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More than 7,000 rare diseases (RDs) exist worldwide, affecting approximately 350
million people, out of which only 5% have treatment. The development of novel
genome sequencing techniques has accelerated the discovery and diagnosis in RDs.
However, most patients remain undiagnosed. Epigenetics has emerged as a promise
for diagnosis and therapies in common disorders (e.g., cancer) with several epimarkers
and epidrugs already approved and used in clinical practice. Hence, it may also become
an opportunity to uncover new disease mechanisms and therapeutic targets in RDs.
In this “big data” age, the amount of information generated, collected, and managed
in (bio)medicine is increasing, leading to the need for its rapid and efficient collection,
analysis, and characterization. Artificial intelligence (AI), particularly deep learning, is
already being successfully applied to analyze genomic information in basic research,
diagnosis, and drug discovery and is gaining momentum in the epigenetic field. The
application of deep learning to epigenomic studies in RDs could significantly boost
discovery and therapy development. This review aims to collect and summarize the
application of AI tools in the epigenomic field of RDs. The lower number of studies
found, specific for RDs, indicate that this is a field open to expansion, following the
results obtained for other more common disorders.

Keywords: epigenetics, epigenomic, artificial intelligence, machine learning, personalized medicine, rare
diseases (RD)

INTRODUCTION

To date, more than 7,000 rare diseases (RDs) have been described, collectively affecting about 350
million people globally1 (Ronicke et al., 2019). Approximately 80% of RDs have a genetic origin
and about 75% affect children (Ekins, 2017). Most RDs are monogenic (Mendelian) and for that,
are considered “simple” traits. However, RDs are now more and more considered complex traits
due to: (a) phenotypic and genetic heterogeneity, (b) complex mutation spectrum (e.g., existence

1About Rare Diseases | www.eurordis.org Available online: https://www.eurordis.org/about-rare-diseases (accessed on Nov
10, 2020).
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of modifier genes), and (c) unknown gene-disease associations
and genetic mechanisms. They face the problem of “missing
heritability,” which impairs discovery, diagnosis, and patient care
(Scriver and Waters, 1999; Berdasco and Esteller, 2019; Maroilley
and Tarailo-Graovac, 2019).

Epigenetics is the mechanism by which changes in gene
expression occur without changing the DNA sequence.
It is the product of a complex interaction between the
genotype of an individual and the surrounding environment
and plays a determinant role in disease development and
progression (Romanowska and Joshi, 2019; Rauschert et al.,
2020). Epigenetics includes DNA methylation, histone post-
translational modifications and variants, regulation by small
non-coding RNAs (sncRNAs) (e.g., RNA interference and
microRNAs), and nuclear organization, which are responsible
for appropriate activation or repression of genes (García-
Giménez et al., 2012; Wen and Tang, 2018). Such processes
represent a link to the lifestyle and environmental contributions
and can be detected at early stages of the disease and in
all genomic contexts not only in coding regions but also in
non-coding regions (García-Giménez et al., 2012). Hence,
epigenetic biomarkers represent an attractive option in
clinical research and practice. Epigenetic modifications
are technically stable, particularly DNA methylation, thus
facilitating their identification. They are also quite stable in
fluids and tissues that are commonly accessed in research and
clinical practice. Increasing efforts are being made to develop
new methodologies (e.g., single cell epigenome sequencing
techniques) and tests to implement epigenetic biomarkers
and their monitoring in clinical practice (Wen and Tang,
2018). In fact, clinical epigenetics is already established in
Oncology with biomarkers approved by the US Food and
Drug Administration (FDA) for diagnosis, prognosis, or
therapy response, as well as epigenetic-based therapies. It is
also becoming a growing field in neurological, immunological,
metabolic, and infectious diseases (Berdasco and Esteller, 2019;
Rauschert et al., 2020).

The development of personalized medicine is tightly
connected to the selection, analysis, and integration of
information from different “omics” approaches as well as
patient and medical data (Rauschert et al., 2020). In this “big
data” context, artificial intelligence (AI), particularly machine
learning (ML), the area of AI that develops tools “that can be
used to design and train algorithms to learn from and act on
data” (Toh et al., 2019), can have a significant role in assisting
researchers and clinicians in integrating, interpreting, and
managing large and complex data sets (Rauschert et al., 2020).

Machine learning algorithms can be roughly classified as:
(a) supervised learning, (b) unsupervised learning, and (c)
reinforced learning.

In supervised learning, the algorithm is given both the
input data and the corresponding target data, uncovering the
relationship between the input and target data. Classification and
regression tasks are examples of supervised learning.

In unsupervised learning, only input data is given to the
algorithm, which then has to identify the existing underlying
structure. Clustering (the automatic assignment of object groups

into clusters/groups) and density estimation are examples of
unsupervised learning.

Finally, in reinforcement learning, the goal of the algorithm is
to find the most suitable action in order to maximize a reward,
which, in turn, depends on the action (Brasil et al., 2019).

In ML tools, independent variables are designed as p, while
the sample size is denoted by n. Most statistics-based ML
approaches require a high amount of structured data (p) from
a large sample set (n) to train the model, so it can be able
to make true and reliable inferences (Ma and Zhang, 2019).
In RDs, the high number and variety of data obtained from
different “omics” allied to a reduced sample size (“big p, small n”
problem) can hinder the application of AI tools in RDs (Mei and
Wang, 2016; Ma and Zhang, 2019). Adaptation and modification
of current AI/ML tools and the generation of new and more
flexible tools are needed to fully explore multi “omics” data.
Despite these difficulties, AI/ML tools have been successfully
applied in RDs (Brasil et al., 2019). AI (particularly ML) allied
to epigenomics, has been used to diagnose or classify several
disorders (e.g., cancer, cerebral palsy, and neurodevelopmental
syndromes) (Rauschert et al., 2020). Genetic mutations in genes
related to DNA methylation or in histone modifiers were found
in Rett syndrome, hereditary sensory autonomic neuropathy
type 1E, and Cornelia de Lange syndrome, among other RDs.
Also, errors in the imprinting process (a process regulated by
DNA methylation and histone modifications) are critical in
Angelman, Prader–Willi, and Beckwith–Wiedemann syndromes.
Thus the disruption of the epigenome and its association with
RDs, indicates that the interplay between genetics and epigenetics
should be considered when addressing the etiology of RDs
(Nguyen, 2019).

In order to assess the state-of-the-art of the use of AI in
epigenomic studies in RDs, we performed a literature revision,
having collected and structured the information regarding their
application for: (a) diagnosis, (b) disease characterization, and (c)
therapeutic approaches in RDs.

This review gathers AI-based tools for epigenomic studies for
biomedical research in RDs, aiming to increase the knowledge
and awareness of these applications.

