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Background: Endometrial cancer (EC) is one of the most lethal gynecological cancers
around the world. The aim of this study is to identify the potential immune
microenvironment-related biomarkers associated with the prognosis for EC.

Methods: RNA-seq data and clinical information of EC patients were derived from The
Cancer Genome Atlas (TCGA). The immune score of each EC sample was obtained by
ESTIMATE algorithm. Weighted gene co-expression network analysis (WGCNA) was used
to identify the interesting module and potential key genes concerning the immune score.
The expression patterns of the key genes were then verified via the GEPIA database.
Finally, CIBERSORT was applied to evaluate the relative abundances of 22 immune cell
types in EC.

Results: Immune scores were significantly associated with tumor grade and histology of
EC, and high immune scores may exert a protective influence on the survival outcome for
EC. WGCNA indicated that the black module was significantly correlated with the immune
score. Function analysis revealed it mainly involved in those terms related to immune
regulation and inflammatory response. Moreover, 11 key genes (APOL3, C10orf54,
CLEC2B, GIMAP1, GIMAP4, GIMAP6, GIMAP7, GIMAP8, GYPC, IFFO1, TAGAP)
were identified from the black module, validated by the GEPIA database, and revealed
strong correlations with infiltration levels of multiple immune cell types, as was the
prognosis of EC.

Conclusion: In this study, 11 key genes showed abnormal expressions and strong
correlations with immune infiltration in EC, most of which were significantly associated with
the prognosis of EC. These findings made them promising therapeutic targets for the
treatment of EC.
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INTRODUCTION

Endometrial cancer (EC) is one of the most common
gynecologic malignancies and represents the leading cause of
morbidity and mortality among women worldwide (Ventriglia
et al., 2017). Importantly, the incidence of EC is rising in the
United States and more than 20 other countries (Lortet-Tieulent
et al., 2018). In 2020, it occurred 65,620 new cases and caused
12,590 deaths in the United States (Siegel et al., 2020). The 5-
years overall survival rate for early stage is about 81% while that
for advanced stages (IVA and IVB) is approximately 15% (Siegel
et al., 2018).

EC is histologically classified into several subtypes,
including endometrioid endometrial adenocarcinoma

(EEC), serous endometrial adenocarcinoma (ESC), mixed
serous and endometrioid (MSE), clear cell, and malignant
mixed Mullerian tumors (MMMT) (Gaber et al., 2016; Urick
and Bell, 2019). EEC is the most common histology,
representing about 75% of all endometrial cancers,
followed by ESC (1–5%) and clear cell (1–5%) (Murali
et al., 2014). While the endometrioid subtype can be high
or low grade, the other histological subtypes, especially ESC
and clear cell, are generally high in grade with worse
prognoses (Sorosky, 2012). EEC is characteristically driven
with estrogen receptors (ER) and progesterone receptors
(PR) and thanks to its early symptoms like abnormal
uterine bleeding, EEC is usually diagnosed early (Lax
et al., 1998).

FIGURE 1 | Flowchart of this study.
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Despite remarkable advances of novel therapies, such as
chemotherapy and radiotherapy, surgical resection with
hysterectomy and bilateral salpingo-oophorectomy remains the
primary and standard clinical intervention for EC patients, and
the postoperative 5-years survival rate is till unfavorable, posing a
huge threat to women’s lives. Immunotherapy, based on the
concept of stimulating the endogenous immune response
against tumor cells, has become a dependable clinical strategy
in cancer treatment. For example, the agents blocking PD1/PD-
L1 have exhibited impressive effects on lung, renal cancer, and
melanoma (Terme et al., 2011). It has been found that
endometrial tumor cells can activate PD-1 signaling and the
PD1/PD-L1 expression levels in EC (40%–80% in EEC,
10%–68% in ESC, and 23%–69% in clear cell subtypes)
represent the highest expression among gynecologic cancers,
thus holding great promise for EC treatment (Brahmer et al.,
2012; Vanderstraeten et al., 2015). In this study, we used several
algorithms including ESTIMATE and CIBERSORT to assess the
immune scores and immune infiltration in EC and identified 11
potential immune therapeutic targets involved in the regulation
of the immune microenvironment (IME) of EC, providing
candidate prognostic biomarkers for EC. The workflow for
this study is shown in Figure 1.

