recapitulated in other Drosophila
studies (Chen et al., 2014; Long et al., 2014; Kuintzle et al., 2017).
One such study by Buhl et al. (2019) demonstrates that the 0N4R
isoform of Tau causes behavioral changes which match those
of human AD patients. Additionally, a hyperactive circadian
phenotype was observed, and then validated by whole-cell
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current clamp recordings of large lateral ventral neurons. These
findings showed an especially depolarized membrane resting
potential, and higher spontaneous firing rate among transgenic
flies. Interestingly, input resistance, which is expected to cycle in
wild type flies, maintained the same magnitude during the day
and nighttime in the experimental group. These findings further
outline the relationship between Tau isoforms and circadian
disruption (Buhl et al., 2019).

Amyloid beta can also alter PER1 and PER2 expression in
both the central oscillator (SCN) and peripheral cardiovascular
tissues (Wang et al., 2016). Per is essential for maintaining
healthy cardiac function and alterations in PER expression
are strongly correlated with cardiac dysfunction (Young, 2006;
Maemura et al., 2007). Similar patterns of PER expression
may also exist in AD patients, as cardiovascular co-morbidities,
such as atherosclerosis, are thought to be risk factors for AD
because of the damage inflicted on the cerebrovascular system
(Iadecola, 2003; Roher et al., 2011). Another potential player
in these interactions is SIRT1 (Bellanti et al., 2017). A mouse
model of AD that has both Aβ and tauopathy phenotypes
(3xTG-AD) display altered hippocampal expression of SIRT1
after different patterns of light exposure (Bellanti et al., 2017)
indicating circadian desynchrony influences OS pathways. SIRT1
even mediates transcriptional control of TTFL genes and this
process is attenuated by aging (Chang and Guarente, 2013). These
findings underscore the importance of OS pathways in circadian
dysfunction (Song et al., 2015).

Evidence suggests that loss of rhythmicity contributes to Aβ

production [by BACE1 (Ma et al., 2016)] and accumulation, and
the reverse is also true - Aβ alters BMAL1 degradation (Song
et al., 2015), deregulating the molecular clock. Exemplifying
the bidirectional relationship between Aβ and BMAL, Kress
et al. (2018), demonstrated that complete BMAL Knockout
produces a rhythmic behavior in the deposition of AB plaque,
and that local BMAL Knockout increases AB plaque burden. In
addition, the circadian CK1 enzymes modulate Aβ activity by
increasing the production of Aβ (Oumata et al., 2008; Ooms
and Ju, 2016). BMAL1 levels are affected by Aβ as shown
by Song et al. (2015) where in vitro Aβ induces degradation
of BMAL1 and CBP via PTM SUMOylation. Consequently,
PER2 expression was deregulated, corroborating the disrupted
expression of BMAL1 and PER2 that was observed in vivo.
Furthermore, knockdown of Sumo1 rescued the degradation
of BMAL1. Given that Aβ over-accumulation increases ROS
production (Smith et al., 2007) and that neuronal redox
homeostasis is regulated by BMAL1/CLOCK (Musiek et al.,
2013), the molecular dysfunction of the TTFL may contribute to
Aβ-mediated neuronal cell death. On the other hand, circadian
desynchrony may not be a direct product of pathogenic Aβ,
but of some underlying mechanism that also increases Aβ

production. Flies that overexpress the Drosophila homolog
for APP in their central pacemaker neurons maintain robust
circadian rhythms in spite of aging (Blake et al., 2015). However,
overexpression of Drosophila β-secretase led to disturbed
rest/activity rhythms, decreased PER expression and dampened
oscillations of PER in the central pacemaker neurons. These
effects were most prominent in aging flies, suggesting that

β-secretase mediated circadian dysfunction is exacerbated in an
age-dependent manner.

BMAL1 is neuroprotective against aging-induced neuronal
decline, and yet BMAL1 is itself affected by aging and
oxidative damage. BMAL1 knockout mice display an early
aging phenotype characterized by sarcopenia, decreased hair
regrowth, and increased ROS levels in the heart, kidneys,
and spleen (Kondratova et al., 2010). BMAL1 deficiency also
impairs PER and CRY expression, habituation, neuronal ROS
homeostasis, and causes hyperactivity (Kondratova et al., 2010).
Additionally, BMAL1 knockout mice also exhibit severe reactive
astrogliosis in cortical and hippocampal tissue, while single
knockouts of clock genes Per1, Per2, CLOCK, or Npas2 produced
no astrogliosis (Musiek et al., 2013; Musiek and Holtzman,
2016). Astrogliosis is an increase in the number of astrocytes,
which are important cellular mediators of the neuroimmune
response. Both global and neuronal deletion of BMAL1 produced
astrogliosis, indicating a role for neuronal BMAL1 in this effect
on astrocytes. Interestingly, SCN astrocytes have a significant
impact upon neuronal activity during the circadian rest phase
by inhibiting neuronal activity (Brancaccio et al., 2017). SCN
astrocyte rhythmicity is also suspected to determine period length
of locomotor activity. In an experiment conducted by Tso et al.
(2017), it was found that knocking out astrocyte-specific BMAL1
lengthened the period of wheel running activity. Furthermore,
combined knockout of CLOCK and Npas2 produced similar
astrocyte activation to the BMAL1 KO mice, suggesting that
dysfunction in the positive arm of the TTFL plays a vital role in
the development of this age-dependent neuropathology. An aged
hamster model also demonstrated attenuated BMAL1 expression
across many regions of the brain, particularly in extra-SCN
tissues (Duncan et al., 2013). Researchers postulated that this
subsequent weakening of clock gene expression in regions of the
brain might contribute to age-related cognitive deficits. Taken
together, these findings suggest that circadian dysfunction has a
clear impact on memory deficits and that natural aging processes
are associated with decreased BMAL1 expression. In addition to
BMAL1’s role in astrogliosis, a recent report has revealed further
evidence for the relationship between the clock and astrocyte
function. Lananna et al. (2020) show that the clock regulates the
production of Chi3l1, which encodes for YKL-40, a glycoprotein
biomarker for neuroinflammation in CSF that is increased in AD
patients. The authors observed that Chi3l1 is not only regulated
by the core clock, but that deletion of Chi3l1/YKL-40 reduced
amyloid plaque formation and Aβ phagocytosis (Lananna et al.,
2020). This exciting result suggests that deregulation of a CCG
such as Chi2l1 might lead to AD pathogenesis.