MATERIALS AND METHODS

For this review, we defined a set of keywords related to RD,
AI, epigenetics, and Tools. Then, we adapted our custom
Python script and prepared the input file (Brasil et al., 2019)
to combine keywords from three first groups (triple terms) and
four groups (quadruple terms) to search in the Medline database,
using PubMed as the search engine through its application
programming interface (API), the Entrez Programming Utilities
(Sayers, 2010; Supplementary Figure 1). To use that API, we
used libraries from the Biopython project (Cock et al., 2009;
Supplementary Note 1 and Supplementary Table 1). This script
limited the results for each of the keyword combinations to
the thousand most relevant articles. It also eliminated duplicate
entries and retrieved the correspondent Medline data (Title,
Abstract, and MeSH terms) from each article. Then, we developed
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a custom Python script that extracts information to LaTeX from
the output of the previous script and generates a PDF to each
article with that information (e.g., title, authors, date, abstract,
mesh terms, Source, PubMed Unique Identifier, and PubMed
Central Identifier; Supplementary Note 2).

Three rounds of manuscript selection were performed, each
one with different selection criteria:(1) Articles were selected
based on title and abstract reading by two researchers; (2)
Articles matching the selection criteria were included for the
second round of full-manuscript reading by five researchers;
(3) A final round was performed by an independent researcher,
who analyzed the AI tools/algorithms to guarantee uniform
selection criteria (Supplementary Figure 2).

Inclusion criteria were as follows:

(1) English-written articles that included the title, abstract, and
MeSH terms;

(2) Articles that combined AI algorithms (or families of
algorithms) with epigenomics to address specific problems
related to RDs;

(3) RDs with Orpha codes (from Orphanet classification);

Reviews were excluded from the results and only used in the
introduction or discussion for contextualization purposes. To
guarantee that, we have not missed relevant articles, we screened
the references from the included reviews.

EPIGENETICS AND AI IN RDs: EXISTING
LITERATURE

Our search revealed 38 studies using AI tools for epigenetic
studies in RDs. Over the 7-year time period considered in
this review, publication numbers increased from 1 in 2013 to
7 in 2020, with the highest number of publications in 2017
(Figure 1A). There was a great heterogeneity among the different
tools used, the disorders reported, and the size of the samples as
well as for the epigenomic data used. Most studies were related to
rare cancers (n = 22) (Figure 1B), highlighting the importance
that epigenetics has in cancer studies, followed by Mendelian
disorders (n = 4). Studies were developed in different countries,
with the largest number of publications originating from the
United States (n = 22) (Figure 1C). Both unsupervised and
supervised leaning methods were reported (Figure 1D). Among
the supervised methods, we found support vector machine
(SVM) (n = 4), elastic net method (n = 3), linear regression
(n = 1) as the major tools identified. In the unsupervised methods,
hierarchical clustering (n = 9) was the most utilized. A list
of AI tools used in epigenetic analyses in RDs is compiled in
Table 1. The majority of tools identified were supervised, and
amongst them, PLINK, a tool based on a linear regression model
and used for genotype/phenotype data analysis was the most
described. DeepTools, based on k-means clustering was the only
unsupervised ML tool described (Table 1).

Unsupervised ML Algorithms
Clustering is the separation of a set of data into different groups
(clusters) according to their similarity (i.e., data with similar

characteristics is grouped in the same cluster and data with
different clusters that are not similar), which is measured in
the distance (e.g., Euclidian distance) (Omran et al., 2007; Park
and Jun, 2009). Clustering can be divided into hierarchical, in
which the clusters are divided in a cluster tree with each cluster
containing a part of the data set, and partitional clustering
(PC), in which the data set is divided into a specific number
of clusters (Omran et al., 2007). Hierarchical clustering (HC)
algorithms are independent of the initial conditions and they
do not need an initial definition of the number of clusters;
however, they are not suitable for large data sets, and do not allow
for pattern flexibility (i.e., data assigned to a cluster cannot be
moved to another) and may not be able to differentiate among
overlapping clusters. In order to circumvent these disadvantages,
PC can be used (Omran et al., 2007). PC encompasses k-means
clustering, in which data is organized in several (k) different
clusters based on their similarity with the mean value of each
particular cluster in its center (Park and Jun, 2009; Dey, 2016).
K-means clustering is simple and fast, allowing its use on large
datasets; however, since the results depend on the initial random
assignments, results are not consistent and may vary with each
run. Furthermore, it is necessary to define a mean value, which
is not always possible and it is also sensitive to outliers. In these
cases, the application of k-medoids variants is an alternative
(Singh et al., 2011). Partitioning around medoids (PAM) is the
most powerful among the many k-medoids algorithms; however,
due to its time complexity, it does not work well in large data sets
(Park and Jun, 2009).

Validation of cluster results is fundamental in cluster data
analysis. Simulated perturbations of the original data set can be
used to infer clustering results stability with respect to sampling
variability. This is known as resampling and can be used for
cluster result validation (Monti et al., 2003). Consensus clustering
is used when a given number of clusters have been generated for a
determined dataset and it is necessary to find a unique clustering
which is the best fit to the existing set of clusters (Li et al., 2007).
It is a resampling-based method used to find consensus within
multiple runs of clustering algorithms; it assesses the number of
clusters that exist within the data set and their stability. It can also
express the consensus over several runs of random start clustering
algorithms, such as k-means (Monti et al., 2003). Non-negative
matrix factorization (NMF)-based consensus clustering can be
applied to improve the robustness and performance of clustering
algorithms (Li et al., 2007).

Recursively partitioned mixture model (RPMM) (Houseman
et al., 2008) is a model-based hierarchical clustering method
for high-dimensional data (Koestler et al., 2013). It robustly
estimates the number of clusters (k classes) in the data analyzed
and is effective in attributing to the relative propensity of the
subjects within each predicted class. However, the violation of
the assumption of class conditional independence leads to model
over-fitting (Koestler et al., 2013).

Gaussian process (GP) model is a non-parametric Bayesian
method used for supervised ML that allows for parsimonious
temporal inference and the incorporation of prior information
into the model. It has been used particularly for gene expression
time series analysis (Park and Choi, 2010; Hensman et al., 2013).
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FIGURE 1 | Compilation of the information obtained in this review regarding the (A) number of articles published from 2013 to 2020, (B) the medical areas covered,
(C) the number of publications per country, highlighting research collaboration and (D) percentage of unsupervised and supervised AI tools reported.

Hierarchical GPs allow for the clustering of expression data
while taking into account, inner cluster variance. The mixture of
hierarchical GP (MOHGP) model is based on a hierarchy of GPs
to model the mean of the cluster and subsequently de deviation
of each time-course within the cluster from that mean2.

Multifactor dimensionality reduction (MDR) was developed
to detect interactions between genes and/or between genes
and environment in small datasets with variables organized
into independent categories (Ritchie et al., 2001; Motsinger
and Ritchie, 2006). MDR neither assumes particular genetic
models nor estimates any parameters (non-parametric) and
unlike logistic regression, it can be used for high-dimensional
data analysis (Ritchie et al., 2001). Classification and prediction
are assessed by cross-validation (CV) and permutation testing
(Gola et al., 2016).

