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The death associated protein kinases (DAPKs) are a family of calcium dependent serine/
threonine kinases initially identified in the regulation of apoptosis. Previous studies showed
that DAPK family members, including DAPK1, DAPK2 and DAPK3 play a crucial regulatory
role in malignant tumor development, in terms of cell apoptosis, proliferation, invasion and
metastasis. Accumulating evidence has demonstrated that non-coding RNAs, including
microRNA (miRNA), long non-coding RNA (lncRNA) and circRNA, are involved in the
regulation of gene expression and tumorigenesis. Recent studies indicated that non-
coding RNAs participate in the regulation of DAPKs. In this review, we summarized the
current knowledge of non-coding RNAs, as well as the potential miRNAs, lncRNAs and
circRNAs, that are involved in the regulation of DAPKs.
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DEATH-ASSOCIATED PROTEIN KINASE FAMILY

DAPK is a family of serine/threonine kinases that belong to the calmodulin regulated kinase super
family (Huang et al., 2014). At present, the most studied DAPK family member is DAPK1 (Lin et al.,
2009; Stevens et al., 2009; Chen et al., 2014; Fujita and Yamashita, 2014; Yung et al., 2019). DAPK1
was identified in an unbiased antisense based genetic screen for genes whose protein products were
necessary for interferon gamma (IFN-γ) induced death in HeLa cells (Lai and Chen, 2014; Liu et al.,
2016). DAPK1 has a unique multi-domain structure, and the sequence from the N end to the C end
is: a kinase domain, a calmodulin regulatory domain, eight continuous ankyrin repeats, two potential
P-loop binding regions of Ras of Complex proteins (C-terminal of ROC), a death domain and a
serine-rich tail. DAPK2 is comprised of a kinase domain, a calmodulin-binding autoregulatory
domain and a C-terminal tail. DAPK3 contains kinase domain, a leucine zipper domain, and two
putative nuclear localization sequences (NLS) (Shiloh et al., 2014) (Figure 1).

DAPK1 is involved in the regulation of cell apoptosis, autophagy and migration (Lin et al., 2007;
Harrison et al., 2008; Gandesiri et al., 2012; Rennier and Ji, 2013a; Rennier and Ji, 2013b; Benderska
et al., 2014; Rennier and Ji, 2015; Tian et al., 2016). Previous research revealed that DAPK1 is a tumor
suppressor gene, and the level of DAPK1 was down regulated in various cancers (Raval et al., 2007;
Kilinc et al., 2012; Gao et al., 2015; Cai et al., 2017; Xie et al., 2017; Steinmann et al., 2019). In the early
stage of cancer, DAPK1 can suppress tumor growth and metastasis by increasing apoptosis. In late
cancer, DAPK1 can inhibit cell movement and adhesion by interfering with integrins (Kuo et al.,
2006). In contrast to DAPK1, DAPK2 has not been identified as a tumor suppressor in solid tumors.
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DAPK2 is mainly expressed in the hematopoietic compartment.
At present, DAPK2 has been found to act as a tumor suppressor
in several types of leukemia (Rizzi et al., 2007; Humbert et al.,
2014; Ye et al., 2016). DAPK3 is considered as a tumor
suppressor. Previous reports revealed that the DAPK3
promoter is often methylated in various types of cancer,
resulting in the loss of its tumor suppressor effect (Brognard
et al., 2011; Das et al., 2016).

METHYLATION OF DEATH-ASSOCIATED
PROTEIN KINASE GENE IN TUMOR

Hypermethylation of DAPK has been frequently described in
many different cancers compared with normal tissues, including
esophageal, breast malignancies, head and neck, kidney and
bladder, ovary, B cell lymphoma and lung cancer (Sanchez-
Cespedes et al., 2000; Lehmann et al., 2002; Brock et al., 2003;
Christoph et al., 2006; Collins et al., 2006). Raveh et al. found that
the methylation of DAPK1 gene accounts for about 20% in
primary colon cancer patients. Bing et al. found that the
methylation frequency of DAPK1 gene was approximately 17.7
and 54.8% in normal gastric tissue and gastric cancer tissue
samples respectively (Ye et al., 2012). Harder et al. revealed
that the methylation of DAPK1 gene accounted for about 68%
in 34 liver cancer samples, but in 16 normal liver tissues, its
methylation accounted for about 31% (Harder et al., 2008). In
addition, Flatley et al. revealed that cervical cancer cells whose
DAPK1 gene is methylated may be more susceptible to human
papillomavirus (HPV) infection (Flatley et al., 2014).