In addition to role of core clock genes involved in
transcriptional activation and transcriptional repression, core
clock genes involved in post translational modifications are
also impacted by AD. CK1δ may contribute to the aggregation
of hyperphosphorylated tau inclusions (Li et al., 2004) and
associates with NFTs in several neurodegenerative diseases, such
as AD (Ghoshal et al., 1999; Schwab et al., 2000) PD, PSP,
and PiD (Schwab et al., 2000). Among the dementia patients
studied by Schwab et al. (2000), CK1δ did not associate with
tau-negative pathogenic inclusions (e.g., Lewy bodies, Marinesco
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bodies) of non-tauopathy neurodegenerative diseases, whereas
it had variable immunostaining intensity amongst dystrophic
neurites, NFTs, and neuropil threads in AD brains (Schwab
et al., 2000). Thus, it is possible that CK1δ accumulation could
serve as a clinical biomarker for tau-specific neurodegenerative
lesions. CK1δ isozymes may also directly influence protein
turnover in the autophagic and phagocytotic processes that
are essential in maintaining neuronal health. The dysfunction
of these processes is widely implicated in neurodegeneration
(Menzies et al., 2015, 2017; Martini-Stoica et al., 2016;
Mecocci et al., 2018). Future research is needed to clarify the
mechanisms of CK1δ-related accumulation in pathogenic tau
plaques, although some work suggests a possible interaction with
transactive response DNA-binding protein (TDP-43), another
hallmark of neurodegeneration. CK1δ phosphorylates TDP-43
and promote its mislocalization (Nonaka et al., 2014; Gu et al.,
2020), aggregating with TDP-43 and tau in granulovacuolar
degeneration bodies (GVBs) of the cytoplasm, to promote tau
hyperphosphorylation (Ghoshal et al., 1999; Yamazaki et al.,
2011). Of note, CK1δ also contributes to neurodegenerative
diseases through amyloidosis. We have previously studied this
role in APP-PS1 mice, which manifest an abnormal sleep–
wake rhythm and impaired cognition for tasks that rely on the
prefrontal cortex and hippocampus (Sundaram et al., 2019).
Treatment of this model with a selective CK1 δ/ε inhibitor
resulted in a dose-dependent reduction of Aβ burden in
the hippocampus and prefrontal cortex compared to vehicle-
treated littermates. Additionally, the CK1 inhibitor reduced
Aβ plaque size in the prefrontal cortex and hippocampus,
increased period length and rescued some cognitive function.
Since CK1 indirectly controls Aβ formation by phosphorylating
APP and its subsequent proteases β and γ secretase (Chen
et al., 2017), targeting its activity with pharmaceuticals may be
a promising avenue of treatment for tauopathies that co-occur
with amyloidosis. The Drosophila ortholog of CK1δ, Doubletime
(Dblt), can shorten period length when mutated. Findings from
Drosophila suggest a further interaction between CK1δ and tau.
Means et al. (2015) knocked down Spaghetti, an HSP-90 co-
chaperone that upregulates Dblt, and observed both defects in
dClk expression, and upregulation of the initiator caspase Dronc
that cleaves tau and accelerates neurodegeneration.

Less studied, but essential to this discussion is the influence of
aberrant epigenetic modifications on TTFL factors. For example,
oscillatory DNA methylation contributes to the regulation of
BMAL1 (Cronin et al., 2017). Researchers increased methylation
in NIH3T3 fibroblasts using S-adenosyl-methionine, a methyl
donor. This led to decreased amplitude, longer periods, and
phase delays in circadian rhythmicity, while treatment with a
DNA methyltransferase inhibitor produced the exact opposite
effects (Cronin et al., 2017). A subsequent postmortem analysis
of midfrontal cortical tissue from deceased AD patients revealed
abnormal oscillatory methylation of the BMAL1 promoter
compared to healthy controls (Cronin et al., 2017).