Principal component analysis (PCA) is a multivariate
statistical technique with multiple applications. Given an
observational data table with several dependent variables,
in general, inter-correlated PCA is used to extract the
most important information (i.e., principal components) and
analyzing the structure of both observations and variables, while

2https://notebook.community/mzwiessele/GPclust/notebooks/index

simplifying data set description (Wold et al., 1987; Abdi and
Williams, 2010). In theory, PCA can be applied to any data
matrix at the initial steps of multivariate analysis as means
of identifying outliers and establish classes. For classification
problems, extensions to the PCA algorithm must be used
(Wold et al., 1987).

Unsupervised clustering has been used in epigenomics studies
in RDs for several purposes that are presented below.

Diagnosis: Mutation Detection and/or Prediction
Sorenson et al. (2017) performed a high-resolution comparative
genomic hybridization (aCGH) and RNA sequencing (RNA-seq)
to analyze chromosomal alterations and dysregulated gene
expression in tumor specimens of patients with fibrolamellar
hepatocellular carcinoma (FL-HCC, ORPHA:401920). The
PAM method was used to perform clustering of RNA-seq
data, while the hclust function in R was used to perform
hierarchical clustering (with Euclidian distance as similarity
measure) of samples and genes. The authors found dysregulation
of several gene sets, including genes related to chromatin
remodeling (C10orf90), contributing to elucidate the
genomic and transcriptomic landscape of this rare disease
(Sorenson et al., 2017).
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TABLE 1 | List of available AI and ML-based tools used for epigenetic studies in RDs.

Function References Software/Platform/ Algorithm AI/ML method Disease(s) Classification

Annotates and prioritizes
non-coding regulatory
variants

Fu et al., 2014 FunSeq2
http://funseq2.gersteinlab.org/

Scoring scheme, using
conservation, regulatory,
and other measures

Medulloblastoma Supervised/
Unsupervised

Discover variants associated
to specific Mendelian
disorders

Smedley et al.,
2016

Genomiser
https:
//hpo.jax.org/app/tools/genomiser

ReMM framework/RF
classifier

Beckwith-Wiedemann
syndrome (ORPHA:116), beta
thalassemia (ORPHA:848),
Marie Unna hereditary
hypotrichosis (ORPHA:444)

Supervised

Causal variant analysis and
identification

Farh et al., 2015 PICS Bayesian approaches Immune disorders Supervised

Predict the effect of
regulatory variation

Vuckovic et al.,
2020

Delta SVM
http://www.beerlab.org/deltasvm/

SVM classifier Blood cell traits Supervised

Genes and gene sets
prediction

Hou et al., 2017 GeneMANIA
https://genemania.org/

Fast heuristic algorithm
derived from ridge
regression

RVF Supervised/
Unsupervised

miRNA target prediction and
functional annotation

miRDB MirTarget

Detect statistically significant
interaction events in Capture
HiC data

McMaster et al.,
2018

CHiCAGO
(http://regulatorygenomicsgroup.
org/chicago)

Convolution background
model

Waldenstrom
macroglobulinemia

Supervised

Identifies the precise location
of active TREs

Chu et al., 2018 dREG.HD
https:
//github.com/Danko-Lab/dREG.HD

Epsilon SVR with a
Gaussian kernel

Human glioblastoma Supervised

Genotype/phenotype data
analysis

Luzón-Toro, 2015;
Glubb et al., 2017;
Vijayakrishnan
et al., 2017;
Moreno-Moral
et al., 2018;
Cochran et al.,
2020

PLINK
(https://zzz.bwh.harvard.edu/plink/)

Linear regression model EOC, sMTC and PTC,
leukemia

Supervised

miRNA-disease associations Liu et al., 2019 NBMDA Gaussian interaction profile
kernel similarity/KNN

Esophageal, breast, and
colon neoplasms

Supervised

Learning and characterization
of chromatin states

Bien et al., 2017 ChromHMM
http:
//compbio.mit.edu/ChromHMM/

HMM CRC Supervised

Analysis of high-throughput
sequencing data (ChIP-seq,
RNA-seq, MNase-seq)

Han et al., 2016 DeepTools
https://deeptools.readthedocs.io/
en/develop/

k-means clustering AML Unsupervised

AML, acute myeloid leukemia; CRC, colorectal cancer; eQTL, expression quantitative trait loci; EOC, epithelial ovarian cancer; HMM, Hidden Markov Model; NB, negative
binomial; KNN, k-nearest neighborhood, PICS, Probabilistic identification of causal SNPs; PTC, papillary thyroid carcinoma; RF, Random forest; ReMM, Regulatory
Mendelian mutation; RVF, Rift valley fever; sMTC, sporadic medullar thyroid carcinoma; SVM, support-vector machine; SVR, support-vector regression.

Biomarkers and Prognosis
Hierarchical clustering was used to examine genome-wide
methylome of uveal melanoma (ORPHA:39044) demonstrating
that RAB31 (a member of the RAS oncogene family)
unmethylation is a predictor of poor outcome. Analysis of
tumor and blood samples of patients with retinoblastoma
(ORPHA:790) uncovered hypermethylation of cathepsin Z
(CTSZ), metallothionein 1 H (MT1H) and homeobox C4
(HOXC4) genes as well as hypomethylation of the miR-17-92
(oncomir-1, a potent oncogenic miRNA) cluster, setting a
specific methylation signature than can be used for diagnosis and
therapeutic avenues (Berdasco et al., 2017).

Koduru et al. (2017) performed hierarchical clustering by
means of stringent statistical analysis (p < 0.001) on sncRNA

sequencing data from 45 adrenocortical carcinoma (ACC,
ORPHA:1501), a rare and aggressive type of cancer and
30 adrenocortical adenomas (ACAs), a benign adrenocortical
tumor. PartekFlow R© software, version 5.0 (Partek, Inc., St.
Louis, MO, United States) was used to assemble FASTQ files
from small RNA sequencing data to human genome hg19
clustering and allowed the identification of several differentially
regulated microRNAs (miRNAs), particularly piwi-interacting
RNAs (piRNAs), which have been related to epigenomic
modeling; in ACC that could serve as new diagnoses biomarkers
as well as new therapeutic targets (Koduru et al., 2017).

Job et al. (2020) used a mining approach of transcriptome
data to identify long non-coding RNAs (lncRNAs) specific
for PCPGs molecular groups and metastatic progression.
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ConsensusClusterPlus R package was used to perform
unsupervised classification of lncRNAs. Receiver operating
characteristic curve (ROC) analyses were used to identify a
putative lncRNA that discriminates the benign from metastatic
tumors in patients with SDHx mutations and is associated with
poor clinical outcome of SDHx carriers (Job et al., 2020).

In order to provide evidence for future genetic screening
guidelines, Waszak et al. (2018) analyzed whole-genome and
exome sequences as well as DNA methylation in retrospective
and prospective cohorts of patients with medulloblastoma
(ORPHA:616). K-means consensus clustering analysis of all CpG
probes allowed for the definition of four consensus molecular
subgroups. Moreover, rare variant burden analysis revealed a
genetic predisposition in at least two of these subgroups. Hence,
the authors propose the establishment of genetic counseling and
genetic testing as a standard-of-care procedure in these patients
(Waszak et al., 2018).