Abnormal promoter methylation is an early and frequent
event in the process of cell carcinogenesis, and can be used as
a sensitive biomarker of tumorigenesis. Bing et al. pointed out
that the methylation frequency of the DAPK1 promoter in gastric
cancer tissue samples was three times higher than that in normal
gastric tissue. That is, along with the process of gastric
carcinogenesis, the methylation rate of DAPK1 gene will
increase, so it can be speculated that DAPK1 can be used as a
marker of gastric cancer (Ye et al., 2012). Research by Krajnovic

et al. pointed out that DAPK1 gene methylation accounted for
79%, and O-6 methylguanine DNA methyltransferase (MGMT)
gene methylation accounted for 59% in 32 follicular lymphoma
(FL) samples. And the synergistic methylation of these two genes
can be used as a marker of FL disease recurrence and drug
resistance (Krajnović et al., 2013).

Although there have many relevant reports on the detection of
the methylation frequency of the DAPK1 promoter in multiple
patient samples. However, due to the limited patient information
and the number of samples. There are few studies on the analysis
of the methylation of DAPK1 gene, the mRNA level of DAPK1,
and the protein level of DAPK1 in the same patient sample. It is
necessary to simultaneously detect these three levels in
appropriate samples to further understand the biological
function and clinical significance of DAPK1 gene methylation
in tumors. Our previous study found that DNA methylation
status of DAPK1 did not correlate well with its mRNA or protein
expression in breast cancer, which indicated that DAPK1
expression is not only regulated by methylation (Zhu et al.,
2017). In addition to the methylation, there has been an
increasing number of studies on the association between
regulation of DAPKs and non-coding RNAs.

NON-CODING RNAS

In recent years, non-coding RNA (ncRNA) has received
increasing attention (Guo et al., 2015; Esposito et al., 2016;
Sun et al., 2018; Fridrichova and Zmetakova, 2019; Ban et al.,
2020; Zhang et al., 2020). With more andmore non-coding RNAs
being identified, their functions have been gradually discovered.
In 1993, Ambros and Ruvkun announced the discovery of
miRNA which is related to the development and regulation of
Caenorhabditis elegans. After that, hundreds of similar short
RNAs were found in drosophila, human and worm cells (Cech
and Steitz, 2014). Non-coding RNAs regulate target genes at
transcription level and RNA processing level, and participate in
almost all physiological processes such as embryo
development, protein synthesis, cell differentiation and

FIGURE 1 | Schematic representation of the domains of each of the DAPK family members with their respective location.
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apoptosis (Cech and Steitz, 2014). There are two major types of
non-coding RNA with regulatory functions according to their
size: short chain non-coding RNAs (siRNA, miRNA and
piRNA) with length between several and 200 nt, and long
chain non-coding RNAs (lncRNA) with length greater than
200 nt. In recent years, a number of non-coding circular RNAs
(circRNAs) have also been identified (Hsiao et al., 2017).
Currently, miRNA, lncRNA and circRNA are the most
studied non-coding RNAs.

MiRNA is a family of highly conserved, non-coding RNAs
encoding 19–25 nt. The main function of miRNA is its
participation in the regulation of gene expression after
transcription (Wang et al., 2018a). MiRNA can play a
suppressive role by binding to the mRNA of target gene
sequence often locating on the 3′UTR, thereby inhibiting target
gene expression (Figure 2) (Bushati and Cohen, 2007; Chen et al.,
2019; Michlewski and Cáceres, 2019; Sur et al., 2019). Dysregulation
of miRNA has been confirmed to be closely related to cancer and
many other diseases (Liu and Li, 2019; Zhao et al., 2019). Previous
studies revealed that the expression patterns were different for each
miRNA among different cancer tissues. For example, miR-34 was
down-regulated in prostate cancer, breast cancer, lung cancer and
osteosarcoma compared with normal tissues, but was up-regulated

in liver cancer (Zhang et al., 2019a). These studies suggested that
same gene may have a completely different expression pattern in
different types of tumors due to the regulation of miRNA.