Frontotemporal Lobar Degeneration-Tau
Frontotemporal lobar degeneration-tau is a less
common dementia that is nonetheless characterized by

hyperphosphorylated tau deposits, often secondary to tau
mutations (Bodea et al., 2016). This is subcategory of
frontotemporal dementia (FTD), which is a broad term to
designate neurodegeneration that produces pathology in discrete
regions of the brain as well as distinct behavioral, emotional,
language, and motor impairments (Bang et al., 2015). Although
FTDs encompass a wide range of neurodegenerative diseases,
there is clear clinical evidence of associated circadian dysfunction
across this spectrum. FTD patients have comparable circadian
symptoms to AD patients, such as increased difficulty falling
and staying asleep, persistent daytime fatigue (Sani et al.,
2019), and declines in sleep continuity (Kundermann et al.,
2011). Additionally, our own research demonstrates impaired
circadian functionality in a transgenic tau mouse model of
FTLD-tau, which expresses a human mutant tau allele and is
known as the Tg4510 line (Stevanovic et al., 2017). Tg4510 mice
display a long free-running period in activity patterns as well
as alterations in the circadian timing of BMAL1 expression in
the hippocampus, and PER2 expression in the hippocampus
and hypothalamus (Stevanovic et al., 2017). These defects may
be due to the presence of elevated pTau in the SCN, which
was also noted in this study. Furthermore, recent evidence
demonstrates impaired cytoplasmic homeostasis, caused by
tauopathy (i.e., elevated pTau), might impede PER trafficking
into the nucleus of neurons of the SCN, ultimately leading to
circadian rhythm dysfunction (Beesley et al., 2017). Clinical
evidence also indicates that the SCN is also damaged by tau
aggregation (Stopa et al., 1999) and circadian disturbances in
the behavior of tauopathy patients suggest an imbalance in the
TTFL (Anderson et al., 2009). Additionally, human tissue studies
have proposed a link between dipeptide repeat (DPR) protein
inclusions and sleep–wake disturbances in FTLD patients, as well
as severe sleep disturbances and possible phase delay indicated
by sleep diary data in human FTD cohorts (Anderson et al.,
2009; Dedeene et al., 2019). However, a clear understanding as to
how the clock is impacted by FTD is obscured by the paucity of
information on this topic.

Pick’s Disease and Progressive
Supranuclear Palsy
Similar to other tauopathies, CK1δ was found in NFTs in PSP
and associated with Pick bodies in PiD (Schwab et al., 2000).
PSP patients share similar clinical phenotypes with PD patients,
including poor sleep quality, obstructive sleep apnea, restless leg
syndrome and difficulty falling asleep and staying asleep (Gama
et al., 2010; Walsh et al., 2017). These conditions may exacerbate
underlying circadian dysfunction, as restless leg syndrome was
associated with sleep deficits in PSP. The circadian activity
rhythms in PSP patients also have decreased amplitude and inter-
daily stability compared to healthy controls (Walsh et al., 2016).
Additionally, there is a positive correlation between PSP severity
and lower relative and absolute amplitudes of circadian activity
rhythms. However, there was no association between intra-daily
rhythm variability or inter-daily rhythm stability and disease
severity (Walsh et al., 2016). Therefore, it is unclear whether or
not circadian dysfunction influences PSP severity.

Frontiers in Molecular Biosciences | www.frontiersin.org 7 March 2021 | Volume 8 | Article 644747

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-644747 April 2, 2021 Time: 10:13 # 8

Carter et al. The Molecular Clock and Neurodegeneration

HUNTINGTON’S DISEASE

Huntington’s disease is a rare genetic neurodegenerative disease
in which the Huntingtin (HTT) has an abnormal expansion of
40 or more CAG trinucleotide repeats (Orr and Zoghbi, 2007).
HD causes severe cognitive decline into dementia, locomotor
impairments, circadian dysfunction, and psychotic episodes
(Morton, 2013). Onset occurs during middle age and is generally
fatal within 10 years of diagnosis. Like other neurodegenerative
diseases, HD has no cure and shares similar sleep and circadian
rhythm disturbances, which associate with greater cognitive
impairment and depression (Aziz et al., 2010).

In Drosophila, TTFL proteins can affect the aggregation of
mutant Huntingtin (mHTT) protein. A partial knockdown of
Drosophila CLOCK (dClk), an ortholog of the mammalian
Clock gene, is suppressed by mHTT aggregation. However, this
neuroprotective effect was lost in the absence of Per, which was
drastically reduced during its normal peak hours (Xu et al., 2019).
Additionally, preclinical HD models show improvements with
chronotherapy. For example, light therapy improves some forms
of circadian desynchrony in several different HD mouse models
(Wood et al., 2013; Ouk et al., 2017; Wang et al., 2017). After
receiving 6 h of daily blue light exposure, two mouse models
of HD, Q175 and BACHD, had improved locomotor activity,
although sleep patterns were unaffected (Wang et al., 2017). The
R6/2 mouse also has a positive response to light therapy. HD-
induced circadian dysfunction was considerably delayed phase
shifts (Wood et al., 2013). In one case, a prolonged photoperiod

(16:8 LD) extended lifespan and improved nocturnal behavior
rhythms while the opposite pattern (8:16 LD) decreased survival
(Ouk et al., 2017). Interestingly, the mice were still able to adapt
to 4-h phase advances and delays (Wood et al., 2013), indicating
increased reliance on external cues during entrainment. However,
a Drosophila model of HD demonstrated conflicting evidence.
Mutant flies had abnormally prolonged expression of PER and
TIMELESS (another component of the Drosophila negative arm)
and hallmark circadian activity disturbances (Farago et al.,
2019) indicating a disrupted TTFL In mammals, PER1 and
PER2 are also important players in photic entrainment., and
both are deregulated in symptomatic HD mice with retinal
degeneration (Morton et al., 2005). As a result, mice have
reduced light sensitivity. Furthermore, benzodiazepine treatment
rescues abnormal PER2 expression in R2/6 mice, thus improving
circadian function (Pallier et al., 2007).

