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Endurance exercise has a dramatic impact on the functionality of mitochondria and on the
composition of the intestinal microbiome, but the mechanisms regulating the crosstalk
between these two components are still largely unknown. Here, we sampled 20 elite
horses before and after an endurance race and used blood transcriptome, blood
metabolome and fecal microbiome to describe the gut-mitochondria crosstalk. A
subset of mitochondria-related differentially expressed genes involved in pathways
such as energy metabolism, oxidative stress and inflammation was discovered and
then shown to be associated with butyrate-producing bacteria of the Lachnospiraceae
family, especially Eubacterium. The mechanisms involved were not fully understood, but
through the action of their metabolites likely acted on PPARc, the FRX-CREB axis and their
downstream targets to delay the onset of hypoglycemia, inflammation and extend running
time. Our results also suggested that circulating free fatty acids may act not merely as fuel
but drive mitochondrial inflammatory responses triggered by the translocation of gut
bacterial polysaccharides following endurance. Targeting the gut-mitochondria axis
therefore appears to be a potential strategy to enhance athletic performance.
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INTRODUCTION

To keep up with energy demand and to maintain homeostasis, endurance exercise modifies multiple
systems, ranging from the whole-body level to the molecular level (Clark and Mach, 2017; Mach and
Fuster-Botella, 2017). In recent years, our understanding of the role played by mitochondria during
this kind of challenge has expanded far beyond its bioenergetic capacity, which is represented by well
characterized pathways such as oxidative phosphorylation (OXPHOS), fatty acid β-oxidation (FAO)
and the tricarboxylic acid (TCA) cycle (Pfanner et al., 2019). Indeed, it is now widely accepted that
mitochondria regulate cytosolic calcium homeostasis and cellular redox status, that they generate
much of the cell reactive oxygen species (ROS), and that they are involved in steroid and heme
biosynthesis, urea degradation, apoptosis and initiation of inflammation through inflammasomes
(Chinnery and Hudson, 2013; Wong et al., 2016; Jackson and Theiss, 2020; Vezza et al., 2020).
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It has also been established that the mitochondrial genome
(mtDNA) and the nuclear genome are constantly communicating
with each other to regulate the aforementioned pathways. For
example, most of the proteins involved in OXPHOS and
mitochondrial functions like mtDNA replication and
expression, mtDNA repair, redox and energy regulation are
encoded by the nuclear genome and require specific targeting
signals to be directed from the cytosol to mitochondrial surface
receptors and then to the proper mitochondrial sub-
compartments (Pfanner et al., 2019). The transcriptional
programs of mitochondria comprise over 1,600 nuclear-
encoded mitochondrial proteins (Pagliarini et al., 2008;
Richter-Dennerlein et al., 2016). Any alteration in the
OXPHOS and FAO processes, in mitochondrial membrane
potential (ΔΨm), mitochondrial biogenesis, ROS production
and inflammation can have a deep impact on the response to
endurance exercise. For instance, increased mitochondrial
biogenesis improves muscle endurance performance due to
higher rates of OXPHOS and FAO (Hood et al., 2011). On the
contrary, lower metabolic rates, increased ROS production and
acidosis during prolonged exercise are associated with fatigue and
inability to maintain speed (Rapoport, 2010). Endurance or long
exercise and mitochondrial functions are strictly intertwined and
influence each other.

The gut microbiota is considered a central organ because of its
direct and indirect roles in host physiology, including improved
metabolic health and athletic performance (Barton et al., 2017;
Keohane et al., 2019; Scheiman et al., 2019). A healthy ecosystem
in horse includes numerous, highly dominant taxa along with a
multitude of minor players with lower representation, but
important metabolic activity (Costa and Weese, 2018; Kauter
et al., 2019; Mach et al., 2020).

