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The proteolytic machinery activity diminishes with age, leading to abnormal accumulation
of aberrant proteins; furthermore, a decline in protein degradation capacity is associated
with multiple age-related proteinopathies. Cellular proteostasis can be maintained via the
removal of ubiquitin (Ub)-tagged damaged and redundant proteins by the ubiquitin-
proteasome system (UPS). However, during aging, central nervous system (CNS) cells
begin to express a frameshift-mutated Ub, UBB+1. Its accumulation is a neuropathological
hallmark of tauopathy, including Alzheimer’s disease and polyglutamine diseases.
Mechanistically, in cell-free and cell-based systems, an increase in the UBB+1

concentration disrupts proteasome processivity, leading to increased aggregation of
toxic proteins. On the other hand, a low level of UBB+1 improves stress resistance and
extends lifespan. Here we summarize recent findings regarding the impact of UBB+1 on Ub
signaling and neurodegeneration. We also review the molecular basis of how UBB+1

affects UPS components as well as its dose-dependent switch between cytoprotective
and cytotoxic roles.
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INTRODUCTION

Age-related impairment of protein degradation affects protein homeostasis (proteostasis) networks,
causing enhanced accumulation of damaged proteins that can be cytotoxic and shorten lifespan. The
primary proteolytic component of the cellular proteostasis network is the ubiquitin-proteasome
system (UPS), which initiates turnover of unwanted substrates via covalent attachment of the
evolutionarily conserved protein ubiquitin (Ub) (Buchberger et al., 2010; Popovic et al., 2014; Balchin
et al., 2016). More than 2 decades ago, van Leeuwen and colleagues, while studying Alzheimer’s
plaques in postmortem brains, identified a frameshift-mutated form of Ub currently known as
UBB+1 (van Leeuwen et al., 1998). Subsequent studies confirmed the involvement of UBB+1 in several
other neurodegenerative diseases (i.e., Pick disease and progressive supranuclear palsy) as well as in
polyglutamine (polyQ) diseases (i.e., Huntington’s disease and spinocerebellar ataxia type 3).
Furthermore, UBB+1 accumulation has been linked to disease onset and progression (Fergusson
et al., 2000; Fischer et al., 2003; de Pril et al., 2004; Hol et al., 2005; Yim et al., 2014). Nonetheless,
UBB+1 has also been found in healthy neurons and other cell types, including monocytes and
hepatocytes (French et al., 2001; Fischer et al., 2003; Fratta et al., 2004). Recent findings highlight the
positive effects associated with UBB+1 expression. For example, UBB+1 synthesis reduces amyloid-β-
(Aβ-) related toxicity (Verheijen et al., 2018), and in yeast, a low level of UBB+1 expression prevents
reactive oxygen species (ROS) accumulation and limits apoptosis, consequently increasing cellular
life span (Muñoz-Arellano et al., 2018). Here, we discuss at least some of the many faces of UBB+1 in
proteostasis maintenance.
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MOLECULAR MISREADING LEADS TO
UBB+1 EXPRESSION

In humans, Ub is encoded by four genes, including UB-ribosomal
fusion genes, i.e., Uba52, and RPS27A, which encode a single
copy of Ub fused to a ribosomal protein, and polyubiquitin genes,
i.e., UBB and UBC, which consist of repeats of monoubiquitin
coding units (Wiborg et al., 1985; Finley et al., 1989; Baker and
Board, 1991). In addition, several Ub pseudogenes have been
identified, including the recently characterized UBB pseudogene
4 (Dubois et al., 2020). Reduced Ub levels caused by UBB
inactivation lead to many disorders, including adult-onset
obesity and hypothalamic neurodegeneration (Ryu et al., 2008)
and dysregulation of neuronal stem cell self-renewal (Ryu et al.,

2014). Furthermore, abnormal transcription leads to the
formation of a mutated form of ubiquitin, UBB+1. Molecular
misreading leads to dinucleotide deletions (CU, GA, GU) in
mRNA leading to a +1 reading frame shift, resulting in the
synthesis of a “+1 protein” with abnormal extensions
(Figure 1A) (van Leeuwen et al., 1998; van Leeuwen et al.,
2000; van Leeuwen et al., 2002). Intensification of this
molecular misreading and an accumulation of UBB+1 in
multiple areas of the brain is a hallmark of neurodegeneration,
including that associated with Alzheimer’s disease (van Leeuwen
et al., 1998; van Leeuwen et al., 2000; van Leeuwen et al., 2002).
The exact cause of these errors requires further research; however,
potential mechanisms for the generation of mutant transcripts
include inappropriate RNA polymerase activity at repetitive DNA