The rhythmicity of peripheral oscillators is also affected by
HD. Q175 mice have blunted cardiac and body temperature
rhythms, impaired autonomic nervous system function, and a
completely ablated sympathetic nervous system (Smarr et al.,
2019). A newly emerging chronotherapy is time restricted
feeding (TRF), in which eating is restricted to a 6- to 8-h
time window (Manoogian and Panda, 2017). This method has
seen some success in Q175 mice in the form of improved
locomotor rhythms and restored autonomic nervous system
functionality (Wang et al., 2018). TRF also restores peripheral
clock gene expression and ameliorates metabolic dysfunction
in the livers of R2/6 mice (Maywood et al., 2010). This HD

FIGURE 2 | BMAL1 knockout mouse model produces increased astrogliosis. Knock out of BMAL1 drives excess astrogliosis, contributing to the acceleration of AD
pathogenesis by way of astrocyte malfunction. This malfunction produces a loss of neuroprotection and reduces the astrocyte’s ability to transport Aβ out of the cell.
Without protection from astrocytes, neuroinflammation then drives excessive pro-inflammatory signaling and tau phosphorylation, while producing an increased
quantity of NFT’s. AD pathogenesis has also been shown to increase circadian dysfunction which further perpetuates neuronal damage and death.

Frontiers in Molecular Biosciences | www.frontiersin.org 8 March 2021 | Volume 8 | Article 644747

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-644747 April 2, 2021 Time: 10:13 # 9

Carter et al. The Molecular Clock and Neurodegeneration

TABLE 1 | ND’s and ND Risk factors have been associated with the molecular clock in numerous studies.

Studied ND/ND
Risk factor

Clock Gene(s)
examined

Model
system(s)

Observations Investigator DOI

AD BMAL1, CBP,
PER2

5XFAD mouse;
HT22 cells

• BMAL1 and PER2 mRNA levels significantly altered
abnormal oscillations in SCN of 5XFAD mice
• No significant changes in CBP mRNA levels
• Aβ induces BMAL1 and CBP degradation via

SUMOylation in vitro
• Disruptions the oscillation of PER2 mRNA levels
• SUMO1 knockdown rescued BMAL1 degredation

in cells

Song et al.,
2015

10.1186/s13024-
015-0007-

BMAL1,
CLOCK, PER1,
PER2

Mesocricetus
auratus

• BMAL1 and CLOCK expression attenuated with
age in the SCN
• PER1 and PER2 are not affected when housed in

DD
• PER1 less susceptible to photic induction with age

in DD

Kolker
et al., 2003

10.1177/0748
73040325180

BMAL1 Primary human
fibroblasts;
postmortem
human AD
brain samples;
NIH3T3 cells

• Rhythmic methylation of BMAL1 is altered in both
AD brains and fibroblasts
• E4 treatment with either 5-Aza-2′ deoxycytidine

(DNA methyltransferase inhibitor) or
S-adenosyl-methionine (methyl donor); NIH3T3
cells only ↑ methylation from methyl donor led to ↓
amplitude, longer periods, and phase delays in
circadian rhythmicity; ↓ methylation from inhibitor
led to shorter period length, advanced phase and
↑ amplitude

Cronin
et al., 2017

10.1016/j.jalz.
2016.10.00

BMAL1, PER2 Mesocricetus
auratus,
Tg4510 mouse

• Aging attenuates SCN BMAL1 expression but does
not affect musculoskeletal BMAL1 levels
• Per2 mRNA had ↓ diurnal rhythms
• Altered hippocampal BMAL1 expression
• Altered hippocampal and hypothalamic Per2

expression

Duncan
et al., 2013;
Stevanovic
et al., 2017

10.1016/j.brainres.
2012.11.00,
10.1016/j.expneurol.
2017.04.01

Ck1δ, Ck1ε,
PER1

APP-PS1
mouse

• PER1 expression abnormally high in vehicle treated
transgenic mice compared to controls
• Selective CK1i inhibitor PF-670462 produced dose

dependent reduction of amyloid beta burden in
both transgenic and non-transgenic mice
• PF-670462 ↓ tau plaque size
• PF-670462 rescued PER1 expression in transgenic

mice
• PF-670462 improved period length and rescued

some cognitive function

Sundaram
et al., 2019

10.1038/s41598-
019-50197-

CK1δ/ε Human
subjects (post
mortem brain
samples)

• CK1δ expression had 33-fold increase and CK1ε

expression had a 9-fold increase in the CA1 region
of the hippocampus
• Both CK1 isoforms colocalize in NFTs and neuritic

plaques

Ghoshal
et al., 1999

10.1016/S0002-
9440(10)65219-

Dblt, dClk Drosophila
melanogaster

• Spag knockdown lowers Dblt and increases period
length
• Loss of function mutation in dClk; activation of