The interdependence of gut microbiota and mitochondria is
being increasingly recognized, with many diseases originating
from mitochondrial dysfunctions linked to well-described
changes in gut microbiota (Karlsson et al., 2013; Saint-
Georges-Chaumet et al., 2015; Mottawea et al., 2016; Franco-
Obregón and Gilbert, 2017; Bajpai et al., 2018; Cardoso and
Empadinhas, 2018; Saint-Georges-Chaumet and Edeas, 2018;
Yardeni et al., 2019). This complex interplay occurs principally
through endocrine, immune and humoral signaling (Mottawea
et al., 2016). Enteric short-chain fatty acids (SCFAs), the major
class of metabolites produced from bacterial fermentation of non-
digestible carbohydrates, are widely thought to mediate the
relationship between the gut microbiota and the mitochondria
in different tissues. Branched-chain amino acids (BCAAs),
secondary bile acids, ROS, nitric oxide (NO), and hydrogen
sulfide (H2S) are also thought to play at least a partial role in
this molecular interchange (Clark and Mach, 2017).

While formal proof is missing in horse athletes, a prevailing
hypothesis is that the gut microbiota and its metabolites regulate
crucial transcription factors and coactivators involved in
mitochondrial functions that underpin endurance performance
(Hawley et al., 2018). In mice models, gut microbiota depletion via
broad-spectrum antibiotics showed reduced production of SCFAs,
lower bioavailability of serum glucose, decreased endurance
capacity and impairment of the ex vivo skeletal muscle

contractile function (Nay et al., 2019). In close agreement, gut
microbiota depletion also triggered a reduction of both faecal SCFA
content and circulating concentration of SCFAs coupled to a drop
in running capacity in mice (Okamoto et al., 2019). In contrast,
mice with Veillonella in their intestinal ecosystem showed
significantly increased submaximal treadmill run time to
exhaustion (Scheiman et al., 2019), prompting the authors to
speculate that the lactate generated during sustained bouts of
exercise could be accessible to the microbiota and converted
into SCFAs that ultimately enhanced energetic resilience and
stamina. Alternatively, there may be other mechanisms through
which gut microbiota and its metabolites relate to mitochondria,
including but not limited to the regulation of mitochondrial
oxidative stress (Jones and Neish, 2014; Franco-Obregón and
Gilbert, 2017), as well as the activation of the inflammasome
and the production of inflammatory cytokines, all of which are
key players in the adaptation to endurance exercise (Clark and
Mach, 2017; Mach and Fuster-Botella, 2017).

We recently presented a three-pronged association study,
connecting horse gut microbiota with untargeted serum
metabolome data and measures of host physiology and
performance in the context of endurance (Plancade et al., 2019).
We found no significant associations between the gut ecosystem and
serummetabolites, especially those relying heavily on mitochondrial
OXPHOS, FAO, TCA and gluconeogenesis. The number of
annotated metabolites in the study was likely insufficient to
reliably encompass the given mitochondrial functions. To further
advance our knowledge of the molecular basis for the gut-
mitochondria crosstalk that support the adaptation to long
exercise, in this work we tethered whole blood transcriptome
profiling to our previous metabolome and metagenome data. In
doing so, we sought to identify the ways in whichmitochondrial and
nuclear transcriptomes coordinate with each other, and how gut
microbiota and circulating metabolites can dynamically modulate
this process. By jointly characterizing thewhole blood transcriptome,
metabolome, fecal microbiota and SCFAs of 20 elite horses
competing in an endurance race, we aim to provide a functional
readout of microbial activity and improve our understanding of the
gut microbiota-mitochondria axis during long exercise.

MATERIALS AND METHODS

Ethics Approval
The study protocol was reviewed and approved by the local
animal care and use committee (ComEth EnvA-Upec-ANSES,
reference: 11-0041, dated July 12th, 2011) for horse study. All the
protocols were conducted in accordance with EEC regulation
(no 2010/63/UE) governing the care and use of laboratory
animals, which has been effective in France since the 1st of
January 2013. In all cases, the owners and riders provided
their informed consent prior to the start of sampling
procedures with the animals.