FIGURE 1 | Transcription error leads to the expression of a mutated form of ubiquitin. (A)Molecular misreading of Ub mRNA sequences results in “GU” nucleotide
deletion, which introduces a frameshift mutation that results in UBB+1 expression. (B) UBB+1 differs from wild-type Ub by the G76Y missense mutation and a 19-amino
acid C-terminal extension. (C) The tertiary structures of both Ub (PDB ID code: 1d3z, Cornilescu et al., 1998) and UBB+1 (model built upon PDB structures with codes
1d3z and 2kx0) exhibit a compact and globular “β-grasp” fold that forms a hydrophobic core between an α-helix and five β-sheets. In our model of UBB+1, we show
three distinct conformations of the extended amino acid chain. Additional 19-amino acid chains (from models 1, 2, 9 of 2kx0) were added to 1d3z structure with G76Y
mutation using YASARA View (Krieger and Vriend, 2014). Each model was protonated using H++ web server version 3.2 (Gordon et al., 2005; Myers et al., 2006;
Anandakrishnan et al., 2012) and optimized by running 1,500 steps of energyminimization. All calculations were performed using the AmberTools20 package (Izadi et al.,
2014; Li et al., 2015; Case et al., 2020; Tian et al., 2020); optimized models were superposed and visualized in PyMOL (The PyMOLMolecular Graphics System, Version
2.2.3. Schrödinger, LLC). (D) At the start of the ubiquitylation cascade, a Ub-activating enzyme (E1) hydrolyzes ATP and forms a high-energy thioester bond between an
internal cysteine residue and the C-terminus of Ub. Activated Ub is then passed on to Ub-conjugating enzymes (E2s), which form similar thioester-linked complexes with
Ub. Finally, Ub is covalently attached to lysine sidechains of the substrate protein or another Ub (generating polyUb chains) with assistance from ubiquitin-protein ligases
(E3s). Deubiquitylation enzymes (DUBs) modulate the length and topology of polyUb and recycle Ub. Finally, the proteasome complex recognizes ubiquitylated proteins
and degrades them into short peptides via proteolysis. (E) Ub is attached to its substrate via an isopeptide bond between the C-terminal glycine residue of Ub and a
lysine residue in the substrate. The G76Y mutation prevents the formation of an isopeptide bond between the UBB+1 C-terminus and lysine residues in protein
substrates.
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sequences or ribosome-mediated frameshifting (Wills and
Atkins, 2006; Verheijen et al., 2017).

UBB+1 INTERFERES WITH
DEUBIQUITYLATION AND
PROTEASOME-MEDIATED DEGRADATION
Ub attachment (ubiquitylation) is mediated by an enzymatic
cascade involving Ub-activating enzymes (E1), Ub-conjugating
enzymes (E2), and Ub ligases (E3). A C-terminal GG motif is
necessary for Ub activation and conjugation to target proteins.
PolyUb chains are assembled via an isopeptide linkage between
the lysine residue of the previous Ub and the C-terminal glycine
residue of the subsequent subunit. Deubiquitylation enzymes
(DUBs) modulate the size and topology of polyUb
(Figure 1D) (Komander and Rape, 2012). UBB+1 differs from
wild-type Ub due to a G76Y mutation and a flexible 19-amino
acid extension (Ko et al., 2010; Munari et al., 2018), (Figure 1B).

We prepared a Ub model carrying the G76Y mutation and
visualized three different conformations of the 19-amino acid
extension (Figure 1C). Substitution of a glycine at residue 76
interrupts the C-terminal GGmotif, which prevents its activation
by E1, attachment to a substrate’s lysine, and processing by
certain DUBs (Figures 1E, 2A) (Lam et al., 2000; Krutauz
et al., 2014). This Ub mutant can be ubiquitylated at all lysine
residues to serve as a proximal unit in polyUb chains. Studies in
cells and mice have shown that UBB+1 is ubiquitously present in
K29-, K48-, and K63-linked ubiquitin chains (Lam et al., 2000;
Lindsten et al., 2002; van Tijn et al., 2012; Akutsu et al., 2016).