LncRNA refers to non-coding RNA transcripts with length
greater than 200 nt (Jathar et al., 2017). With the continuous
progress of genomics and exploration of lncRNA family
members, the regulatory effect of lncRNA on gene function
has been gradually discovered (Chen, 2016). LncRNAs exert
functions at different positions according to different
mechanisms such as regulation of transcription, translation,
protein modification and the formation of RNA-protein or
protein-protein complexes (Figure 2) (Xing et al., 2015; Botti
et al., 2017; Renganathan and Felley-Bosco, 2017; Wang et al.,
2018b; Liao et al., 2018). The competing endogenous RNA
(ceRNA) is the most studied mechanism of lncRNA-mediated
gene expression regulation. LncRNA can act as a miRNA sponge
via ceRNA mechanism, thereby regulating the expression of
miRNA target genes (Iwakiri et al., 2017; Militello et al., 2017;
Chen et al., 2018a). For example, lncRNAATBwas deregulated in
hepatocellular carcinoma, lung cancer and other malignant
tumors, and caused tumor occurrence and development
through ceRNA mechanism (Li et al., 2017a). LncRNA
DANCR was deregulated in lung cancer, and promoted tumor

FIGURE 2 | Mechanisms of ncRNA function.
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growth and invasion by binding with tumor suppressor miR-216a
(Zhen et al., 2018).

CircRNA is a new type of non-coding RNA with covalently
closed ring structure. The formation of circRNA is through the
reverse splicing process in the splicing modification of precursor
mRNA, which makes the splicing donor at the 3’end of pre-mRNA
connect with the splicing receptor at the 5′ end (Chen and Yang,
2015). Since circRNA involves a wide range of biological processes,
the deregulation of circRNAmay lead to abnormal cell function and
diseases (Zhang et al., 2018a; Bi et al., 2018; Chen et al., 2018b; Lin
and Chen, 2018; Zhang et al., 2019b). For example, the expression of
circSLC8A1 was decreased in bladder cancer. Overexpression of
circSLC8A1 inhibited bladder cancer cell proliferation, migration
and invasion. Further study revealed that circSLC8A1 acts as a
miRNA sponge for miR-494 and miR-130b, and subsequently
regulate the expression of their target gene PTEN (gene of
phosphate and tension homology deleted on chromsome ten),
thereby suppressed the progression of bladder cancer (Lu et al.,
2019). Similarly, a large amount of circRNAs have been identified to
enhance the transcription of target genes through ceRNA
mechanisms (Figure 2) (Zhang et al., 2018b; Fang et al., 2018;
Zhu et al., 2018; Cao et al., 2019; Costa et al., 2019; Liu et al., 2019; Yu
and Liu, 2019; Yuan et al., 2019; Chen et al., 2020).

THE REGULATORY NON-CODING RNAS
FOR DEATH-ASSOCIATED PROTEIN
KINASES

Non-coding RNAs Involved in the
Transcription Regulation of
Death-Associated Protein kinase1
Emerging evidence showed that numerous miRNAs caused
DAPK1 deregulation in multiple cancers, for example, miR-
103, miR-34a-5p and miR-191 etc.

In colorectal cancer, Chen et al. found that the increased levels of
miR-103 and miR-107 were related to the metastasis potential of
tumor cells by targeting DAPK1 and KLF4 (Kruppel like factor 4).
In renal cell carcinoma (RCC), the expression of DAPK1 was
decreased. Functionally, DAPK1 overexpression repressed RCC
cell proliferation, migration and invasion. Meanwhile, the
expression of DAPK1 was identified to be regulated by miR-34a
(Jing et al., 2019). In ovarian cancer, knockdown of DAPK1 could
weaken its response to TNF-αinduced cell death in CRL-7566 cells.
Higher level of miR-191 in ovarian cancer patient samples
compared with controls was verified, and miR-191 was
confirmed to directly target DAPK1 and regulate its expression
using luciferase assay. Further, the authors demonstrated that the
miR-191-DAPK1 axis plays a major role in modulating the
response of endometrioid carcinoma cells to death-inducers
(Tian et al., 2015; Vastrad et al., 2017). In gliomas and
glioblastoma, miR-103a-3p-DAPK1 axis and miR-22-3p-DAPK1
axis might be associated with the diagnosis and treatment of
gliomas and glioblastoma (Vastrad et al., 2017). In
nasopharyngeal carcinoma (NPC), the over-expression of miR-
483-5p decreased the radiosensitivity of NPC cells in vivo and