Animals
Twenty pure-breed or half-breed Arabian horses (7 females, 3
male, and 10 geldings; mean ± SD age: 10 ± 1.69) were selected
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from the cohort used by Plancade et al. (2019) (Supplementary
Table S1). The 20 horses were selected following these criteria: 1)
enrollment in the 160 km or 120 km category; 2) blood sample
collection before and after the race; 3) feces collection before the
race; 4) absence of gastrointestinal disorders during the four
months prior to enrollment; 5) absence of antibiotic treatment
during the four months prior to enrollment and absence of
anthelmintic medication within 60 days before the race; 6) a
complete questionnaire about diet composition and intake.

Among the 20 horses selected for this study, 16 horses were
enrolled for the 160 km category and four for the 120 km
category. In the 160 km category, two animals were eliminated
due to tiredness after 94 km and 117 km, respectively, and five
horses failed a veterinary gate check due to lameness after 94 km
(n � 1), and after 117 km (n � 4). In the 120 km category, one
horse was eliminated due to metabolic troubles after 90 km
(Supplementary Table S1).

The weather conditions, terrain difficulty and altitude were the
same for all the participants enrolled in the study as all races (120
and 160 km) took place during October 2015 in Fontainebleau
(France). The average air temperature was 15°C, with a maximum
of 20°C and a minimum of 11°C, the average air humidity was
88%, and no rain was recorded.

As detailed by Plancade et al. (2019), to ensure sample
homogeneity, the participating horses were subject to the same
management practices throughout the endurance ride and passed
the International Equestrian Federation (FEI) compulsory
examination before the start. Animals were fed 2–3 h before
the start of the endurance competition with ad libitum hay
and 1 kg of concentrate pellets. During the endurance
competition, all the animals underwent veterinary checks every
20–40 km, followed by recovery periods of 40–50 min (in
accordance with the FEI endurance rules). After each
veterinary gate check, the animals were provided with ad
libitum water and hay and a small amount of concentrate pellets.

Transcriptomic Microarray Data
Production, Pre-preprocessing and
Analysis
Blood samples for RNA extraction were collected from each
animal at T0 and T1 using Tempus Blood RNA tubes
(Thermo Fisher). Because blood interacts with every organ
and tissue in the body and has crucial roles in immune
response, inflammation and physiological homeostasis (Mohr
and Liew, 2007), blood-based transcriptome was carried-out as
a means for exploring the response to endurance.

Total RNAs were then isolated using the Preserved Blood RNA
Purification Kit I (Norgen Biotek Corp., Ontario, Canada),
according to the manufacturer’s instructions. RNA purity and
concentration were determined using a NanoDrop ND-1000
spectrophotometer (Thermo Fisher) and RNA integrity was
assessed using a Bioanalyzer 2100 (Agilent Technologies, Santa
Clara, CA, United States). All the 40 RNA samples were
processed.

Transcriptome profiling was performed using an Agilent
4 × 44K horse custom microarray (Agilent Technologies,

AMADID 044466). All of the steps were performed by the
@BRIDGe facility (INRAE Jouy-en-Josas, France, http://abridge.
inra.fr/), as described previously (Mach et al., 2016; 2017b).

The horse array was annotated as described by Mach et al.
(2016), Mach et al. (2017b). In a limited number of cases, a
manual annotation step was also included. Probe intensities were
background-corrected using the “normexp” function, log2 scaled
and quantile normalized using the limma package (version
3.1.42.2) (Smyth, 2004) in the R environment (version 3.6.1).
Quantile normalization seeks to reduce technical variability and
impose identical empirical distributions between samples to
facilitate comparisons (Smyth, 2004). Only the probes which
presented, on at least two arrays, intensity values at least 10%
higher than the 95% percentile of all the negative control probes
were kept. Subsequently, controls were discarded and the probes
corresponding to genes were summarized. The obtained
expression matrix “E1” was processed with the
arrayQualityMetrics R package (version 3.42.0) (Kauffmann
et al., 2009) for quality assessment. No outliers were detected.
The resulting pre-processed normalized expression values were
thus approximately normally distributed and suited for
differential analysis via conventional linear models.