The conjugating enzyme UBE2K can directly interact with
UBB+1 to initiate its ubiquitylation, which can be mediated by the
E3s TRIP12 and HUWE1 (Park et al., 2009; Poulsen et al., 2009;
Ko et al., 2010). In general, polyUb-UBB+1 are recognized by the
proteasome, but they are efficiently degraded when UBB+1 is
expressed under basal conditions (Figure 2A) (Lindsten et al.,
2002; Fischer et al., 2003; van Tijn et al., 2007; van Tijn et al., 2010;
Krutauz et al., 2014). Cellular UBB+1 accumulation promotes

FIGURE 2 | Pleiotropic effects of UBB+1 depend on its expression level. (A) E1, E2, and E3 enzymes are the sole pathway by which Ub molecules are linked to
create polyUb on substrate proteins. UBB+1 is present in cells as a monomer that can be ubiquitylated at internal lysine residues via the same enzymatic cascade;
however, it cannot be attached to proteins. The proteasome can efficiently recognize and proteolyze a low level of Ub-UBB+1 chains. Increased levels of Ub-UBB+1might
impair proteasomal capacity and DUB activity, leading to the accumulation of aberrant proteins designated for degradation. (B) The functionality of cellular
processes correlates with the level of UBB+1 expression.
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proteasome dysfunction, although not via direct inhibition of the
proteosome’s hydrolytic activity. PolyUb-UBB+1 can be
recognized by the substrate-shuttling factor for the
proteasome, HHR23A and UBQLN1, and the proteasomal
ubiquitin-receptor Rpn10 (Chojnacki et al., 2016; Munari
et al., 2018). However, the 19-amino acid C-terminal extension
of UBB+1 prevents the entire molecule from being effectively
pulled in and reaching the 20S catalytic sites (Verhoef et al., 2008;
Shabek et al., 2009). Thus, polyUb-UBB+1 can occupy
proteasomes, thereby preventing the turnover of polyUb
substrates (Figure 2A). UBB+1 also blocks the activity of
proteasome-related DUBs, including Ubp6, which selectively
cleave Lys48-linked Ub, thereby promoting substrate
translocation into the 20S proteasome. Rpn11, a proteasomal
subunit with DUB activity, is also inhibited by UBB+1

(Figure 2A) (Krutauz et al., 2014). Cytosolic DUBs also
encounter obstacles when processing Ub-UBB+1 chains. For
example, Usp5 recognizes the C-terminal glycine residue of
Ub, which is absent in UBB+1; thus, Usp5 cannot remove
UBB+1 subunits. YUH1/UCH-L3 DUB can hydrolyze the
C-terminal extension of UBB+1, releasing, however, another
conjugation-deficient ubiquitin Ub (G76Y) (Dennissen et al.,
2011). Thus, the accumulation of degradation-resistant
polyUb-UBB+1 and their impact on DUBs may correspond to
the expansion of unwanted proteins during neurodegeneration.
Moreover, Chojnacki and colleagues showed that the K63-linked
Ub-UBB+1 chain is resistant to disassembly by the K63-specific
DUB AMSH (Chojnacki et al., 2016). The effects that UBB+1

might have on K63-regulated processes, including DNA repair,
cell signaling, and trafficking, remain to be explored.

UBB+1 EXPRESSION ACCOMPANIES
NEURODEGENERATION

Neuronal UBB+1 accumulation is a characteristic of
neurodegenerative disorders, especially tauopathies. The link
between UBB+1 and Alzheimer’s disease (AD) is the most
extensively studied and is the subject of several reviews (van
Leeuwen et al., 2006; Chadwick et al., 2012; Chen and Petranovic,
2016; Seynnaeve et al., 2018). Recently, UBB+1 was identified in
samples from Guam island inhabitants suffering parkinsonism-
dementia complex (G-PDC) (Verheijen et al., 2017). In light of
current knowledge, G-PDC is the first Parkinson-related disorder
with confirmed UBB+1 involvement. Inclusions of UBB+1 were
accompanied by the UPS proteins and endoplasmic reticulum
(ER) unfolded protein response (UPRER) regulators, i.e., pPERK
and BiP/GRP78. The UPRER is an adaptive stress response
pathway that counters protein misfolding and aggregation in
the ER (Hetz et al., 2020). Interestingly, depletion of the UPRER

sensor Ire1 in yeast ameliorates UBB+1 toxicity upon oxidative
stress; however, this effect is independent of the UPRER

transcriptional activator Hac1 (Braun et al., 2015). Moreover,
drug-induced ER stress has been found to lead to substantial
UBB+1 accumulation in HEK293 cells (Verheijen et al., 2020). It is
still unclear if and how the UPRER protects against deleterious
effects of UBB+1 on proteostasis and neurodegeneration.