DNA replication timing (RT) is a powerful cell type-specific
epigenetic marker with a high intra-cell conservation level
that is altered in disease states. Cluster 3.0 was used to
perform hierarchical and k-means clustering of RT-variable
regions, allowing for the identification of a specific RT signature
that discriminates between progeroid syndromes and natural
aging in patients with Hutchinson–Gilford progeria syndrome
(HGPS, ORPHA:740) and Rothmund–Thomson syndrome (RTS,
ORPHA:2909) (Rivera-Mulia et al., 2017). Furthermore, an
association between TP63 RT alterations and the characteristic
phenotypic defects of this family of disorders was also established
(Rivera-Mulia et al., 2017).

Disease Classification/Characterization
Diffuse intrinsic pontine glioma (DIPG, ORPHA:497188)
is a cancer of the pediatric pons, characterized by a unique
substitution to methionine in histone H3 at lysine 27
(H3K27M). To unveil the pathobiology of DIPG, Nagaraja
et al. (2019) performed active chromatin profiling in 25
primary tumor samples and 5 non-malignant pediatric pontine
tissue samples, as well as isogenic H3K27M expression in
early oligodendrocyte precursor cells (eOPCs). K-means
clustering was used for chromatin as well as enhancers
and promoters analysis, revealing five states of enhancer
and promoter activation. Most samples were separated
into three groups: normal pons, H3.1K27M DIPG, and
H3.3K27M DIPG, suggesting that H3.3K27M and H3.1K27M
DIPG should be considered as functionally distinct
subgroups in both preclinical and clinical considerations
(Nagaraja et al., 2019).

Epigenetics plays an important role in tissue differentiation
and disease modification. However, the role of epigenetics in
sexual dimorphisms is not well understood. Ammerpohl et al.
(2013) performed microarray-based methylation profiling in
genital fibroblasts of 46, XY individuals with androgen receptor
(AR) pathway disruption (ORPHA:754). DNA methylation
analysis was performed with HumanMethylation27 Bead-Chips
and hierarchical cluster analyses based on average beta-values
were performed using OMICS Explorer. Results showed
that changes in DNA methylation marks in the epigenome

by androgen lead to sexual dimorphism programming
(Ammerpohl et al., 2013).

Pallister Killian Syndrome (PKS, ORPHA:884) also known
as tetrasomy 12p and isochromosome 12p mosaicism is a rare
chromosomal aneuploidy with a highly conserved phenotype.
Kaur et al. (2014) performed a genome-wide expression analysis
in skin fibroblasts of 17 PKS probands, using the Affymetrix
Human Genome U133 plus 2.0 arrays. Robust multi-array
average (RMA) method was used to normalize and summarize
Affymetrix raw data. The normalized data were then analyzed by
(PCA. The authors identified 354 differentially expressed genes
in PKS probands and evidence for a critical region on 12p13.31.
Furthermore, downregulation of ZFPM2, GATA6, and SOX9, and
overexpression of IGFBP2 might be associated with PKS clinical
phenotype (Kaur et al., 2014).

Assié et al. (2014) resorted initially to the RPMM, to identify
DNA methylation–based ACC clusters, which were associated
with poor prognosis or with extensive hypomethylation of CpG
sites outward of CpG islands. Then resorting to a consensus
clustering tool, they identified clusters, with deregulation of the
miRNA expression. The molecular classification of the disease
was refined using this work (Assié et al., 2014).

Disease Etiology
5-Hydroxymethylcytosine (5hmC) is an intermediate of DNA
demethylation as well as a potential epigenetic mediator,
modulating an array of biological processes and human diseases.
Han et al. (2016) developed a method for 5hmC sequencing
which allows genome-wide profiling of 5hmC using a limited
amount of genomic DNA. This technology was used to profile
leukemia stem cells from a murine model of Tet2-mutant
acute myeloid leukemia (AML, ORPHA:519) and to obtain
high-quality maps of 5hmC in tumor-initiating cells. K-means
clustering and calculation of genome-wide correlations were
performed with DeepTools, a suite of Python tools for the
analysis of high-throughput sequencing data (e.g., ChIP-, RNA-,
or MNase-seq). The change of 5hmC patterns in AML is strongly
associated with differential gene expression, highlighting the
importance of dynamic alterations of 5hmC in transcription
regulation in AML. Covalent 5hmC labeling offers an efficient
approach to detect and study DNA methylation dynamics
in in vivo disease models and in limited clinical samples
(Han et al., 2016).

Supervised ML Algorithms
Linear regression predicts continuous dependent variables from
other given independent variables (Altman and Krzywinski,
2015). In the presence of categorical dependent variables (e.g.,
biomedical data), logistic regression can predict both variable
value and associated probability (Lever et al., 2016). Both
linear and logistic regression models are powerful tools for
the classification and class probability prediction. However, the
presence of correlation over multiple predictors is difficult in
coefficient interpretation (Lever et al., 2016).

To optimize the performance of the logistic regression model
in the presence of a high number of variables, the imposition
of penalties (regularization) can be performed. There are three
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main penalized regression models: (i) ridge regression in which
the coefficients of variables with minor contributions are set
close to zero, without eliminating any variables. This is useful
when all the variables need to be incorporated in the model;
(ii) the least absolute shrinkage and selection operator (LASSO)
regression that uses the penalty of the sum of the absolute values
of its components ( `1-norm) (Vidyasagar, 2015), in which the
coefficients of the minor variables are set to be exactly zero and
the less significant variables are eliminated from the model; and
(iii) elastic net regression which is a combination of the previous
two (some coefficients are set to be exactly zero, while others are
only approximately zero) (Li and Sillanpää, 2012)3 .

Partial least squares regression (PLSR) infers relationships
between two sets of observed variables that have latent variables
within and can be used to solve both single- and multi-
label problems (Chen et al., 2019). PLSR is a good choice for
prediction due to its computational efficiency, simplicity, and
dimensionality reduction (Chen et al., 2019).

Classification and regression trees (CART) used combinations
of explanatory variables that may be categorical (classification)
and/or numeric (regression) to repeatedly split the data
into more homogeneous groups and are suited for the
analysis of complex and unbalanced data. CART is easy to
interpret, flexible, and able to handle variable data sets and to
handle missing values in response and/or explanatory variables
(De’ath and Fabricius, 2000).

k-Nearest Neighbor (k-NN) classification is based on two
steps: (i) identification and determination of the nearest
neighbors and (ii) class determination using the set of neighbors
and is a simple and easy method for classification. However, it can
have a low run-time performance for large training data sets and
it is highly sensitive to redundant features. Finally, this method
is outperformed by more powerful tools, such as support vector
machines (Cunningham and Delany, 2007).

Hidden Markov model (HMM) is a probabilistic model based
on the assumption that the sequence of the observed data arises
from some sequence of underlying hidden discrete states and
is widely used for sequence analysis (Bousquet et al., 2004;
Ben-Hur et al., 2008). HMM can be applied directly to raw
data and can handle inputs of variable length; however small
data sets can lead to over-fitting. The over-fitting problem
can be solved by the use of hierarchical or factoral HMMs
(Degirmenci, 2014).