Dronc
• Dronc mediated tau cleavage and
↑ neurodegeneration

Means
et al., 2015

10.1371/journal.
pgen.100517

PER1, PER2 C57BL/6
mouse

• Aβ 31-35 alters PER1 and PER2 expression in both
core clock tissue (SCN) and peripheral
cardiovascular tissues

Wang et al.,
2016

10.1016/j.brainres.
2016.03.02

PER Drosophila
melanogaster

• PER expression is perturbed by ↑ β-cleavage of
endogenous APPL
• Overexpression of APPL maintained robust

circadian rhythms in aged flies
• PER KO flies had greater accumulation of oxidative

damage
• Impaired antioxidative stress responses also
↑ circadian dysfunction, neurodegeneration, and
shortened lifespans

Blake et al.,
2015;
Krishnan
et al., 2009

10.1016/j.nbd.
2015.02.01,
10.18632/
aging.10010

(Continued)
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TABLE 1 | Continued

Studied ND/ND
Risk factor

Clock Gene(s)
examined

Model system(s) Observations Investigator DOI

Rev-Erba SAMP8 mice • Treatment with SR9009 injections ↓ AB
levels in brains of treated mice, reversal
of cognitive deficits, improved synaptic
health and axoskeletal structure.

Roby et al.,
2019

10.1371/journal.
pone.021500

AD, aging BMAL1, Ck1ε,
CLOCK
CRY1-2,
PER1-3, RORα

3 × Tg-AD mouse • All studied clock genes were affected by
either aging or genotype
• Effects are highly differentiated

Bellanti
et al., 2017

10.3233/JAD-
16094

eval, pdf, PER,
TIM

Drosophila
melanogaster

• Pan-neuronal expression of Aβ causes
progressive loss of circadian behavioral
rhythmicity
• Entrainment of the central molecular

clock by exposure to regular light-dark
cycles, even in the face of behavioral
arrhythmia, prolongs the flies’ lifespan

Chen et al.,
2014

10.1242/dmm.
01413

PER Drosophila
melanogaster

• KO of PER does not affect Aβ mediated
pathologies (neurodegeneration, motor
dysfunction)
• Loss of rest/activity rhythms occurred

while PER oscillations remained normal in
Aβ expressing flies

Long et al.,
2014

10.1371/journal.
pone.010606

AD, PD, PSP, PiD CK1δ Human subjects • CK1δ associates with Pick bodies in PiD
and Tau containing neurofibrilary tangles
in the remaining two tauopathies

Schwab
et al., 2000

10.1016/s0197-
4580(00)00110-

Aging,
neuroinflammation,
oxidative stress

BMAL1,
CLOCK,
NPAS2, PER1,
PER2

BMAL1±; NestinCre+;
BMAL1f/f; CLOCK KO;
NPAS2/CLOCK DKO;
PER1m/PER2m mice

• Ablation of BMAL1, CLOCK, NPAS2
caused severe reactive astrogliosis
• Ablation of BMAL1 led to degeneration of

synaptic terminals, neuronal oxidative
damage and impaired expression of
several redox defense genes

Musiek
et al., 2013

10.1172/
JCI7031

BMAL1,
CLOCK, CRY1,
CRY2, PER1,
PER2

BMAL1−/− mouse;
CRY1,2−/− mouse;
CLOCK/CLOCK mouse

• BMAL1 KO impairs PER and CRY
expression, increases ROS production
and leads to chronic oxidative stress in
the brain
• BMAL1, CLOCK, CRY1, or CRY2

deficiency may alter habituation,
exploratory activity, or open field
behaviors

Kondratova
et al., 2010

10.18632/
aging.10014

BMAL1 BMAL1−/− mouse;
L929 cells

• Aged BMAL1 KO mice had
age-dependent sarcopenia and bone
loss, and ↑ ROS accumulation in various
peripheral tissues which correlated with
age-dependent degeneration
• Cells with suppressed BMAL1

expression had ↓ PER1 expression

Kondratova
et al., 2010

doi: 10.1101/
gad.143220

dClck, PER,
TIM

Drosophila
melanogaster

• PER protein expression ↓ with age
• Expression of stress response genes is

dependent on dClk

Kuintzle
et al., 2017

10.1038/
ncomms1452

Circadian
Disruption

BMAL1,
BMAL2

BMAL2 transgenic
mice (B2Tg)

• Constitutive promoter expression of
BMAL2 restores rhythmic locomotor
activity and rhythmic metabolic
processes in BMAL1 ablated mice

Shi et al.,
2010

10.1016/j.cub.
2009.12.03

Dblt Drosophila
melanogaster

• Mutation of Dblt near phosphate
recognition site or nuclear localization site
shortens period length

Venkatesan
et al., 2019

10.3390/
ijms2004081

PER Drosophila
melanogaster

• Mutation in PER causes impaired
short-term and 24 h memory
performance, shortened sleep cycles,
and long-term memory deficits

Fropf et al.,
2018

10.1016/j.
nlm.2018.02.01

(Continued)
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TABLE 1 | Continued