MATERIALS AND METHODS

Data Acquisition, Immune Score
Generation, and Clinical Relationship
We retrospectively collected the gene expression profilings of 545
endometrial adenocarcinoma (cases were enrolled according to
basic clinical information including gender, age, subtype, grade,
and stage) and 35 normal tissue samples from the TCGA
database (https://portal.gdc.cancer.gov/). The corresponding
clinicopathological parameters including age, height, weight,
BMI, histology, TNM stage, tumor grade, tumor burden, and
survival data were also obtained. For data preprocessing, gene
names were transformed to official gene symbols with Perl
language, and the only genes with non-zero expression values
in at least half of the sample type were kept. The immune score of
each tumor sample was calculated with the ESTIMATE algorithm
using the estimate package (Yoshihara et al., 2013) based on R
language software (version 3.6.0). Afterward, the immune scores
were compared between different subgroups according to
clinicopathological parameters with the Wilcox test. To
evaluate the prognostic associations, Kaplan-Meier plots for
overall survival (OS) or disease-free survival (DFS) in high- or
low-immune score groups were depicted based on the optimized
immune score value (−1.322856 and −11.99095 for OS and DFS,
respectively) of each patient, with a log-rank test for statistical
significance. Besides, given that the IME might be correlated with
tumor stemness (Yi et al., 2020), we also obtained the available
mRNA expression-based stem index (mRNAsi) of 528 EC
patients as previously reported (Malta et al., 2018), following
with the exploration of the spearman correlation between
immune score and miRNAsi.

Screening the Differentially Expressed
Genes (DEGs) in EC
DEGs analysis between EC and normal tissues was performed by
using the “limma” package (Ritchie et al., 2015), with the criteria
of adj.P.Val <0.01 and | logFC| >1. Because the sample size of the
tumor group was much larger than that of the normal group (545
vs 35), we adopted the subset-based strategy to balance the
samples. Specifically, we randomly generate a subset of 50 EC
tumor samples from the EC group five times without repetition,
yielding a ratio of about 1.4:1 for tumor and normal samples.
DEGs were screened by comparing the expression profile of each
tumor subset and that of the normal tissue group. Venn diagrams
were plotted to get the common DEGs by the five independent
subset-based analyses.

Weighted Gene Co-expression Network
Analysis
Weighted gene co-expression network analysis (WGCNA) is
a systematic algorithm to cluster highly correlated genes and
to identify significant modules or key genes that are
associated with a certain phenotype. In the current study,
we utilized the WGCNA package (Langfelder and Horvath,
2008) to construct a gene co-expression network of common
DEGs. In brief, sample clustering was conducted with the
average linkage method to recognize and remove outlier
samples, followed by the selection of the appropriate soft
thresholding power (β) to achieve a scale-free topology fitting
index of >0.9. Then the adjacency was transformed into a
topological overlap matrix (TOM) and the corresponding
dissimilarity matrix (1-TOM), which was further used to
implement the gene clustering dendrogram with the
minimum module of 30. Highly similar dynamic modules
were merged into larger ones at the cutline of 0.2. Pearson
correlation analysis was carried out to evaluate the
relationships between modules and the immune score. The
most significant module was identified and the gene
significance (GS) and module membership (MM) were
calculated. Key genes were defined as those with the GS >
0.7 and MM > 0.7 in this module.