CYTOTOXICITY OF UBB+1

Braun and colleagues evaluated the cytotoxic effects of UBB+1

aggregation in several yeast strains with knockouts of specific
UPS genes (Braun et al., 2015). They concluded that the ratio of
UBB+1 to wild-type Ub is a more reliable indicator of UBB+1

cytotoxicity than proteasomal capacity itself.

UBB+1 Affects ATP Synthesis, ROS
Generation, and Mitochondria Organization
Recent data indicate that mitochondria are sensitive to the
concentration-dependent cytotoxicity of UBB+1. Mitochondrial
function can be evaluated by measuring cellular oxygen
consumption, mitochondrial membrane potential, and ATP
levels. Upon UBB+1 expression in yeast, the first two
parameters increased after 2–3 days, while the cellular ATP
level dropped (Braun et al., 2015). These observations indicate
that even enhanced mitochondrial function is insufficient to
prevent a metabolic crisis caused by UBB+1 accumulation. The
cytochrome bc1 complex is a key component of the
mitochondrial respiratory chain. Its alteration leads to
abnormal ROS production and mitochondrial dysfunction
(Crofts, 2004; Sousa et al., 2018). UBB+1 expression correlates
with a significant reduction in the abundance of key components
of the bc1 complex, i.e., Rip1 iron-sulfur protein and cytochrome
c, which likely increases cellular ROS levels and decreases ATP
production. Moreover, when accompanied by prolonged UBB+1

expression, acetate and hydrogen peroxide (H2O2) further
increased the level of oxidative stress (Braun et al., 2015).
Mitochondrial dynamics can also be assessed based on the
expression levels of proteins related to mitochondrial fission or
fusion. UBB+1 induction in primary human astrocytes and
human astrocytoma cells has been shown to result in
decreased expression of several fission-related proteins (Drp1,
Fis1, and OPA3) while the concentrations of mitochondrial
fusion proteins (Mfn1, Mfn2, and OPA1) were unchanged
(Yim et al., 2014). In cells overexpressing UBB+1,
mitochondria are elongated, and this phenotype has also been
observed in cells treated with UPS inhibitors, which induce a
significant drop in fission protein expression. Consistently, H2O2

treatment has been shown to induce astrocyte death upon UBB+1

accumulation (Yim et al., 2014). Dysfunction of the
mitochondrial electron transport chain and mitochondrial
network activates the mitochondrial (mt) unfolded protein
response (UPRmt), a signaling cascade that aims to maintain
mitochondrial protein homeostasis (Fiorese and Haynes, 2017;
Shpilka andHaynes, 2018). Thus, it will be interesting to delineate
the link between UBB+1 toxicity and the UPRmt regulation.

UBB+1 Disrupts Amino Acid Biosynthesis
and Induces Cell Death
In UBB+1-overexpressing yeast cells, sixteen proteins of the
mitochondrial proteome were found to have altered expression
levels (e.g., Put1, Arg5, 6, Arg8, Lys1, Gpd1, and Str3). Among
them, ten were previously associated with UBB+1-related
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pathologies (Braun et al., 2015). Deletion of ARG5,6, ARG8, and
LYS1, which are involved in amino acid metabolism, rescued the
clonogenic potential of cells expressing UBB+1 in response to
acetate-induced oxidative stress. These findings indicate that high
UBB+1 levels enhance the biosynthesis of the basic amino acids
arginine, ornithine, and lysine, potentially aggravating its
cytotoxicity. Therefore, Braun et al. (2015) decided to examine
ROS production upon UBB+1 expression in yeast strains lacking
arginine and ornithine synthesis enzymes. In the absence of
upstream enzymes in the cytosolic ornithine synthesis pathway
(Arg2, Arg5,6, Arg7, and Ort1), UBB+1 toxicity decreased under
both normal conditions and stress conditions induced by acetate
treatment. By contrast, the absence of enzymes downstream of
cytosolic ornithine synthesis (Arg3, Arg1, and Arg4) did not
affect UBB+1-triggered toxicity. In these phenotypes,
perturbation of lysine levels appears to be irrelevant.
Consequently, UBB+1 accumulation can influence
mitochondria-associated overproduction of ornithine and
arginine, key signaling molecules in the execution of cell death
pathways (Braun et al., 2015). In aged human brains and brains
from AD patients, the arginine and ornithine levels were altered
(Rushaidhi et al., 2012; Inoue et al., 2013; Liu et al., 2014; Braun
et al., 2015). However, the relationship between UBB+1

expression and amino acid metabolism-dependent cell death
in aging requires confirmation.