Support vector machine algorithms are used mostly for
classification, and classification is based on the definition of the
best hyper-plane to separate all data points in one class from
the other classes. Separation can be made using linear and/or
non-linear boundaries. For non-linear classification problems, a
kernel function must be applied (Dey, 2016; Savas and Dovis,
2019). A Gaussian kernel has the shape of a Gaussian curve
and is used for smoothing (i.e., noise reduction). Support vector
regression (SVR) algorithms are used for regression and can be
considered an extension of SVR; however, SVR has a more flexible
tolerance for error (Awad and Khanna, 2015).

3http://www.sthda.com/english/articles/36-classification-methods-essentials/
149-penalized-logistic-regression-essentials-in-r-ridge-lasso-and-elastic-net/

Bayesian networks are direct acyclic graph representations
of random variables and their conditional probability based
on Bayes’ theorem to create decision trees. Bayesian networks
are robust against missing data and avoid overfitting, but
the network structure can be difficult to interpret and they
do not perform well in the presence of many features
(Ehsani-Moghaddam et al., 2018).

Rain forest (RF) method consists of a set of decision trees in
which each tree provides a classification for the input data and the
final classification is obtained by the most voted prediction (Chen
et al., 2014). Boruta method is an algorithm that copes with RF
problems by adding more randomness to the system by making a
randomized copy of the system, merging it with the original, and
building a classifier for the extended system (Kursa et al., 2010).

Machine learning algorithms do not perform well with the
imbalanced dataset (classes are not relatively represented). For
imbalanced data, the performance of ML algorithms cannot
be correctly assessed (Chawla et al., 2002). To overcome class
imbalance, re-sampling of the original dataset (over-sampling of
the minority class and/or under-sampling of the majority class)
can be applied. Synthetic minority over-sampling technique
(SMOTE) is “an over-sampling approach in which the minority
class is over-sampled by creating ’synthetic’ examples rather than
by over-sampling with replacement.” Hence, it improves the
classifier accuracy for minority classes (Chawla et al., 2002).

Diagnosis: Mutation Detection and/or Prediction
The correct identification of genes and mutations is essential for
diagnosis and disease prediction. The identification of drivers
(mutations that lead to oncogenesis) has focused mainly on
genome coding regions. However, driver events can also be
caused by mutations affecting regulatory elements. FunSeq2,
a tool that combines a small-scale informative data context
generated from large-scale resources (e.g., ENCODE data) and a
variant prioritization pipeline was developed by Fu et al. (2014)
to annotate and prioritize somatic variants (alterations in DNA
that occur in any body cell, besides germ cells, after conception4),
particularly regulatory non-coding mutations. The authors have
correlated epigenetic modifications with gene expression levels
across 20 different tissues and established associations among
all non-coding variants in the regulatory elements and potential
target genes. Furthermore, FunSeq2 allows user data input on
regions or chromatin marks, allowing for the identification of
novel correlations between coding genes and regulatory elements
(Fu et al., 2014).

Farh et al. (2015) combined genetic and epigenetic fine
mapping to identify causal variants in autoimmune disease-
associated loci and infer their functions. The authors developed
Probabilistic Identification of Causal SNPs (PICS), an algorithm
based on Bayesian approaches, to estimate, in 21 autoimmune
diseases, the probability that an individual single-nucleotide
polymorphism (SNP) is a causal variant taking into account the
haplotype structure and observed pattern of association at the
locus. Through PICS, the authors identified that about 90% of

4https://www.cancer.gov/publications/dictionaries/cancer-terms/def/somatic-
mutation (accessed on December 15, 2020).
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causal variants are non-coding, with 60% mapping to immune-
cell enhancers and gained histone acetylation (Farh et al., 2015).

McMaster et al. (2018) used CHiCAGO, a convolution
background model, to analyze significant chromatin interactions
between patients with Waldenström macroglobulinemia (WM,
ORPHA:33226) and controls in a two-stage GWAS. They
identified two high-risk non-coding SNPs, rs116446171 and
rs117410836 at 6p25.3 and 14q32.13, respectively. Rs116446171 is
located near IRF4, DUSP22, and EXOC2, which are implicated in
a variety of lymphoid cancers and might represent an important
non-coding variant for WM risk (McMaster et al., 2018).

Crippa et al. (2014) used a probabilistic HMM applied
to human embryonic stem cell (HMES) to identify putative
regulatory sequences in ChIP-seq data of a patient with
trichorhinophalangeal syndrome (TRPS, ORPHA:324764),
a complex autosomal dominant malformative disorder,
characterized by distinctive craniofacial and skeletal
abnormalities.

Myotonic dystrophy type 1 (DM1, ORPHA:206647) is a
multisystem disorder that affects skeletal and smooth muscle as
well as the central nervous system. It is caused by a CTG repeat
expansion. Longer CTG expansions are associated with greater
symptom severity and earlier age at onset. To directly quantify the
treatment effect by the reduction of the CTG repeat, Kurkiewicz
et al. (2020) developed a model based on partial least squares
regression (PLSR), that is able to predict the size of the DM1CTG
repeat and the effect that has on mRNA expression.

Interferon-induced transmembrane protein 5 (IFITM5) is
a positive modulator of bone mineralization. However, little
is known about its regulation. Mo et al. (2014) performed
a predictive search of miRNAs targeting IFITM5 in human
osteosarcoma (ORPHA:668) cell lines using DIANA-microT,
a tool based on the microT algorithm, which is particularly
trained on a positive and a negative set of miRNA recognition
elements (MREs) located in both the 3′-UTR and CDS regions.
The authors identified miR-762 as a novel regulator of IFITM5,
shedding new light on the roles of miRNAs in osteoblast
differentiation (Mo et al., 2014).

Rare de novo epi-variants, a class of genetic variants involving
changes in DNA methylation patterns of a reduced number of
CpGs at a particular locus, are found at a higher frequency
in subjects presenting neurodevelopmental syndromes with
or without congenital anomalies (ND/CA). This leads to the
hypothesis that some of these epi-variants may contribute to
the pathogenesis of some unexplained ND/CAs (Aref-Eshghi
et al., 2019). A multiclass SVM with a linear kernel classification
model was developed to analyze genome-wide DNA methylation
data leading to the detection of an epi-signature associated
with14 ND/CA syndromes. The model allowed for the definitive
diagnosis and classification of several patients from a large cohort
of 965 ND/CA-affected subjects with no previous diagnostic, as
well as an additional cohort of 67 subjects with uncertain clinical
diagnosis (Aref-Eshghi et al., 2019).

Early onset of Alzheimer’s disease (EOAD, ORPHA:1020) and
frontotemporal dementia (FTD, ORPHA:282) exhibit heritability
patterns that cannot be explained by currently known genetic
contributors, suggesting additional genetic factors contributing

to the disease. Cochran et al. (2020) analyzed variant associations
between EOAD and FTD vs. controls. Variant annotation and
predicted deleteriousness were obtained with CADD, a tool that
uses a machine learning model trained on a binary distinction
between simulated de novo variants and variants that have
arisen and become fixed in human populations. PLINK was
used to assess single common variant contributions from GWAS
data. This analysis identified TET2, which promotes DNA de-
methylation, as a risk component for multiple neurodegenerative
disorders, such as EOAD and FTD (Cochran et al., 2020).