The differential analysis was performed using the limma R
package. A linear model was fitted for each gene, setting the time,
the sex, the distance and whether the animal was eliminated from
the race as fixed effects, and comparing T1 to T0. The individual
was included as a random effect using the “duplicateCorrelation”
function (Smyth et al., 2005). The p-values were Bonferroni
corrected setting a threshold of 0.05. The expression matrix
“E1” was then used to perform a scaled principal component
analysis (PCA) with FactoMineR R package (version 2.4) (Lê
et al., 2008).

To confirm the results of the DE analysis, the weighted gene
co-expression network analysis (WGCNA) method was also run
on the “E1” matrix using the WGCNA R package (version 1.69)
(Langfelder and Horvath, 2008). The parameters for the analysis
were set as follows: “corFnc” � bicor, “type” � signed hybrid,
“beta” � 10, “deepSplit” � 4, “minClusterSize” � 30, and
“cutHeight” � 0.1. The eigengenes corresponding to each
identified module were correlated individually to all the 1H
NMR and biochemical assay metabolites, i.e., a set of 56
different molecules (see next paragraphs). A module was then
considered positively or negatively associated to this set of
molecules if the Pearson r correlation values were ≥ |0.65| for
at least 5 molecules and if all the corresponding p-values were
≤ 1e−05. The positively and the negatively correlated modules
defined in this way were merged to obtain a single gene list, which
was subsequently compared to the differentially expressed genes
(DEGs) list using a Venn diagram.

Afterward, a literature-based meta-analytical enrichment test
was carried out to assess whether the DEG list and the gene list
obtained using WGCNA were enriched in genes related to
mitochondria. To this aim, first a consensus list of genes
related to these organelles was created (Supplementary
Information and Supplementary Table S2). This gene list
was then annotated in a descriptive way. First, gene symbols
were converted into the corresponding KEGG Orthology (KO)
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codes using the “db2db” tool (https://biodbnet-abcc.ncifcrf.gov/
db/db2db.php) from the bioDBnet suite and using the then up-
to-date underlying databases. Then, the retrieved KO codes were
processed with the “Reconstruct Pathway” tool (https://www.
genome.jp/kegg/tool/map_pathway.html) from the KEGG
Mapper suite. Eventually, the obtained KEGG pathways
underwent some manual editing step to make them easier to
interpret, namely 1) only first- and third-level hierarchies
including at least 15 genes were kept for visualization; 2) the
“Human diseases” first-level hierarchy, with all its child
taxonomic terms, was removed; 3) the “Metabolic pathways”
third-level hierarchy was discarded as it was redundant with
respect to the other third-level hierarchies of the
“Metabolism” term.

Then, the same gene list was intersected with the genes found
expressed on the microarray (i.e., the “E1” matrix). The subset
thus obtained was separately intersected with the DEG list and the
WGCNA gene modules. A Fisher’s exact test and hypergeometric
test were then used to evaluate the overrepresentation of genes
related to mitochondrial functions in each list.

The intersection between the genes related to mitochondria
found on the microarray and the DEGs was referred to as “mt-
related genes”. It was functionally annotated using ClueGO
(version 2.5.7) (Bindea et al., 2009) by carrying out a right-
sided test. Significance was set at a Benjamini–Hochberg adjusted
p-value of 0.05 and the k-score was fixed at 0.4. Only the “KEGG
January 30, 2019” ontology was selected.