Studied ND/ND
Risk factor

Clock Gene(s)
examined

Model system(s) Observations Investigator DOI

HD dClk, PER, TIM Drosophila
melanogaster

• Partial knockdown of dClk suppressed
mutant Huntingtin protein aggregation, this
effect lost in absence of PER
• PER expression ↓ during its normal peak

hours
• PER and TIM had prolonged expression

patterns

Xu et al.,
2019;
Farago
et al., 2019

10.1016/j.celrep.
2019.03.01,
10.1038/s41598-019-
43612-

BMAL1,
PER1-2

R6/2 mouse • R6/2 mice have abnormally rapid clearance
of PER1 and PER2 proteins in vivo
• SCN brain slices have normal circadian

gene expression
• Alprazolam treatment resulted in ↑ PER2

mRNA levels and some improvements in
motor function and survivability
• Hepatic BMAL1 and PER2 expression

maintained rhythmicity, though PER2
expression was significantly phase
advanced
• Hepatic CRY1 rhythmicity ablated
• Listed clock genes ↑ compared to the

untreated R6/2 mutants with restricted
feeding
• PER2 mRNA oscillations prematurely

truncated during normal peak times
• These alterations accompanied disturbed

circadian behavior and eventual total
circadian disintegration

Pallier
et al., 2007;
Maywood
et al., 2010;
Morton
et al., 2005

10.1523/JNEUROSCI.
0649-07.200,
10.1523/JNEUROSCI.
1694-10.201,
10.1523/JNEUROSCI.
3842-04.200

PD BMAL1,
CLOCK, CRY1,
PER2, RORα

6-OHDA treated rats
(PD phenotype);
6-OHDA treated
SH-SY5Y cells

• BMAL1, PER2, and CLOCK mRNA levels ↓
and RORα mRNA levels ↑ in 6-OHDA rats
• 6-OHDA-treated cells showed ↓ mRNA

levels of BMAL1, CLOCK, PER2, and
RORα, lower BMAL1/Clock protein
expression, and ↑ BMAL/Clock binding
ratio
• BMAL1 acetylation ↑ in rats and cells

treated with6-OHDA
• Acetylated BMAL1 levels, CRY1 and PER2

mRNA levels partially rescued by
Resveratrol in cells

Wang et al.,
2018

10.1155/
2018/485473

PER2 ASO mouse • SCN PER2 expression normal
• SCN neurons had lower daytime firing rates
• Circadian locomotor activities degenerated

with age
• Light adaptation response unaffected

Kudo et al.,
2011

10.1016/j.
expneurol.2011.08.00

BMAL1, PER2,
Rev-Erbα

Human subjects • Peripheral BMAL1 expression had ↓
time-dependent variation
• Brief increase in PER2 and Rev-Erbα at 4

AM, but otherwise no significant variation

Breen
et al., 2014

10.1001/jamaneurol.
2014.6

BMAL1,
CLOCK,
CRY1-2,
NPAS2,
NR1D1, RORB

Human subjects • BMAL1 and PER1 significantly associated
with PD risk
• SNPs in BMAL1 and PER1 also associated

with PD

Gu et al.,
2015

doi: 10.1038/
srep1589

BMAL1-2,
CLOCK, DEC1

Leukocytes from
human subjects

• BMAL1 and BMAL2 ↓ in PD patients Ding et al.,
2011

10.1016/j.
neulet.2011.05.08

BMAL1,
CLOCK,
CRY1-2
NPAS2,
PER1-2

Leukocytes from
human subjects

NPAS2 promoter significantly
hypomethylated in PD patients compared
to healthy controls
• Both groups had some CRY1, insignificant

BMAL1 methylation
• No detectable methylation in PER1, PER2,

CRY2, and CLOCK promoters

Lin et al.,
2012

10.1016/j.
neulet.2011.12.00

(Continued)
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TABLE 1 | Continued

Studied ND/ND
Risk factor

Clock Gene(s)
examined

Model system(s) Observations Investigator DOI

BMAL1,
CLOCK,
CRY1-2,
PER1-3,

Fibroblasts from two
human subjects (P1
and P2)

• P1 fibroblasts had upregulated CLOCK,
CRY1, and CRY2, expression and
downregulated PER2 expression
• P2 fibroblasts downregulate PER3 and

CRY2
• CRY1, PER2, and PER3, had significant

changes in oscillatory amplitude for both
patients

Pacelli
et al., 2019

10.3390/
ijms2011277

PD, aging BMAL1,
CLOCK, CRY1,
PER2,
Rev-Erba, Rorα

C57BL/6 mouse;
BSKO mouse; Sir2d
mouse; BSTG mouse;
N2a cells

• BMAL1, PER2, and Sirt1 ↓ in SCN of aged
C57 mice which caused light entrainment
impairment, disrupted circadian behaviors,
and longer periods
• BMAL1 and PER2 mRNA levels ↓ in Sirt1

KO mice (BSKO), behavioral disturbances
observed in aged C57s, recapitulated in
BSKOs
• BSTG mice had ↑ BMAL1 and PER2 levels
• All listed clock genes regulated by SIRT1 in

N2a cells
• KO of SIRT1 in vitro ↓ mRNA levels of all

listed clock genes

Chang and
Guarente,
2013

10.1016/j.
cell.2013.05.0

PD,
neuroinflammation

BMAL1,
CLOCK, CRY1,
CRY2, DBP,
PER1, PER2,
Rev-ERB, Rorα

Sprague-Dawley rats
treated with LPS
(lipopolysaccharide),
ROT (rotenone), or both
to induce PD
phenotype