UBB+1 Impairs Retrograde Axonal
Transport
In neurons, the microtubule cytoskeletal system is responsible for
bidirectional mitochondria transport between the soma and
synaptic terminals. While KIF1B kinesin plays a crucial role in
anterograde transport, the dynein intermediate chain P74 is
responsible for retrograde transport (Perlson et al., 2010;
Maday et al., 2014). In intracellular organelles, impairment of
this process leads to clogging by mitochondria in neuritic beads.
In primary cortical neurons transfected with UBB+1,
mitochondria-associated P74 levels decreased accompanied by
a corresponding increase in cytosolic dynein, while KIF1B levels
were unaltered (Tan et al., 2007). Consequently, UBB+1

expression can impair the interaction between mitochondria
and dynein, thus leading to cargo detachment during
retrograde axonal transport. Since impaired axonal
mitochondrial transport promotes tau phosphorylation, which
leads to its aggregation (Guo et al., 2020), it will be interesting to
verify the impact of UBB+1 on this process.

CYTOPROTECTIVE ROLES OF UBB+1

UBB+1 Triggers Chaperone Protein
Expression
Heat shock proteins (HSPs) function as chaperones that bind
misfolded polypeptides and support the refolding and recovery
of native protein conformations (Lindquist and Craig, 1988;
Höhfeld and Hartl, 1994; Bukau et al., 2006; Morimoto, 2008).
In human neuroblastoma cells, the transcript levels of several heat

shock proteins (Hsp10, Hsp40, Hsp60, Hsp70, and Hsp90a) have
been found to be elevated upon UBB+1 expression (Hope et al.,
2003). However, this effect is only robustly reflected at the protein
level for Hsp40 and Hsp70 (only a moderate increase in Hsp90a
has been found). To examine how these cells manage oxidative
stress upon UBB+1 expression, cell survival was measured based on
mitochondrial activity after tert-butyl hydroperoxide (tBHP, a
strong oxidant) treatment for 24 h. Elevated production of
UBB+1, but not Ub, mitigated tBHP cytotoxicity. Similar effects
were observed for 15 μMMG132 (a reversible proteasome
inhibitor) and 0.1 μM lactacystin (an irreversible proteasome
inhibitor) (Hope et al., 2003). These findings suggest that
UBB+1 is involved in the maintenance of oxidative stability via
HSPs. Moreover, the gene encoding 14-3-3 zeta (ζ), a protein with
chaperone-like activity, was highly expressed in UBB+1-
overexpressing mice (Irmler et al., 2012; Sluchanko et al., 2012).
Due to the role of 14-3-3ζ in the regulation of the unfolded protein
response in the mouse hippocampus (Brennan et al., 2013), its
elevated levels associated with UBB+1 expression might ultimately
protect these cells from ER stress.

UBB+1 Induces Proteotoxic Stress
Resistance and Improves Cellular Viability
Muñoz-Arellano and colleagues investigated the influence of low
(low_UBB+1) or high (high_UBB+1) levels of UBB+1 expression on
yeast fitness. The incorporation of azetidine-2-carboxylic acid
(AZE), a proline analogue, into de novo synthesized
polypeptides disrupts the flexibility of the polypeptide backbone,
thereby inducing protein misfolding stress. After incubation with
AZE for 3 days, high_UBB+1 cells were significantly less viable than
the control cells and low_UBB+1 cells. Since lower ROS levels were
detected in the low_UBB+1 cells after 9 and 14 days of culture,
Annexin V staining was used to check for a corresponding decrease
in apoptosis. Indeed, low_UBB+1 cells were less apoptotic than
control cells and high_UBB+1 cells. Moreover, control and
autophagy-deficient (Δatg1) cells were found to cope better with
protein misfolding induced with 2 mM and 4mM AZE when
UBB+1 is expressed at low levels. Furthermore, when yeast cells
were grown in a synthetic defined (SD) medium commonly used
for chronological lifespan assays, low_UBB+1 cells showed the
highest viability. After 14 days, the average viability of the
low_UBB+1 cells was approximately 70%, while that of the
control and high_UBB+1 cells fell below 10% (Muñoz-Arellano
et al., 2018). Under H2O2-induced oxidative stress in stationary
phase cells, both low_UBB+1 and high_UBB+1 cells had improved
viability compared with controls, especially in the case of aging cells
(Muñoz-Arellano et al., 2018). This seems to be evolutionarily
conserved as a low level of UBB+1 protects astrocytic cells from
oxidative stress (Yim et al., 2014). Interestingly, this effect does not
require the functionality of the proteasome, as its proteolytic
activity similarly decreased in the low_UBB+1 and high_UBB+1