Proton Magnetic Resonance (1H NMR)
Metabolite Analysis in Plasma
As described by Plancade et al. (2019) and Le Moyec et al. (2019)
to characterize the metabolic phenotype of endurance horses in
detail, we measured 1H NMR spectra at 600 MHz for plasma
samples. Blood was collected from each horse the day before the
event (T0) and within 30 min from the end of the endurance race
(T1) using sodium fluoride and oxalate tubes in order to inhibit
further glycolysis that may increase lactate levels after sampling.
All the samples were immediately refrigerated at 4°C to minimize
the metabolic activity of cells and enzymes and to keep metabolite
composition as stable as possible, and clotting time was strictly
controlled to avoid cell lysis. After clotting, plasma was separated
from blood cells and subsequently transported to the laboratory
at 4°C and then frozen at −80°C (no more than 5 h later in all
cases). Plasma samples were subsequently thawed at room
temperature. Using 5 mm NMR tubes, 600 µL of plasma were
added to 100 µL deuterium oxide for field locking. The 1H NMR
spectra were acquired at 500 MHz with an AVANCE III (Bruker,
Billerica, MA, United States) equipped with a 5 mm reversed QXI
Z-gradient high-resolution probe. Water signal was suppressed
with a pre-saturation pulse (3.42 × 10−5 W) during a 3s-relaxation
delay at the water resonance frequency. The spectrum was
divided into 0.001 ppm regions (bins) over which the signals
were integrated to obtain intensities. The high- and low-field ends
were removed, leaving only the data between 9.5 and 0.0 ppm.
The region between 4.5 and 5.0 ppm, which corresponded to the
signal of residual water, was also removed. Chemical signals were

first normalized according to a relevant internal standard, the so-
called C1-α-glucose doublet, with signal at 5.23 ppm. Next, the
bins (which exhibit skewed distributions across samples) were
normalized according to the spectra using the probabilistic
quotient method to correct for unwanted technical biases, and
were subsequently centered and scaled to unit variance (Dieterle
et al., 2006). Further details on sample preparation, data
acquisition, data quality control, spectroscopic data pre-
processing, and data pre-processing including bin alignment,
normalization, scaling and centering are broadly discussed
elsewhere (Le Moyec et al., 2014).

As specified in Plancade et al. (2019), metabolite identification
was then performed by using information acquired from other
available biochemical databases, namely HMD (http://www.
hmdb.ca/), KEGG (https://www.genome.jp/kegg/), METLIN
(http://metlin.scripps.edu/), ChEBI (http://www.ebi.ac.uk/
Databases/), and LIPID MAPS (http://www.lipidmaps.org/)
and the literature (Le Moyec et al., 2014; Le Moyec et al.,
2019; Mach et al., 2017b; Jang et al., 2017). Each peak was
assigned to a metabolite when chemical shifts of peaks in the
samples were the same as in the publicly available reference
databases or literature (with a shift tolerance level of ±0.
005 ppm), in order to counteract the effects of measurements
and pre-processing variability introduced by factors such as pH
and solvents. A manual curation for identified compounds was
carried out by an expert in horse metabolomics (Le Moyec et al.,
2014). Eventually, the relative abundance of each metabolite was
calculated as the area under the peak (Zheng et al., 2011). A total
of 50 metabolites was identified, which belonged to the following
broad categories: amino acids, including aromatic and branched-
chain amino acids, energy metabolism-related metabolites,
saccharides, and organic osmolytes (Supplementary Table S3).
We refer to our previous work (Plancade et al., 2019) for more
detailed descriptions of the pre-processing andmain results of the
plasmametabolome data that were used to generate the input files
provided with this study.