• LPS injected rats sustained dopaminergic
neuron loss and severe neuroinflammation
• BMAL1 protein and mRNA expression ↓ in

all groups
• CLOCK and NPAS2 mRNA levels ↓ in all

groups
• PER1, PER2 ↓ in all groups
• CRY1 and CRY2 expressions not affected

in any group
• REV-ERB α and RORα ↓ in protein

expression and mRNA levels in all groups

Li et al.,
2019

10.1007/
s12640-018-9968-

DLB BMAL1,
CLOCK, CRY1,
CRY2, PER1,
PER2, PER3,
TIM, CK1ε

Leukocytes from
human subjects

• PER1 and CRY1 circadian genes
methylated
• DLB patients had significantly ↑ gene

methylation

Liu et al.,
2008

10.1016/j.
neulet.2008.02.04

Here several studies and their observations are summarized to portray the multiple connections found between the clock and ND, and to outline the significant impact
understanding this relationship may have in ND treatment.

model is characterized by irregular Cry and Per rhythms and
the preliminary success of TRF indicates that these genes are
positively affected by treatment.

Recently, melatonin has been found to be produced in
neuronal mitochondria (Suofu et al., 2017). Melatonin is well
known to be circadian regulated, and signals darkness to the SCN.
In a study conducted by Jauhari et al. (2020), it is demonstrated
that HD (AANAT knockout) mice exhibit increased levels of
mtDNA release, cGAS activation, and inflammation, all of
which can be modulated by exogenous melatonin. Melatonin
deficient mice exhibited accelerated aging and neurodegenerative
pathology. This mtDNA activation of neuronal proinflammatory
response provides potential insight to the circadian involvement
in HD (Suofu et al., 2017; Jauhari et al., 2020). Although the
precise molecular relationship between CD and HD remains
unclear, the association between the onset of HD and dysfunction
of the molecular clock is not. CD likely contributes to the
pathology of HD by way of chronic inflammation, mitochondrial
dysfunction, and DNA damage. This suggests a codependent
relationship between HD and CD, where HD onset may present

with symptoms of CD, and CD can accelerate the development of
HD (Kuljis et al., 2012).

PROTEINOPATHIES,
NEUROINFLAMMATION, AND THE
CLOCK

As previously described, one important function of the clock
is to mediate the timing of specific activities of the immune
system. These essential activities include leukocyte recruitment,
cytokine production, and cell proliferation (Scheiermann et al.,
2013). The reverse is also true. In an excellent review, Segal
et al. (2018) demonstrate that immune mediators can also alter
clock gene expression. Several excellent sources have outlined
the circadian influence over multiple cytokines, chemokines, and
hormones linked to the pro-inflammatory response. CLOCK and
CRY both activate protein complexes essential to the production
of cytokines and chemokines, and BMAL1 can both inhibit
CLOCK’s activation of these complexes and bind to e-boxes
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in promoter regions of immune mediator genes to produce
rhythmic levels of cytokines and chemokines (Segal et al.,
2018). These changes produce higher levels of cytokines and
chemokines important to inflammatory responses during the
active phase (Segal et al., 2018).

Neuroinflammation is integral to the onset and progression
of several neurodegenerative diseases. In the healthy brain,
neuroinflammation is kept in check by anti-inflammatory signals.
This process is essential because there is little neurogenesis
to replace damaged neurons in the adult brain. Thus, aging
and disease-related processes that shift the balance toward pro-
inflammatory signaling will increase neuron loss. A strong
association between the neuroinflammatory response and the
core clock has been established through Rev-Erbα. Recent
studies have shown that Rev-Erbα is essential to microglial
activation and neuroinflammation and is directly mediated by
BMAL1. Microglia are the specialized immune cells of the
central nervous system; in a healthy brain, they are primarily

anti-inflammatory. Furthermore, microglia have a functional
molecular clock and express PER1, PER2, Rev-Erbα, and
BMAL1 in a rhythmic manner that is disrupted by aging
(Fonken et al., 2016). In a study conducted by Griffin et al.
(2019), Rev-Erbα had a strong connection to neuroinflammation
by a series of in vivo and in vitro experiments. Rev-
Erbα deletion induced spontaneous hippocampal microgliosis
(microglia activation). Rev-Erbα deletion also exacerbated LPS-
induced neuroinflammation. However, when injected twice daily
with the pharmacological Rev-Erbα activator SR9009, wild
type (WT) mice showed reduced levels of pro-inflammatory
transcripts. Additionally, in a glial cell model containing
microglia and astrocytes from postnatal WT mice, Rev-Erbα

knockdown increased neuronal death when OS was induced
with hydrogen peroxide (Griffin et al., 2019). However, results
in the 5xFAD mouse model of β-amyloidosis show a conflicting
role for REV-ERBs in microglial activation. Here, a dramatic
decrease in Aβ plaque burden is shown in REV-ERBα deficient