in vitro. MiR-483-5p decreased radiation-induced apoptosis and
DNA damage, and increased NPC cell colony formation by
targeting DAPK1 (Tian et al., 2019). These results implied that
modulation of miR-483-5p-DAPK1 axis may provide a new
approach for increasing the radiosensitivity of NPC. In
pancreatic cancer, the level of DAPK1 was significantly down-
regulated, and increased DAPK1 expression inhibited the
migration and invasion of pancreatic cancer cells. MiR-182 was
highly expressed in pancreatic cancer and confirmed to directly
target DAPK1. MiR-182-DAPK1 axis has been demonstrated to
plays an important role in the development and progression of
pancreatic cancer (Xu et al., 2017). In endometrial cancer (EC),
lncRNAMIR22 was reported to be significantly down-regulated in
endometrial cancer tissues. Functionally, over-expression of
lncRNA MIR22 significantly inhibited endometrial cancer cells
proliferation, induced EC cells apoptosis, and arrested endometrial
cancer cells in G0/G1 phase. Furthermore, miR-141-3p was
identified as a target for lncRNA MIR22. Subsequently, lncRNA
MIR22was found to inhibit endometrial cancer cell proliferation by
regulating the miR-141-3p-DAPK1 axis (Cui et al., 2018). In breast
cancer, hypermethylation of miR-127 was observed in 58 breast
cancer tissues compared with paired normal breast tissues. Clinical
research data indicated that the up-regulated expression levels of
DAPK1 in breast cancer patients were negatively correlated with
the decreased expression of miR-127-5p. In addition, the miR-127-
DAPK1 axis was found to be related to breast cancer progression,
particularly metastasis (Pronina et al., 2017).

In addition to cancer, the expression of DAPK1 was also
regulated by non-coding RNAs in numerous other diseases. In
rheumatoid arthritis (RA), miR-103a-3p was significantly up-
regulated in the whole blood and peripheral blood mononuclear
cells of RA patients compared with healthy control (Anaparti et al.,
2017). Additionally, DAPK1 was found to be a target of miR-103a-
3pand decreased in RA. In Parkinson’s disease (PD), the level of
DAPK1 was increased in PD mice and positively correlated with
synucleinopathy, and DAPK1 is a target of miR-26. MiR-26
knockdown or over-expression of DAPK1 resulted in
synucleinopathy, dopaminergic neuron cell death, and motor
disabilities in wild-type mice. Further investigation revealed that
miR-26-DAPK1 axis were essential in the formation of the
molecular and cellular pathologies in PD (Su et al., 2019). In
cardiac ischemia-reperfusion (IR) injury, the level of miR-98 was
decreased in the cardiomyocytes subjected to hypoxia/reoxygenation
(H/R) and in the myocardium of the I/R rats. Moreover, increased
miR-98 expression could significantly reduce the myocardial
oxidative stress, ischemic injury and cell apoptosis. Subsequently,
DAPK1was confirmed as a direct target of miR-98 using luciferase
activity assay (Zhai et al., 2019). In chronic obstructive pulmonary
disease (COPD), PM2.5 significantly aggravated apoptosis in
cigarette-inflamed Human bronchial epithelial cells (HBEpiCs).
The level of miR-194-3p was detected to be down-regulated in
PM2.5-CSS-treated HBEpiCs. Bioinformatics and luciferase activity
assay reported that DAPK1 was directly targeted by miR-194-3p.
Inhibition of miR-194-3p increased DAPK1 expression and
apoptosis in normal HBEpiCs (Zhou et al., 2018). In ischemic
stroke, increased lncRNA AK038897 and decreased miR-26a-5p
levels were observed in mouse brains following middle cerebral
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artery occlusion/reperfusion (MCAO/R) and in neuro-2A (N2a)
neuroblastoma cells following oxygen-glucose deprivation and
reoxygenation (OGD/R). Further studies showed that AK038897
and DAPK1 were targets of miR-26a-5pusing luciferase activity
assay. Finally, AK038897 -miR-26a-5p- DAPK1 axis was considered
as a key mechanism controlling cerebral ischemia injury (Wei et al.,
2019). In polycystic ovary syndrome (PCOS), the level of miR-141-
3p was decreased in the ovaries of rat PCOS models, and increased
level of miR-141-3p decreased cells apoptotic rate (Li et al., 2017b).
Luciferase activity assay reported that DAPK1 was the target of miR-
141-3p, indicating that miR-141-3p is involved in the etiology of
PCOS by targeting DAPK1 (Table 1; Figure 3).