PPI Network Construction
A protein-protein interaction network of the identified module
was constructed by STRING database (https://www.string-db.
org) version 11.0 using the median confidence (combined score
>0.4) and visualized by Cytoscape software (version 3.2.1). The
network topology including node degree was investigated by the
cytohubba application.

Function Enrichment Analysis
To explore the involved biological functions and pathways of the
significant module, we conducted Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
with the “clusterProfiler” R package. The significant terms were
defined as those with a p.adjust value of <0.05.
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Key Genes Validation
GEPIA is a widely-used web tool for data mining and
visualization of the RNA sequencing expression data from the
TCGA and the GTEx projects (Tang et al., 2017). In this study, we
applied GEPIA to validate the differential expression of the key
genes identified by WGCNA. The default parameters (|Log2FC|
Cutoff of 1, and p-value Cutoff of 0.01, and log2 (TPM +1) for
log-scale) were employed. Match TCGA normal and GTEx data
were combined as the normal group (n � 91). Besides, the
associations of the key genes and tumor grade or tumor
histology were further explored, and the correlation matrix of
the key genes was generated.

Survival Analysis of the Key Genes
In order to evaluate the prognostic values of the key genes, we
carried out the Kaplan-Meier survival analysis for OS (n � 543)
and DFS (n � 541) with the aid of the EC samples from TCGA.
For each key gene, patients were assigned to high- or low-
expression groups according to the optimized immune score
value of each patient. Statistical significance was measured by
the log-rank test.

Estimation of the Immune Cell Landscape
CIBERSORT, an analytical tool providing an estimation of the
abundances of member cell types via gene expression data (Chen
et al., 2018), was introduced to evaluate the tumor immune
infiltration levels of EC. The relative proportion of 22 tumor
immune cell types including B cells naïve, Plasma cells, B cells
memory, T cells CD8, T cells CD4 naïve, T cells CD4 memory
activated, T cells CD4 memory resting, T cells regulatory (Tregs),

T cells follicular helper, T cells gamma delta, Monocytes, NK cells
activated, NK cells resting, Macrophages M0, Macrophages M1,
Macrophages M2, Dendritic cells activated, Dendritic cells
resting, Mast cells activated, Mast cells resting, Eosinophils
and Neutrophils were computed. Moreover, the relationship
between key genes and each of the immune cell types was
investigated.

RESULTS

Correlations Between Immune Score and
Clinical Characteristics in EC
For the assessment of the correlations between immune scores
and clinical outcomes, the high immune score group of EC
patients showed a significantly superior overall survival (OS) or
disease-free survival (DFS) than that of the low immune score
group (p � 0.0061 for OS and p � 0.012 for DFS, respectively)
(Figures 2A,B; Supplementary Figure S1). To investigate the
relevance to clinical variables, 545 EC patients were classified
by grade, histology, stage, age, height, weight, BMI, and tumor
burden. Consequently, among these clinical characteristics, no
significant associations were observed between immune score
and tumor stage (p � 0.2), age (p � 0.24), height (p � 0.29),
weight (p � 0.17), BMI (p � 0.11) or tumor burden (p � 0.1)
(Figures 2C–H). However, the immune score was significantly
associated with tumor grade (p � 0.041) and histology (p �
0.034) (Figures 2I,J). Specifically, for tumor grade, grade G3
(poorly differentiated) had a significantly lower immune score
than G1 and G2. In terms of tumor histology, it seemed the ESC

FIGURE 2 | Correlation between immune score and clinical characteristics in endometrial carcinoma (EC). (A, B) Kaplan–Meier survival plots of immune score for
OS (A) and DFS (B) for EC patients. (C–J) Associations of immune score and clinical characteristics including stage (C), age (D), height (E), weight (F), BMI (G), tumor
burden (H), grade (I), and histology (J). OS, overall survival. DFS, disease free survival.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6453884

Guo et al. Key Biomarkers in EC

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


subtype has the lowest immune score. Besides, according to the
Pearson correlation analysis, a significantly negative
correlation might exist between the mRNA stemness index
(mRNAsi) and the IME in EC patients (Supplementary
Figure S2).