yeast cells; however, it might be related to differences in sustained
expression of certain chaperones (Muñoz-Arellano et al., 2018).
Further insight is needed to understand how chaperone networks
are fine-tuned to maintain the cellular proteome and support
UBB+1 positive cells’ longevity.
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UBB+1 Ameliorates the Aggregation of
Pathogenic Proteins
Autosomal dominant AD is linked to mutations in the genes
encoding β-amyloid precursor protein (APP), presenilin-1
(PSEN1), and presenilin-2 (PSEN2), which lead to impaired
γ-secretase (PSEN1/PSEN2) function and improper processing of
the amyloid precursor protein (APP), ultimately resulting in the
formation of toxic forms of β-amyloid (Aβ) (Jankowsky et al., 2004;
Bateman et al., 2011; O’Brien and Wong, 2011). To study the effect
of UBB+1 accumulation on the development of autosomal dominant
AD, mice overexpressing UBB+1 specifically in the postnatal brain
neurons (tg line 3413) were crossbred with an AD mouse model,
APPPS1 (line 85) (Fischer et al., 2009; Verheijen et al., 2018).
Interestingly, the reduced γ-secretase activity of the APPPS1
animals was partially restored in APPPS1/UBB+1 triple transgenic
animals, thus leading to fewer Aβ plaques in the brain (Chadwick
et al., 2012; Verheijen et al., 2018). To determine whether UBB+1

expression might have broader beneficial effects, including
modulation of contextual memory that reflects AD patients’
cognitive symptoms, behavioral tests have been performed in
animal models. Both APPPS1 and APPPS1/UBB+1 mice
performed worse than wild-type and UBB+1 mice in nest
building (which provides information on general wellbeing). In a
Y-maze spontaneous alternation test, however, all of the mice
demonstrated similar eagerness to explore a new environment.
By contrast, all of the transgenic mice performed more poorly in
a Morris water maze (MWM) compared with the control mice. In
conclusion, recovery of γ-secretase function due to UBB+1

overexpression does not appear to improve overall brain function
or wellbeing. Perhaps the enhanced Aβ processing is outweighed by
the negative effects of UBB+1 on the UPS.

DISCUSSION

UBB+1 can elicit pleiotropic effects depending on its expression
level. A low level of UBB+1 can stimulate a chaperone-buffering
capacity, which likely masks the adverse effects of UBB+1

expression while simultaneously facilitating more robust
prevention of protein aggregation. By contrast, UBB+1

accumulation inhibits proteasome processivity, which might
foster increased aggregation and cytotoxicity of expanded polyQ
proteins (Figure 2B) (de Pril et al., 2004; de Pril et al., 2010). Drugs
that effectively inhibit or induce protein aggregate removal are still
under development. Perhaps a targeted-clearance strategy based on
AUTAC (autophagy-targeting chimera) could be designed to
target UBB+1-labeled protein aggregates to induce their removal
via autophagy (Takahashi et al., 2019). On the other hand, reduced
protein turnover rates correlate positively with extended lifespan in
several rodent species and long-lived animals (Pérez et al., 2009;
Swovick et al., 2018), while an increase in overall protein
degradation can be a hallmark of accelerated aging, as
manifested in Hutchinson-Gilford Progeria Syndrome
(Buchwalter and Hetzer, 2017). Could reducing proteasome
activity via UBB+1 expression be a strategy used by aging or
damaged cells to maintain their function for as long as
possible? Future studies exploring the precise spatiotemporal
expression patterns of UBB+1 could help to clarify this
intriguing phenomenon and its effects on young and aging tissues.
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