Non-coding RNAs Involved in the
Transcription Regulation of
Death-Associated Protein kinase2
The expression of DAPK2 was also reported to be regulated by non-
coding RNAs in cancers and other diseases. In epithelial ovarian
cancer (EOC), the level of miR-520g was significantly increased in
EOC tissues compared with normal tissues, and over-expression of
miR-520g increased EOC cell proliferation and promoted cell
invasion (Zhang et al., 2016). DAPK2 was a target of miR-520g.
MiR-520g knockdown or DAPK2 over-expression reduced EOC cell
proliferation, invasion and chemoresistance. These results suggested
that miR-520g promoted EOC progression and drug resistance by
regulating DAPK2. In breast cancer, miR-520h could promote the
drug resistance of breast cancer cells (Su et al., 2016). Bioinformatics
prediction, compensatory mutation and functional validation further
confirmed that DAPK2 is a target of miR-520h. Over-expression of
DAPK2 could abolish breast cancer cell drug resistance induced by
miR-520h, suggestingmiR-520h-DAPK2 axis is a potential functional
target for breast cancer therapy. In gastric cancer, the level of miR-34a
was significantly increased and correlatedwith dendritic cellmediated
enhancement of anti-tumor immunity against gastric cancer cell.

DAPK2 and Sp1 were targets of miR-34a (Yan et al., 2016a). Another
research found that miR-135a was highly expressed in gastric cancer
tissues compared to normal tissues. Gastric cancer with high miR-
135a level was more likely to display aggressive characteristics.
Moreover, miR-135a promoted the proliferation and invasion of
oxaliplatin-resistant gastric cancer cells, and inhibited E2F
transcription factor 1 (E2F1) induced apoptosis by inhibiting E2F1
and DAPK2 expression (Yan et al., 2016b). In colorectal cancer, miR-
1285-3p improved colorectal cancer cell proliferation and escape
from apoptosis by targeting DAPK2 (Villanova et al., 2020). In
diabetic cardiomyopathy (DCM), lncRNA myocardial infarction
associated transcript (MIAT) was significantly upregulated in the
rat model of DCM. Knockdown of MIAT reduced cardiomyocyte
apoptosis and improved left ventricular function in diabetic rats.
Luciferase activity assay reported that MIAT and DAPK2 were
directly targeted by miR-22-3p (Zhou et al., 2017). MIAT may
function as a competing endogenous RNA to positively regulate
DAPK2 expression by sponging miR-22-3p, which consequently
leads to cardiomyocyte apoptosis involved in the pathogenesis of
DCM. In ischemia reperfusion injury, DAPK2 was confirmed as a
target of miR-133a. In H9C2 cells, ischemia reperfusion caused a
sharp decrease in miR-133a expression and a significant upregulation
of DAPK2 expression (Li et al., 2015) (Table 1; Figure 3).