Screening of DEGs in EC
The significant correlations between immune score and clinical
characteristics or survival outcomes prompt us to hypothesize
that oncogenes or tumor suppressor genes might be linked to
different immune microenvironments of EC. Therefore, we
screened the DEGs between EC and normal samples with the
subset-based approach using the TCGA-UCEC dataset. First, we
randomly subsampled 50 EC samples from the tumor group five
times. Second, we obtained the DEGs between EC samples from
each subset and the 35 normal samples, respectively (Figures
3A–E). As a result, 2,421 (980 up-regulated and 1,441 down-
regulated), 2,545 (1,105 up-regulated and 1,440 down-
regulated), 2,516 (1,110 up-regulated and 1,406 down-
regulated), 2,563 (1,140 up-regulated and 1,423 down-
regulated), and 2,454 (1,094 up-regulated and 1,359 down-
regulated) DEGs were discerned in subset 1, 2, 3, 4, and 5,
respectively. We next intersected the DEGs from all five
subsets using two Venn diagrams, including a total of 758

common up-regulated genes and 1,179 common down-
regulated in EC (Figures 3F,G).

Co-Expression Network of DEGs in EC
WGCNAwas used to construct a co-expression network of DEGs
in EC. Seven outlier samples were removed prior to network
construction. The optimal soft-thresholding power of 5 (scale-
free R2 � 0.96) was picked to ensure the scale-free topology
(Figure 4A). A total of seven modules were screened out after
merging dynamic modules with the Diss Thres of 0.2 (Figure 4B).
Then, we focused on the most correlated module with the
immune score in EC by computing the Pearson correlation
coefficient (PCC) and corresponding p-value. As Figure 4C
indicated, the black module was found to be significantly
positive with immune score (PCC � 0.82, P � 2E-134),
including 71 DEGs in EC. With the thresholds of GS > 0.7
and MM > 0.7 to further narrow down the range of candidate key
genes, 11 DEGs were finally identified for the subsequent analysis
(Figure 4D).

The PPI Network of the Black Module
A PPI network was built to analyze the black module explored
above, containing a total of 42 DEGs (Figure 5A). There were
totally eight up-regulated genes (red) and 34 down-regulated

FIGURE 3 | Screening of the DEGs in EC tissues compared with normal tissues with the subset-based approach using the TCGA-UCEC dataset. (A–E) Volcano
plots showing the DEGs identified from five subsets of the TCGA-UCEC dataset. Red dots represent the upregulated genes, while blue dots represent the
downregulated genes. (F–G) Venn diagrams showing the common upregulated genes (F) and common down-regulated genes (G) shared by the five subsets-based
DEGs. DEGs, differentially expressed genes. EC, endometrial cancer.
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genes (blue) in the PPI network. Interestingly, several members of
the GTPase IMAP family, i.e., GIMAP1, GIMAP4, GIMAP6,
GIMAP7, and GIMAP8 formed a close submodule. For network
topology, the top 12 hub nodes in the entire PPI network with
their degrees were visualized in Figure 5B, the top 11 of which
were closely connected and used to construct a sub-network

(Figure 5C). The most important protein is CXCL10 (8 edges)
in EC.

Function Analysis of the Black Module
To find out which cellular functions and pathways the genes of
the black module were involved in, GO and KEGG enrichment