Biochemical Assay Data Production
Blood samples for biochemical assays were collected at T0 and T1
using 10 ml BD Vacutainer EDTA tubes (Becton Dickinson,
Franklin Lakes, NJ, United States). As detailed in Plancade
et al. (2019), after clotting the tubes were centrifuged and the
harvested serum was stored at 4°C until analysis (no more than 48
later, in all cases). Sera were assayed for total bilirubin, conjugated
bilirubin, total protein, creatinine, creatine kinase,
β-hydroxybutyrate, aspartate transaminase (ASAT),
γ-glutamyltransferase and serum amyloid A levels on a RX
Imola analyzer (Randox, Crumlin, United Kingdom). The
biochemical values obtained are reported in the
Supplementary Table S4.

Fecal Measurements, 16S Data Production
and Analysis
Fresh fecal samples were obtained while monitoring the horses
before the race (no more than 24 h before starting the race, in all
cases). One fecal sample from each animal was collected off the
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ground immediately after defecation as described by Mach et al.
(2017a) and Plancade et al. (2019), and three aliquots (200 mg)
were prepared. Since most of the horses experienced dehydration
after the race, the gastrointestinal emptying was significantly
delayed and therefore it was not possible to recover the feces
after the race.

Aliquots for pH determination were kept at room
temperature, while aliquots for SCFA analysis and DNA
extraction were snap-frozen. Since most of the horses
experienced dehydration after the race, the gastrointestinal
emptying was significantly delayed and consequently we were
not able to recover the feces after the race.

Fecal pH was immediately determined after 10% fecal
suspension (wt/vol) in saline solution (0.15 M NaCl solution).
SCFAs concentrations were measured as previously described in
Mach et al. (2017a). The values obtained are described in the
Supplementary Table S5.

Total DNA was extracted using the EZNA Stool DNA Kit
(Omega Bio-Tek, Norcross, Georgia, United States), and
following the manufacturer’s instructions. DNA was then
quantified using a Qubit and a dsDNA HS assay kit (Thermo
Fisher).

The V3-V4 hyper-variable region of the 16S rRNA gene was
amplified as previously reported by our team (Mach et al., 2017a,
Mach et al., 2020; Clark et al., 2018; Massacci et al., 2019;
Plancade et al., 2019). The concentration of the purified
amplicons was measured using a Nanodrop 8000
spectrophotometer (Thermo Fisher) and their quality was
checked using DNA 7500 chips onto a Bioanalyzer 2100
(Agilent Technologies). All libraries were pooled at equimolar
concentration, and the final pool had a diluted concentration of
5 nM and was used for sequencing. The pooled libraries were
mixed with 15% PhiX control according to the protocol provided
by Illumina (Illumina, San Diego, CA, United States) and
sequenced on a single MiSeq (Illumina, United States) run
using a MiSeq Reagent Kit v2 (500 cycles).

The Divisive Amplicon Denoising Algorithm (DADA) was
implemented using the DADA2 plug-in for QIIME 2 (version
2019.10) to perform quality filtering and chimera removal and to
construct a feature table consisting of read abundance per
amplicon sequence variant (ASV) by sample (Callahan et al.,
2016). DADA2 models the amplicon sequencing error in order to
identify unique ASV and infers sample composition more
accurately than traditional Operational Taxonomic Unit
(OTU) picking methods that identify representative sequences
from clusters of sequences based on a % similarity cut-off
(Callahan et al., 2016). The output of DADA2 was an
abundance table, in which each unique sequence was
characterized by its abundance in each sample. Taxonomic
assignments were given to ASVs by importing SILVA 16S
representative sequences and consensus taxonomy (release
132, 99% of identity) to QIIME 2 and classifying
representative ASVs using the naive Bayes classifier plug-in
(Bokulich et al., 2018). The feature table, taxonomy, and
phylogenetic tree were then exported from QIIME 2 to the R
statistical environment and combined into a phyloseq object
(McMurdie and Holmes, 2013). Prevalence filtering was

applied to remove ASVs with less than 1% prevalence and in
fewer than three individuals, decreasing the possibility of data
artifacts affecting the analysis (Callahan et al., 2016). To reduce
the effects of uncertainty in ASV taxonomic classification, we
conducted most of our analysis at the microbial genus level.