Non-coding RNAs Involved in the
Transcription Regulation of
Death-Associated Protein kinase3
Compared to DAPK1 and DAPK2, fewer studies investigated the
association between DAPK3 and non-coding RNAs. DAPK3 was
reported to be a target of miR-17/20a and played an important role
in preventing miR-17/20a depletion-induced genome instability or
miR-17/20a overexpression triggered tumor formation (Cai et al.,
2015). In ovarian cancer, miR-1307 was up-regulated in the
chemoresistant epithelial ovarian cancer tissues and might play

TABLE 1 | Non-coding RNAsin the regulation of DAPKs.

Number Cancer or Disease Target gene Non-coding RNAs

1 Colorectal cancer DAPK1 miR-103
2 Renal cell carcinoma DAPK1 miR-34a-5p
3 Ovarian cancer DAPK1 miR-191
4 Breast cancer DAPK1 miR-127-5p
5 Gliomas and glioblastoma DAPK1 miR-103a-3p、miR-22-3p
6 Nasopharyngeal carcinoma DAPK1 miR-483-5p
7 Endometrial cancer DAPK1 MIR22HG/miR-141-3p
8 Rheumatoid arthritis DAPK1 miR-103a-3p
9 Parkinson’s disease DAPK1 miR-26
10 Cardiac ischemia-reperfusion DAPK1 miR-98
11 Chronic obstructive pulmonary disease DAPK1 miR-194-3p
12 Ischemic stroke DAPK1 AK038897/miR-26a-5p
13 Polycystic ovary syndrome DAPK1 miR-141-3p
14 Epithelial ovarian cancer DAPK2 miR-520g
15 Breast cancer DAPK2 miR-520h
16 Gastric cancer DAPK2 miR-34a、miR-135a
17 Colorectal cancer DAPK2 miR-1285-3p
18 Diabetic cardiomyopathy DAPK2 MIAT/miR-22-3p
19 Ischemia reperfusion injury DAPK2 miR-133a
20 Breast cancer DAPK3 miR-17/20a
21 Ovarian cancer DAPK3 miR-1307
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a role in the development of chemoresistance in ovarian cancer by
targeting DAPK3 (Zhou et al., 2015) (Table 1; Figure 3).

BIOINFORMATICS ANALYSIS OF
POTENTIAL NON-CODING RNAS
INVOLVED IN THE TRANSCRIPTION
REGULATION OF DEATH-ASSOCIATED
PROTEIN KINASES

Although there have been many studies on the non-coding RNAs
regulating DAPKs, bioinformatic tools are available to

computationally predict new non-coding RNAs for DAPKs,
which may help us have a better understanding about the
regulation of DAPKs.

Analysis of Potential miRNAs Involved in the
Transcription Regulation of
Death-Associated Protein kinases
By analyzing a large set of Ago and RBP (RNA binding protein)
binding sites derived from all available CLIP-Seq experimental
techniques (PAR-CLIP, HITS-CLIP, iCLIP, CLASH), ENCORI
(http://starbase.sysu.edu.cn/index.php) have shown extensive
and complex RNA–RNA interaction networks (Li et al., 2014;

FIGURE 3 | The reported non-coding RNAs in the regulation of DAPKs.
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FIGURE 4 | Bioinformatics analysis of potential miRNAs in the regulation of DAPKs. Venn diagrams show potential miRNAs in the regulation of DAPK1 (A),
DAPK2 (C) and DAPK3 (E) based on Targetscan and ENCORI website. Network connection diagram showing potential miRNAs in the regulation of DAPK1 (B),
DAPK2 (D) and DAPK3 (F) based on Targetscan and ENCORI website.
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Fan et al., 2020). Targetscan (http://www.targetscan.org/vert_72/
) predicts biological targets of miRNAs by searching for the
presence of conserved sites that match the seed region of each
miRNA (Agarwal et al., 2015). The overlapping target genes in
these two databases were considered as miRNA-target genes.
According to the prediction of Targetscan and ENCORI

databases, 543 miRNAs and 153 miRNAs for DAPK1 were
identified respectively. The intersection of the two predictions
includes 76 miRNAs such as miR-362-3p, miR-329-3p, miR-141-
3p, miR-26b-5p, miR-483-5p and miR-98-5p et al. (Figures
4A,B). Among them, miR-141-3p and miR-26b-5p have been
reported to regulate DAPK1 expression (Cui et al., 2018; Su et al.,

FIGURE 5 |Bioinformatics analysis of potential lncRNAs in the regulation of DAPKs. Sankey diagram for the ceRNA network in DAPK1. Each rectangle represents a
gene, and the connection degree of each gene is visualized based on the size of the rectangle.
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2019). Similarly, the intersection for DAPK2 and DAPK3 were
seven miRNAs and eight miRNAs respectively (Figures 4C–F).