FIGURE 4 |Weighted gene co-expression network analysis of EC. (A) Selection of the optimal soft-thresholding power for the scale-free network. (B)
DEGs dendrogram using the dissimilarity measure (1-TOM). (C) Correlation analysis of module eigengenes and immune score. Pearson’s correlation
coefficient and the corresponding p-value are shown. (D) Scatter plot of the black module showing the relationship between GS and MM. Key genes are
indicated in the upper-right corner with the threshold of GS > 0.7 and MM > 0.7. TOM, topological overlap matrix. GS, gene significance. MM, module
membership.
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analysis were performed. GO analysis results indicated that the
key genes of the black module mostly participated in the
biological process (BP) of regulation of inflammatory response,
and the main related molecular function (MF) terms were GTP
binding, purine ribonucleoside binding, and purine nucleoside

binding, but no cellular component (CC) was enriched
(Figure 6A). Detailed information of GO enrichment was
shown in Supplementary Tables S1, 2. KEGG analysis
demonstrated that the most significantly enriched pathway
was complement and coagulation cascades (Figure 6B).

FIGURE 5 | PPI network of the black module in endometrial cancer. (A) The PPI network consisting of 42 genes from the black module. Red nodes represent the
upregulated genes, while the blue nodes represent the downregulated genes. (B) The top 12 nodes with the highest degree in the network. (C) The significant cluster
formed by the top 11 nodes with most neighbor genes. PPI, protein-protein interaction.
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Validation of Key Genes in the GEPIA
Database
Next, we verified the filtered key genes in the GEPIA database.
The expression values of the 11 key genes were shown in Figure 7,
indicating a significantly lower expression level in EC tissues
compared with normal tissues for each key gene. In addition, we
also showed the comparison of the expression levels of the 11 key
genes in EC and normal tissues from five subsets of the TCGA-
UCEC with boxplots (Supplementary Figure S3), and as we
predicted, these genes were significantly lower-expressed in EC.

Correlation Analysis of the Key Genes
Given that immune score was associated with the tumor grade
and histology in EC, we further compared the expression
levels of the 11 key genes in different grades and different
histological subtypes of EC. Differential analysis revealed
significantly decreased expressions of GIMAP1, GYPC, and
IFFO1 in high grade of EC (Figure 8A), and only GYPC was
found to be correlated with different histological subtypes of
EC (Figure 8B). Moreover, Pearson correlation analysis
coupled with statistical significance demonstrated strong
correlations between the expression values of these key
genes, denoting their tight connections with each other. As
the matrices shown, the minimum correlation coefficient
among these genes was 0.52 while the maximum was 0.93.
(Figure 8C).

Survival Analysis
To evaluate the prognostic powers of these key genes, we
examined the 11 key genes in perspective of DFS using

Kaplan-Meier analysis and log-rank tests. We found that low
expression of GIMAP1 (p � 0.0044), GIMAP4 (p � 0.0001),
GIMAP6 (p � 0.02), GIMAP7 (p � 0,00,081), GIMAP8 (p �
0.0011), GYPC (p � 0.0011) and IFFO1 (p � 0.0079) were
significantly associated with worse prognosis (Figure 9). For
OS survival analysis, CLEC2B (p � 0.023), GIMAP1 (p �
0.0072), GIMAP4 (p � 0.0026), GIMAP7 (p � 0.023),
GIMAP8 (p � 0.0055), GYPC (p � 0.0077) and IFFO1 (p �
0.014)) were found to be significantly associated with OS of EC
patients (Figure 10).

The key Genes were Significantly
Associated with Infiltration of Immune Cells
in EC Microenvironment.
To further explore the correlations of between the key genes’
expression levels and immune microenvironment, the
proportions of 22 distinct immune cell types in EC samples
were estimated with the CIBERSORT algorithm (Figure 11A).
Next, we explored the correlation between immune cell type
proportions and the expression levels of the 11 key genes, and the
results indicated that all of these 11 key genes were significantly
associated with at least eight kinds of immune cells (Figure 11B).
All of the 11 key genes were positively correlated to the infiltration
of activated Dendritic cells, M0 macrophages and activated mast
cells, while they were all negatively correlated to the infiltration of
M1 macrophages, plasma cells, activated CD4 memory T cells
and CD8 T cells in EC samples. These results suggested that these
key genes might be potential indicators for immune activity
of IME.