Coffin–Siris syndrome (CSS) is an extremely rare syndrome
associated with intellectual disability. Pranckėnienė et al. (2019)
reported a novel de novo splice site variant detected by
whole exome sequencing (WES) in the ARID1B, responsible
for CSS. Potential variants in the ARID1B protein were
assessed with Pfam 32.0 database, which is a large collection
of protein families, each represented by multiple sequence
alignments and HMMs5. The de novo variant is responsible for
a truncated protein, resulting in the loss of the BAF250 domain.
This domain is part of the SWI/SNF−like ATP−dependent
chromatin remodeling complex, which regulates gene expression
(Pranckėnienė et al., 2019).

Biomarkers and Prognosis
Nascent transcription is a promising approach for the study of
molecular mechanisms of complex diseases. Chu et al. (2018)
developed a novel chromatin run-on and sequencing (ChRO-seq)
method to map RNA polymerase in cell or tissue samples and
assessed nascent transcription in primary human glioblastoma
(GBM, ORPHA:360) brain tumors. In order to identify the exact
location of active transcriptional regulatory elements (TREs), the
authors developed discriminative regulatory-element detection
from GRO-seq, high-definition (dREG-HD), an epsilon-support
vector regression (SVR) with a Gaussian kernel, which uses GRO-
seq, PRO-seq, or ChRO-seq input data to identify TREs similar
to the subset of DNase I hypersensitive sites (DHSs) exhibiting
local transcription initiation. Three transcription factors, such as
C/EBP, RAR, and NF-kB, whose target genes are correlated with
poor clinical outcomes, were identified (Chu et al., 2018).

Epithelial ovarian cancer (EOC) presents a heritable
component of 22%. Lu et al. (2018) performed a transcriptome-
wide association study (TWAS) among a large cohort (97,898
women) of European ancestry. Expression prediction models,
using the elastic net method, were built for protein-coding genes,
miRNAs, lncRNAs, processes transcripts, and immunoglobulin
and T-cell receptor genes, identifying 35 genes associated with
EOC risk, including FZD4, which is a potential novel risk locus
(Lu et al., 2018). The elastic net method (implemented in the R
package “glmnet”) was also used by Yang et al. (2018) to analyze
the role of DNA methylation in EOC. The authors used data
from the Framingham Heart Study (FHS) Offspring Cohort to
generate methylation prediction models for 223,959 CpGs. The
prediction models were applied to GWAS data from control and
EOC cases, finding 89 CpGs with methylation levels predicted to
be associated with EOC risk (Yang et al., 2018).

5http://pfam.xfam.org/
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B-cell precursor acute lymphoblastic leukemia (BCP-ALL,
ORPHA: 99860) is responsible for about 80% of all the ALL cases.
In order to identify new risk loci for BCP-ALL, Vijayakrishnan
et al. (2017) analyzed GWAS data from two different cohorts
identifying rs35837782 and rs4762284 risk loci for BCP-ALL,
at 10q26.13 and 12q23.1, respectively. The epigenetic profile
of association signals at each of the two new risk loci, a
multivariate HMM was used to binarize Chip-seq data from
GM12878 lymphoblastoid cells inferred from ENCODE Histone
Modification data (Vijayakrishnan et al., 2017).

Disease Classification
Liu et al. (2019) developed a novel neighborhood-based
computational model called NBMDA to infer potential miRNA-
disease associations. This model constructs and integrates both
disease and integrated miRNA similarity networks based on
the disease semantic similarity, miRNA functional similarity,
and Gaussian interaction profile kernel similarity for miRNAs
and diseases. The k-nearest neighborhood (KNN) method is
then applied to the two integrated similarity networks, solving
the occurrence of sparse known miRNA-disease associations.
The concept of common neighbors is used to calculate
potential miRNAs-diseases associations. The authors used
esophageal neoplasms (ORPHA:506136), breast neoplasms, and
colon neoplasms (ORPHA:100080) as case studies and found
47, 48, and 48, respectively out of the top 50 predicted
miRNAs, which were validated by relevant databases or related
literature separately, demonstrating the excellent predictive
performance of this model and its utility for disease treatment
(Liu et al., 2019).

Telomerase reverse transcriptase (TERT), the protein
component of telomerase complex is not only involved in
aging-related disorders and cancer, but also in RDs, such as
aplastic anemia and dyskeratosis congenital. Furthermore, TERT
shows non-telomeric functions and could be implicated in the
regulation of approximately 300 genes (Hou et al., 2017). Hou
et al. (2017) investigated TERT interaction networks using
several bioinformatic databases, such as miRDB, which uses
the MirTarget tool for miRNA target prediction and functional
annotations and GeneMANIA, a fast heuristic algorithm
derived from ridge regression that integrates multiple functional
association networks and predicts gene function from a single
process-specific network using label propagation. The authors
found interactions between TERT and PABPC1, SLC7A11 and
TP53 genes, indicating a possible role for TERT in RDs, such as
Rift Valley Fever (ORPHA:319251) (Hou et al., 2017).

Combination of Supervised and
Unsupervised Algorithms
In this section, we present the manuscripts that referenced
both unsupervised and supervised methods/tools for
epigenomic analysis.

Diagnosis: Mutation Detection and/or Prediction
Less frequent genetic variants are gaining relevance in complex
disorders and present a new challenge for genomic research.
To investigate how epigenetics can aid aggregate rare-variant

association methods (RVAM), Bien et al. (2017) analyzed
the location of variants associated with colorectal cancer
(CRC, ORPHA:443909). Hierarchical clustering using Pearson
correlation as the distance measure and complete linkage
followed by the optimal ordering of leaves was used for
the categorization of the 127 samples from NIH Roadmap
Epigenomics and Encyclopedia of DNA Elements (ENCODE)
projects in order to map active regulatory elements (ARE).
ChromHMM, a software based on multivariate HMM, was
used for the definition of chromatin accessible regions and log-
additive logistic regression was used to analyze GWAS data.
The authors found that CR ARE were enriched for more
significant CRC associations with both common and rare variants
(Bien et al., 2017).

Systemic sclerosis (SSc, ORPHA:90291) is a chronic
autoimmune disease of unknown etiology with significant
clinical heterogeneity and no therapeutic options, leading to
high mortality rates. Moreno-Moral et al. (2018) integrated
differential expression and expression quantitative trait locus
(eQTL) analyses in monocyte-derived macrophages to elucidate
the link between macrophage transcriptome and SSc disease
variants. Clustering was performed using correlation distance
and the method “ward.D” from hclust R function while PLINK
was used for quality control of the genotype data. This analysis
allowed the identification of several cis-regulated genes in
SSc macrophages, particularly GSDMA, which carries an SSc
risk variant, regulating the expression of neighboring genes
(Moreno-Moral et al., 2018).