Analysis of Potential lncRNAs Involved in
the Transcription Regulation of
Death-Associated Protein kinases
LncACTdb 2.0 (http://www.bio-bigdata.net/LncACTdb/) is a
database which provides comprehensive information of
competing endogenous RNAs (ceRNAs) (Wang et al., 2019).
We used LncACTdb 2.0 database to discover lncRNAs that may
regulate DAPKs via ceRNAs mechanism. Base on the
bioinformatics analysis, 38 lncRNA-miRNA-DAPK1 mRNA

ceRNA network, six lncRNA-miRNA-DAPK2 mRNA ceRNA
network and 17 lncRNA-miRNA-DAPK3 mRNA ceRNA
network were constructed (Figure 5). 38 lncRNA-miRNA-
DAPK1 mRNA ceRNA network has 18 lncRNA including
TTN-AS1, RP11-299J3.8, LINC00630, MKNK1-AS1, SLFNL1-
AS1, HCG18, RP11-57H12.5, CTD-2587H24.14, DGUOK-AS1,
RP11-588K22.2, RP4-622L5.7, H19, GUSBP11, LINC00969,
AC034220.3, DPYD-AS1, LINC00670 and KB-1572G7.2.
GUSBP11 is significantly higher in gastric cancer plasma
compared with healthy controls (Zheng et al., 2019). DGUOK-
AS1 promotes the proliferation cervical cancer by sponging miR-
653-5p and regulating EMSY (Yan et al., 2020). LINC00630
promotes radio-resistance by regulating BEX1 gene in

FIGURE 6 | Bioinformatics analysis of potential circRNAs in the regulation of DAPKs. Bioinformatics analysis of potential circRNA in the regulation of DAPK1 (A),
DAPK2 (B) and DAPK3 (C).
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colorectal cancer cells (Liu et al., 2020). HCG18 contributes to the
progression of hepatocellular carcinoma via miR-214-3p/
CENPM (Zou et al., 2020). TTN-AS1 promotes the
progression of lung adenocarcinoma, cholangiocarcinoma and
colorectal cancer (Jia et al., 2019; Zhu et al., 2020a). H19 is
abnormally expressed in human malignant tumors, and regulates
cell proliferation, migration and via various mechanisms (Ye et al.
, 2019). Six lncRNA-miRNA-DAPK2mRNA ceRNA network has
six lncRNA including PPP3CB-AS1, SNHG20, MEF2C-AS1,
RP11-455F5.5, RP11-106M3.3 and LINC01021. It has been
widely reported that SNHG20 is elevated in various cancers,
indicating that SNHG20 may participate in cancer initiation and
development (Zhu et al., 2020b). MEF2C-AS1 is identified as a
novel biomarker in diffuse gastric cancer (Luo et al., 2018). 17
lncRNA-miRNA-DAPK3 mRNA ceRNA network has 10
lncRNA including ZNF790-AS1, NORAD, EBLN3P, XIST,
RP5-1024G6.5, CTC-351M12.1, CTC-204F22.1, ITGA9-AS1,
RP11-421L21.3 and VCAN-AS1. EBLN3P promotes the
progression of liver cancer by regulating miR-144-3p/DOCK4
(Li et al., 2020). VCAN-AS1 contributes to the progression of
gastric cancer via regulating p53 expression (Feng et al., 2020).
NORAD is a highly conserved lncRNA necessary for genome
stability and is dysregulated in various cancers (Soghli et al.,
2021). XIST is associated with poor prognosis and metastasis of
cancer in patients (Yin et al., 2019).