FIGURE 6 |GO (A) and KEGG (B) enrichment analysis of the black module in endometrial cancer. BP, biological process. CC, cellular component. MF, molecular
function.
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FIGURE 7 | Validation of the abnormal expressions of the key genes via the online database of GEPIA. *p < 0.01.
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FIGURE 8 | Correlation analysis of the key genes in endometrial cancer (EC). (A, B) Boxplots showing the correlations of the key genes with tumor grade and
histology in EC. (C) Pearson correlation matrices between expression values of the key genes. *p < 0.05, **p < 0.01, **p < 0.001, and ns indicates no significance.
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DISCUSSIONS

In the United States, it was reported that 65,620 new cases and
12,590 deaths of EC occurred in 2020. The mortality has
increased by approximately 1.4% per year from 2005 to 2014
(Torre et al., 2015; Siegel et al., 2020). The prognosis prediction of
EC is largely based on histologic grade and clinical stage (Torre
et al., 2015). Although several reports have pointed out the
presence of immune dysregulation in EC and considered
immune checkpoint blockade therapy as a potential treatment
for EC patients (Le et al., 2015), the mechanism of the
dysregulation of the IME in EC has not been completely

revealed. In this study, we estimated the immune score for
more than 500 EC samples and found that the immune score
was significantly correlated with the grade and histology of EC.
More importantly, it was strongly correlated with the OS and DFS
of EC. For further study, we aimed at figuring out the key genes
playing pivotal roles in the constitution of the immune
microenvironment in EC.

Through subset-based analysis using the TCGA-UCEC
dataset, we identified 758 upregulated genes and 1,179
downregulated genes in EC compared with normal samples.
Further, we identified the black gene module that mostly
correlated with immune score by WGCNA, which contained

FIGURE 9 | Kaplan–Meier survival curves of the 11 key genes characterizing DFS difference with log-rank tests in endometrial cancer. DFS, disease-free survival.
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71 differential immune-associated DEGs. Functional analysis
revealed the module was mainly associated with the
inflammatory response. Interestingly, five members of GTPase
of immunity-associated protein (GIMAP) family (also known as
immune-associated nucleotide-binding protein (IAN)) genes
were included in the key genes. Numerous studies have
reported that the function of the GIMAP family in regulating
T cell development, selection, and homeostasis (Krucken et al.,
2005; Nitta et al., 2006; Schnell et al., 2006). Therefore, it
suggested that the five GIMAP family genes might play an
important part in regulating the immune microenvironment in
EC. In addition, two chemokines, CXCL10/IP-10 and CCL18
were unearthed. CXCL10 can recruit NK cells to tumor site and

activate NK cells to kill cancer cells (Nagarsheth et al., 2017), and
it has been reported strongly produced in tumor compared with
the adjacent tissue in EC (Degos et al., 2019). CCL18, mainly
secreted by tumor-associated macrophages (TAMs) in tumors,
was positively correlated with malignancy in EC (Sakane et al.,
2014; Jing et al., 2019). Our results verified that CXCL10 and
CCL18 were two important factors in constituting the immune
microenvironment of EC.

ThroughWGCNA analysis, we chose 11 key genes in the black
module that were mostly correlated with immune scores for
further investigation. In this study, the expressions of these
key genes were significantly decreased in EC samples, which
were confirmed by GEPIA database. Besides the five GIMAP

FIGURE 10 | Kaplan–Meier survival curves of the 11 key genes characterizing OS difference with log-rank tests in endometrial cancer. OS, overall survival.
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family genes, TAGAP (T cell activation Rho GTPase activating
protein) is also a GTPase related gene and an indicator of
lymphocyte activation (Mao et al., 2004; Arshad et al., 2018).
These abnormally expressed genes implied the immune disorders
in the endometrial tumor environment.