The use of genome-wide methylation arrays for identifying
epigenetic patterns associated with RDs has increased over
the last years. Epigenetic signatures in combination with
genomic sequencing can aid diagnosis, the screening of large
cohorts, and help find variant significance (Bend et al., 2019).
Recently, genes involved in chromatin regulation have been
implicated in neurodevelopmental disorders. Bend et al. (2019)
performed genome-wide DNA methylation analysis on the
peripheral blood of 22 patients with Helsmoortel-van der Aa
(ADNP, ORPHA:404448) syndrome. Hierarchical clustering and
multiple dimensional scaling allowed for the identification
of two distinct episignatures enriched with genes involved
in neuronal function. These two episignatures were used to
train a multi-class SVM with linear kernel on the training
cohort, allowing for the identification of three previously
undiagnosed patients with ADNP syndrome from a large cohort
(n = 1,150) of patients with unresolved developmental delay
(Bend et al., 2019).

Vuckovic et al. (2020) performed a genome-wide discovery
analysis to investigate 29 blood cell phenotypes from the UK
Biobank cohort, plus additional 15 phenotypes from the Blood
cell consortium (BCX). A Bayesian method was used for sentinel
(a clump tag variant or a trait-specific conditionally independent
signal) annotation, while SpliceAI, a state-of-the-art neural net
classifier (Jaganathan et al., 2019), was used to predict fine
mapped (FM) variants affecting the splicing process. DeltaSVM
(Lee et al., 2015), a support-vector machine classifier, was used
to predict allele- and cell-specific impact of FM variants in
chromatin accessibility. The authors also assessed the validity of
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the omnigenic model, which states that complex trait heritability
is the product of two types of genes (core vs. peripheral)
(Vuckovic et al., 2020).

Whole-genome sequencing (WGS) has revealed disease-
causing variants undetected by other genetic tests in
RDs, particularly the ones located in non-coding regions,
namely 5′ and 3′ untranslated regions (UTR), enhancer
and promoter regions, and miRNA genes (Smedley et al.,
2016). However, the number of regulatory variants related
to Mendelian disorders remains low. Smedley et al. (2016)
developed Genomiser for the prioritization of NCVs and the
discovery of causative SNVs of Mendelian disorders. This
framework is divided into two major components: (1) the
regulatory Mendelian mutation (ReMM) framework, a machine
learning method for scoring NCVs based on SMOTE with
several nearest neighbors k = 5, and (2) an RF classifier, for
ranking NCVs in WGS data. Performance was tested using
a 10-fold “cytogenetic band-aware” cross-validation scheme.
Genomiser identified the causative regulatory Mendelian
mutation as the top candidate out of the 4 million plus
variants in a whole genome in 77% of the analyzed samples
(Smedley et al., 2016).

Biomarkers and Prognosis
Pheochromocytomas and paragangliomas (PCPGs, ORPHA:
29072) are tumors of the adrenal medulla or extra-adrenal
paraganglia respectively, with high heritability and no
reliable biomarkers. Ghosal et al. (2020) used different
tools to identify a prognostic long intervening non-coding
RNA (lincRNA) signature associated with metastasis in
PCPGs. Four ML models, elastic net, LASSO, Ridge, and
CART (classification and regression trees) were used to
classify samples into five molecular subtypes of PCPG. This
model can be used as a potential diagnostic tool for several
molecular subtypes and/or aggressive/metastatic PCPGs
(Ghosal et al., 2020).

Wen et al. (2017) combined microarray and RNA data,
and clinical information from patients with GBM to study
the association between malignant tumor degree and gene
methylation level, while logistic regression was used to assess
methylated genes associated with the tumor malignant degree
of patients. A total of 668, 412, 470, and 620 genes relevant
with methylation or demethylation were associated with the
malignant degree, Grade1, 2, 3, and 4, respectively of tumor.
CCL11 and LCN11 were significantly related to GBM progression
(Wen et al., 2017).

Hierarchical clustering as well as a supervised analysis using
the “signed average expression” survival prediction method were
used by Lietz et al. (2020) to test the validity of a set of
prognostic signatures (5-miRNA and 22-miRNA profiles) in two
osteosarcoma (ORPHA:668) cohorts. Furthermore, the authors
observed that sets of experimentally validated gene (mRNA)
targets of the prognostic miRNAs presented robust outcome
predictive function, suggesting a possibly active miRNA/mRNA
network. A composite model integrating information from
pathologic necrosis combined with miRNA biomarkers was
proposed, allowing improved and refined stratification into three

relevant prognostic groups (very favorable, very unfavorable, and
intermediate) (Lietz et al., 2020).

Conventional GWAS was performed by Luzón-Toro (2015)
in a cohort of sporadic medullar thyroid carcinoma (sMTC,
ORPHA:1332) and juvenile papillary thyroid carcinoma (jPTC,
ORPHA:146), two rare tumors of the thyroid gland. PLINK
was used for GWAS analysis and the multifactor-dimensionality
reduction (MDR) method was used to infer possible epistatic
interactions between pairs of genes. The authors found two
epistatic interactions (interaction of genetic variations at two or
more loci to produce a phenotypic outcome) in sMTC and three
in jPTC, being lincRNAs among the epistasis found, showing
the increasing relevance of these elements in cancer research
(Luzón-Toro, 2015).

A group of recurrent or fatal ACC was found to carry a unique
CpG island methylator phenotype — CIMP-high. To identify
biomarkers specific for this group, Mohan et al. (2019) used
data from the Cancer Genome Atlas project on ACC (ACC-
TCGA). Logistic regression was used to identify transcripts
that are able to predict CIMP-high status. Pheatmap was used
for unsupervised complete hierarchical clustering. Through this
approach, the gene G0S2 was identified, hypermethylated, and
silenced exclusively in 40% of ACC, representing a hallmark
amenable to be assessed using routine molecular diagnosis
(Mohan et al., 2019).

Disease Etiology and Classification
Integration of DNA-methylation profiles with the somatic
genomic landscape was used to propose a three-class
classification system for ACC. The authors performed RNA-seq
data analysis using a SVM classifier uncovering fusion events
in 78 specimens. Unsupervised NMF consensus clustering
was used to divide miRNA samples into groups according to
similar abundant profiles. Unsupervised consensus clustering
of DNA methylation data of the entire cohort was performed
using Euclidean distance and PAM. Boruta method was used to
calculate the DNA methylation signature of the CIMP tumor
group, identifying an optimal signature containing 68 probes
representing 59 genes (Zheng et al., 2016).

Therapies
Rendeiro et al. (2020) used a multi-omics approach to assess
the cell composition and immunophenotype, gene expression,
and chromatin accessibility in order to study the regulatory
dynamics of ibrutinib treatment in chronic lymphocytic leukemia
(CLL, ORPHA:67038). Python library GPy, a variable radial
basis function (RBF) kernel, and a constant kernel were used
to model the temporal effect of ibrutinib in each cell type
as a function of time. The authors also used the “mixture of
hierarchical Gaussian process” (MOHGP) method to cluster
regulatory elements according to their temporal pattern. The
MOHGP class from the GPclust library (GPclust.MOHGP)
was used with a Matern52 kernel (GPy.kern.Matern52) and
an initial guess of four region clusters. Enrichment of
genes associated with regulatory elements was carried out
through the Enrichr API for 15 databases of gene sets.
Hence, their results demonstrate the value of combined
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multi-omics profiling for patient-specific treatment monitoring
(Rendeiro et al., 2020).