Analysis of Potential circRNA Involved in the
Transcription Regulation of
Death-Associated Protein kinases
CircBase (http://www.circbase.org/) is a database for circular
RNAs (Glažar et al., 2014). Using CircBase, we found 27
circRNAs that may regulate DAPK1 including circ-0087415,
circ-0139281 and circ-008742 et al., four circRNAs for
DAPK2 including circ-0104197, circ-0141257, circ-
0104196 and circ-0035812 and eight circRNAs for DAPK3
including circ-0048524, circ-0048528, circ-0048527, circ-
0048525, circ-0048526, circ-0048530, circ-0048523 and
circ-0048529 (Figure 6).

CONCLUSION

In the review, we conducted a comprehensive review of studies on
non-coding RNAs and DAPKs to understand the current
research status, and to explore the potential regulatory
miRNAs, lncRNAs and circRNAs for the expression of
DAPKs. Based on the review of current evidence, we have
presented the regulatory network linking miRNAs, lncRNAs
and DAPKs. It should be noted that much of our current
understanding of non-coding RNAs in the transcription
regulation of DAPKs comes from studies of a small number of
non-coding RNAs and it is presently unclear whether these are
representative of the group as a whole. Any review on this subject
of non-coding RNAs in the regulation of DAPKs will always be
incomplete for the reason that the field is still expanding. In
addition to the miRNAs and lncRNAs described here, the

circRNAs participate in the regulation of DAPKs remains an
unexplored area of investigation. One thing that seems likely is
that as we begin to identify more non-coding RNAs regulating
DAPKs, the regulatory mechanisms of DAPKs in cancers and
disease will be better understood.

It is well known that one non-coding RNA regulates multiple
genes, and one gene may be regulated by multiple non-coding
RNAs. As demonstrated in this review, the expression of DAPK1
is regulated by multiple non-coding RNAs. One important line
for future research will be to identify the key non-coding RNAs
participating in the transcription regulation of DAPKs in specific
types of cancer.

Bioinformatics analyses have in the past displayed a strong
ability to predict and construct the coding gene and non-coding
gene co-expression network. Previous study has in the past
tended to focus only on the miRNAs in the transcription
regulation of DAPKs. For example, DAPK1 has been
confirmed to be regulated by miR-191, miR-483-5p, miR-141-
3p, miR-98, miR-141-3p and miR-26a-5p. In prediction websites
ENCORI and Targetscan, these miRNAs were predicted to bind
to DAPK1 3′ UTR. MiR-129-5p, miR-205-5p, miR-214-3p, miR-
1185-5p, miR-761, miR-3605-5p and miR-676-3p were found to
be involved in the transcription regulation of DAPK2, these
miRNAs were predicted to bind to DAPK2 3′ UTR in
Targetscan websites. Compared to miRNAs, there has been
little research on lncRNAs and circRNAs targeting DAPKs,
and only three lncRNAs were reported to be involved in the
transcription regulation of DAPKs. As it becomes clear that
lncRNA and circRNA have a distinct biological role, it is
logical to discovered that lncRNA and circRNA that regulate
DAPKs will be found to have clinical implications and also be
worthy of investigation. Base on LncACTdb website, we found
that a total of two miRNAs, miR-103a-3p and miR-107, were
involved in the 38 lncRNA-miRNA-DAPK1 ceRNA network.
Meanwhile, miR-103a-3p and miR-107 were also predicted to
bind to DAPK1 3’ UTR through ENCORI website. These results
imply that miR-103a-3p andmiR-107may play an important role
in the transcription regulation of DAPK1. Of additional concern,
lncRNA DAPK1-IT1 is transcribed from an intron of the DAPK1
gene. DAPK1-IT1 has been reported to regulate cholesterol
metabolism and inflammatory response in macrophages and
promotes atherogenesis by sponging miR-590-3p and
regulating LPL (lipoprotein lipase), and possibly linked to
respiratory diseases. Thus, the interaction between DAPKs and
the ncRNAs can be complex (Zhen et al., 2019; Liao et al., 2020).

In conclusion, this review integrates and predicts the potential
non-coding RNAs that may participate in the transcription
regulation of DAPKs. We hope this could help speed up the
research on non-coding RNAs in the transcription regulation of
DAPKs in the future.
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