FIGURE 3 | Harmful positive feedback as a driver for neurodegeneration. Stress and toxic extracellular milieu produced by neuronal death drives a chronic
inflammatory response, as well as further breakdown of circadian function in cells. There is a common link between neurodegenerative disease (ND) and overactivity
of the immune system, which plays a key role in each of the ND’s described. These conditions result in not only increased cell death, but deregulation of protein
folding, increased DNA damage, astrocyte malfunction, and increased Aβ burden. There is a common link between ND and overactivity of the immune system,
which plays a key role in each of the ND’s described. Additionally, symptoms of circadian dysfunction are often reported in ND patients, suggesting that the
pathology of the disease also drives further CD, creating a devastating circular relationship between CD and neuronal damage.
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mice, with no impact on APP expression when compared to WT.
Additionally, inhibition of REV-ERBα in vitro not only showed
an overall increase in Aβ uptake, but that uptake is increased
in a CT-dependent manner which correlates with upregulated
BMAL1 expression (Lee et al., 2020). Together, these findings
suggest that Rev-Erbα plays a pivotal neuroprotective role against
OS and an excessive neuroinflammatory response, although this
relationship is confounded by conflicting results concerning
REV-ERB’s regulation of microglial activation.

There is a toxic cycle of protein accumulation and pro-
inflammatory signaling that is exacerbated by clock dysfunction
in neurodegenerative diseases. For example, tau NFTs are
one source of the persistent pro-inflammatory response
in neurodegeneration, as tau misfolding produces axon
degeneration and eventual neuron death. It is postulated that
protein unfolding events in several neurodegenerative disorders
can also be triggered by microglial activation (Guzman-Martinez
et al., 2019; Maccioni et al., 2020). This pro-inflammatory
response serves as positive feedback for overstimulation of
glial cells, which are thought to be involved in the excessive
phosphorylation of tau (Guzman-Martinez et al., 2019). This
increased neuroinflammatory stress accelerates tau pathology,
and also gives rise to an alternative AD-specific conformation
of astrocytes (Habib et al., 2020). Typically, astrocytes offer
a neuroprotective function against excessive inflammation.
However, altered functionality may have an effect on the
function of the astrocytes, including toxic gains of function,
or loss of function in neuronal support and Aβ plaque uptake
and clearance (Garwood et al., 2017; Gonzalez-Reyes et al.,
2017). Similar cycles have been demonstrated in all other
proteinopathies discussed – toxic a-synuclein, TDP-43, and
huntingtin proteins all drive neuroinflammation and are, in
turn, exacerbated by the inflammatory response (Figure 2)
(Fellner et al., 2011; Shi et al., 2010; Correia et al., 2015; Crotti
and Glass, 2015; Lopes da Fonseca et al., 2015; Pearce et al.,
2015; Jung and Chung, 2018; Spiller et al., 2018; Tremblay et al.,
2019). Independent of which proteinopathy is being examined,
the protein accumulation-driven neuroinflammatory response
stimulates microglia to release cytokines that further drive a
pro-inflammatory response, resulting in chronic inflammation
and eventual neuronal death (Guzman-Martinez et al., 2019).
It is also important to note the proposed circadian rhythmicity
observed in glymphatic influx and clearance in mice, where
drainage and influx of CSF from the cisterna magna appear to
be time-of-day dependent (Hablitz et al., 2020). As previously
demonstrated, the molecular clock exerts tight control over
immune activity (Segal et al., 2018). The activation and inhibition
mechanisms described by Segal et al. (2018), combined with the
interactions of neuroinflammation, toxic protein aggregation
and neuronal damage, suggest an overarching relationship
between proteinopathy, neuroinflammatory stress, and the
molecular clock. It is also important to remember that the
clock is impacted by stress, as discussed earlier in this review.
In a self-perpetuating cascade, circadian dysfunction both
accelerates tau pathogenesis and is negatively impacted by tau
toxicity and the chronic stress response. This feedback could
explain the steep acceleration of cognitive decline often seen

in laboratory models of proteinopathy-associated dementias
(Baron et al., 2014).

DISCUSSION

This review summarizes findings from studies examining the
effects of neurodegeneration and its associated pathology on
the core clock (Table 1). Numerous findings indicate stress
and neuroinflammation as a central process that links both
circadian dysfunction and neurodegenerative disease (Figure 3).
Perhaps the most compelling findings are the association of
CK1δ with pathogenic tau deposits and the roles of Rev-
Erbα in the neuroinflammatory response. Rev-Erbα presents
itself as an interesting pharmacological treatment target to
rescue neuronal damage, which would be an incredible step
toward slowing neurodegenerative disease pathogenesis. The
Rev-Erbα activator SR90009 has exhibited promising results in
decreasing Aβ levels in the brain, improving synaptic health
and axonal structure, as well as reversing cognitive defects in
an AD mouse model (Roby et al., 2019). Additionally, our
work demonstrating rescue of pathology, memory deficits, and
circadian dysfunction in a mouse model of beta-amyloidosis by
inhibiting CK1 activity suggests that targeting post-translational
mechanisms is also a viable strategy – especially since kinases,
such as CK1, that work on both pathogenic and clock
mechanisms act as a nexus between the two processes, which
potentially addresses the neurodegenerative disease pathogenesis
and circadian dysfunction simultaneously.

Although significant progress has been made over the past
decade, there are many lingering questions about the complex
relationship between the molecular clock and the pathogenic
mechanisms of neurodegeneration. Answers to these questions
may lead to improved diagnosis, treatment, and management of
these debilitating diseases.
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