CHALLENGES AND FUTURE
PERSPECTIVES

The development of new methods for the analysis of epigenomic
marks, alongside with the integration of information from genetic
and epigenetic profiles as well as other “omics” has expanded
our knowledge about the complex nature of RDs. Methods, such
as nano-hmC-Seal (for 5-hydroxymethylcytosine analysis) (Han
et al., 2016), single chromatin molecular analysis in nanochannels
(SCAN — for single DNA and chromatin molecule analysis)
(Murphy et al., 2013) and reduced representation bisulfate
sequencing (RRBS), a high-throughput technique for genome-
wide methylation profile analysis (Hamamoto et al., 2019),
already in practice for RDs and common diseases, are improving
epigenetic studies, particularly in the case of rare cell populations
and limited input DNA. However, according to Kerr et al. (2020),
in the RDs field, few studies explore the potential of incorporating
epigenomic analysis in combination with other “omics” and
the majority of studies analyzing epigenomic information are
related to rare cancers, in accordance with our findings. The
development and generalization of high-throughput analysis
have increased the amount of information to be analyzed,
integrated, and processed. AI technologies can automate tasks
currently requiring human intervention and have been applied
in the analysis of a diverse array of data, contributing to advance
disease characterization and classification, diagnosis, and therapy
development in RDs (Brasil et al., 2019). Unsupervised AI tools
are generally used for data clustering since no label has to be
assigned to the data. In this review, 11 articles only reported
the use of unsupervised tools, specifically for data clustering
(Ammerpohl et al., 2013; Assié et al., 2014; Kaur et al., 2014; Han
et al., 2016; Berdasco et al., 2017; Koduru et al., 2017; Rivera-
Mulia et al., 2017; Sorenson et al., 2017; Waszak et al., 2018;
Nagaraja et al., 2019; Job et al., 2020). The analysis of large-
scale methylation arrays is difficult with traditional clustering
tools due to the high-dimensional data-analysis problem. Hence,
model-based clustering tools, such as RPMM and MOHGP offer
better solutions (Houseman et al., 2008). For non-model based
approaches, MDR can be used for high-dimensional data analysis
(Ritchie et al., 2001).

The analysis of the combination of data obtained from
different omics studies, particularly regarding genotype and gene
expression is essential for complete disease comprehension, but
it is also challenging. Supervised analysis has been restricted to
biological problems in which a good balance between variables
and data is observed (Esteban-Medina et al., 2019). In this
work, most supervised tools have been applied for diagnosis
(Mo et al., 2014; Crippa et al., 2014; Fu et al., 2014; Farh
et al., 2015; McMaster et al., 2018; Aref-Eshghi et al., 2019;
Pranckėnienė et al., 2019; Cochran et al., 2020; Kurkiewicz
et al., 2020). In RDs, small sample sizes allied to complex levels
of data structure and differences among the characteristics of
patients can hinder the application of AI tools. Establishment

of research consortiums or collaborations is crucial to obtain
larger patient cohorts. This is particularly relevant considering
the low number of collaborations among the papers retrieved
by this review (Figure 1C). Furthermore, defects in data pre-
processing (e.g., removal of outliers), the use of excessively large
datasets for algorithm training, and the promiscuous use of
the same data instances in both training and testing phases
can lead to erroneous results and model overfitting (Chicco,
2017). Cross-validation and regularization can be used to avoid
overfitting (Chicco, 2017; Hamamoto et al., 2019). Over-sampling
(SMOTE) and a 10-fold cross-validation scheme are employed by
Genomiser, a tool used for the diagnosis based on an RF classifier
(Smedley et al., 2016). However, the predictive performance of
RFs is lower compared to other methods, such as SVM, due to the
fact that one incorrect decision affecting one data subset can affect
the following sequencing leading to error propagation (Esteban-
Medina et al., 2019). SVM has been used in methylation data
and RNA-seq analysis for diagnosis (Zheng et al., 2016; Aref-
Eshghi et al., 2019; Bend et al., 2019; Vuckovic et al., 2020). Deep
learning tools, such as neural networks (NNs) have been applied
to computational biology problems with success and present
several advantages compared to traditional ML tools, such as
the ability to operate directly on a sequence without manual
feature extraction. However, NNs need initial weight values
for efficient training and have low interpretability (Bousquet
et al., 2004; Ehsani-Moghaddam et al., 2018). Convolution
neural networks (CNNs) that allow direct training on the DNA
sequence, eliminating the need to feature definition, and reducing
the number of the parameter in the model are also a good
approach to the complex problem of “omics” data integration
(Angermueller et al., 2016; Hamamoto et al., 2019). Despite these
advantages, no reports of the use of deep leaning tools were
described for RDs regarding epigenomics, suggesting that this is
an unexplored avenue for the application of particular AI tools.

Ultimately, the choice of the AI tool will depend on the type
of data set and biological problem to be solved, keeping in mind
that there is no “one size fits all” tool and that for many cases, the
solution can be the application of ensemble learning, in which
several individual learners are combined to form an individual
learner (Dey, 2016).

Our study has some limitations. First, we only searched for
Medline database — Pubmed. Although it is the most complete
biomedical literature database, insightful data present in other
databases may not have been included. Secondly, our keyword
search may not have reached all relevant articles, probably due to
the absence of the keywords related to AI, ML, and/or epigenetics
both in the MeSH terms as in the author-defined keywords.
Furthermore, we observed some inespecificity within our search,
since many papers retrieved were focused on bioinformatics
rather than AI tools. The use of similar statistical tools between
these two fields may account for this outcome.

This review explores the potentialities of AI tools applied to
epigenetics in the context of RDs and despite the reduced number
of studies incorporated, there is an expanding application of
such tools to other disorders besides rare cancers. We believe
that the dissemination of the tools and approaches already
used will foster further application in other RDs that have
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complex traits and face the “missing heratibility” problem, which
impairs discovery, diagnosis, and patients care, such as congenital
disorders of Glycosylation.

CONCLUSION

The use of AI, particularly ML for epigenetic data analysis,
integration, and interpretation is a growing field with the
potential to address significant issues concerning RDs.
Particularly, the improvement of diagnosis rate, provision
of prognostic biomarkers, pathophysiology, and therapy
development. The application of strategies already applied in
common disorders can expedite the use of AI in epigenetic
studies for RDs and many tools are already being applied. Hence,
AI applied to the expanding field of epigenetics can help elucidate
the involvement of epigenomes in RDs pathophysiology,
fostering new diagnostic tools and new therapeutic avenues.
However, it is essential to keep in mind that before the generalized
application of AI in research and ultimately, in the clinical context
for RDs, AI methods as the data being analyzed need to undergo
some refinement to avoid erroneous data interpretation.
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