Considering the correlation between immune score and
clinical characteristics (grade and histology), we further
quantified the correlations between the key genes and the
tumor grade and histology in EC, individually. The expression
levels of GIMAP1 and GYPC were significantly correlated to the
tumor grade and only GYPC was significantly correlated to the
tumor histology in EC. In the perspective of tumor grade,
GIMAP1 showed the lowest expression in high grade while
GYPC showed the lowest expression in G3. In addition, GYPC
showed the lowest expression in MSE in the perspective of the
histology of EC. Several studies reported that GIMAP1 is critical
for the development of mature lymphocytes (Saunders et al.,
2010; Webb et al., 2016; Datta et al., 2017). We observed that
higher tumor grade of EC was accompanied by lower GIMAP1
expression and it seemed that higher grade of EC might have less
functional lymphocytes infiltration in EC tumor

microenvironment and led to a worse prognosis. Furthermore,
the survival analysis verified that low expression of GIMAP1 led
to a worse prognosis in EC. At last, all of the key genes were
significantly and positively correlated with each other.

Given that the key genes were downregulated in EC samples,
we explored whether their expression levels were correlated to
DFS and OS. As a result, eight key genes (CLEC2B, GIMAP1,
GIMAP4, GIMAP6, GIMAP7, GIMAP8, GYPC, and IFFO1)
were positively correlated to the favorable prognosis.
Interestingly, five members (GIMAP1, GIMAP4, GIMAP6,
GIMAP7, GIMAP8) and four members (GIMAP1, GIMAP4,
GIMAP7, and GIMAP8) of the GIMAP family were positively
correlated with the DFS and OS, respectively. Combined with the
results above, GIMAP family might hold great promise in EC
exploration and deserve more attention in the future. As
expected, GYPC was also related to the DFS and OS,
suggesting its prognostic potential in EC. Besides, few Studies
have been conducted in terms of IFFO1, the nucleoskeleton
protein, which was recruited to the sites of DNA damage to
promote the repair of DNA double-strand breaks (Li et al., 2019).
Moreover, CLEC2B/AICL was reported as an important gene in

FIGURE 11 | Immune infiltration cell profile for EC (A) and correlation between immune cell proportion and expression levels of key genes (B).
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NK cells stimulating NK cell effector function such as cytotoxicity
and cytokine secretion (Neuss et al., 2018).

Previous studies have reported that the immune
microenvironment was associated with the prognosis in EC
(Ino et al., 2008; de Jong et al., 2009; Versluis et al., 2017).
Therefore, we used CIBERSORT to estimate the infiltration of 22
immune cell types in EC samples. Preliminary results showed that
macrophages and T cells might be the predominant immune cell
types infiltrated in EC tumor microenvironment. Moreover, the
key genes we found were strongly associated with multiple
immune cell types infiltrated in EC tumor. The positive or
negative correlation between the genes and immune cell types
suggested lower or higher infiltration of those immune cell types
in EC samples compared with normal samples. Obviously, there
might be more M1 macrophages and CD8 T cells and less M0
macrophages and activated dendritic cells infiltrated in EC
samples than those in normal samples.

However, limitations that should be mentioned: First,
although we adopted the subset-based approach to balance the
samples from the TCGA database, due to the small sample size of
normal controls, more verifications are still required to enhance
the robustness of the screened DEGs. Secondly, future biological
experiments of in vitro and in vivo studies are needed to test and
explore the effects of the key genes in EC.

Taken together, we discovered 11 key genes in this study,
which were closely correlated with each other, abnormally
expressed and associated with immune scores and clinical
survival outcome in EC. They might play a critical role in the
dynamic modulation of EC immune microenvironment and
deserve further research in the future to reveal the specific
functions and mechanisms in regulating immune cells

infiltration or EC. A deeper understanding of these genes will
throw light on the discovery of potential antibodies or small
molecules for targeted therapy of EC by using effective
computational methods such as network pharmacology and
molecular docking.
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