The phyloseq (version 1.32.0) (Mcmurdie and Holmes, 2012),
vegan (version 2.5.6) (Dixon, 2003) and microbiome packages
(version 1.10.0) were used in R (version 4.0.2) for the downstream
steps of analysis. The minimum sampling depth in our data set
was 10,423 reads per sample. Reads were clustered into 3,385
chimera- and singleton-filtered Amplicon Sequence variants
(ASVs) at 99% sequence similarity (Supplementary Data
Sheet 1). ASV counts per sample and ASV taxonomical
assignments are available in Supplementary Table S6.
Abundance data were aggregated at genus, family, order, class
and phyla levels throughout the taxonomic-agglomeration
method in the phyloseq R package, which merges taxa of the
same taxonomic category for a user-specific taxonomic level. The
genera abundance data were scaled to proportions to correct the
differences in read depth. This processing step was performed by
scaling the reads for each taxon in a given sample by the total
number of reads in that sample. The resulting table of proportions
included 100 genera (Supplementary Table S8).

qPCR Quantification of Bacterial, Fungal
and Protozoan Concentration
As detailed by Plancade et al. (2019), concentrations of
bacteria, anaerobic fungi and protozoa in fecal samples
were quantified by qPCR using a QuantStudio 12K Flex
platform (Thermo Fisher Scientific, Waltham, United
States). Primers for real-time amplification of bacteria
(FOR: 5′-CAGCMGCCGCGGTAANWC-3′; REV: 5′-
CCGTCAATTCMTTTRAGTTT-3′), anaerobic fungi (FOR:
5′-TCCTACCCTTTGTGAATTTG-3′; REV: 5′-CTGCGT
TCTTCATCGTTGCG-3′) and protozoa (FOR: 5′-
GCTTTCGWTGGTAGTGTATT-3′; REV: 5′-
CTTGCCCTCYAATCGTWCT-3′), are described in Mach
et al. (2015) and Clark et al. (2018) and were purchased
from Eurofins Genomics (Ebersberg, Germany).

Amplified fragments of the target amplicons were used to
create a seven-point 10-fold standard dilution series. The dilution
points ranged from 2.25 × 107 to 2.25 × 1013 copies per μg of DNA
for bacteria and protozoa and from 3.70 × 106 to 3.70 × 1012

copies per μg of DNA for anaerobic fungi. qPCR reactions were
performed in a final volume of 20 μL, containing 10 μL of Power
SYBR Green PCR Master Mix (Thermo Fisher), 2 μL of standard
or DNA template at 0.5 ng/μL and 0.6 μM of each primer to a
final concentration of 200 mM for bacteria and anaerobic fungi
and 150 mM for protozoa.

In all the cases, the thermal cycling conditions were as follows:
initial denaturation at 95 °C for 10 min; 40 cycles of denaturation
at 95°C for 15 s, annealing and extension at 60°C for 60 s. To
check for the absence of nonspecific signals, a dissociation step
was added after each amplification. It was carried out by ramping
the temperature from 60 to 95°C. All qPCR runs were performed
in triplicate, and the standard curve obtained using the target
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amplicons was used to calculate the number of copies of
microorganisms in feces.

Taking into account the molecular mass of nucleotides and the
amplicon length, the number of copies was obtained using the
following equation: copies per nanogram � (NL × A × 10−9)/(n ×
mw), where “NL” is the Avogadro constant (6.02 × 1023

molecules per mole), “A” is the molecular weight of DNA
molecules (ng), “n” is the length of the amplicon in base pairs,
and “mw” is the molecular weight per base pair.

The number of copies of bacteria, anaerobic fungi and
protozoa were log transformed to get the sampled data in line
with the assumptions of parametric statistics, i.e., that the
residuals from a model fit are normally distributed with a
homogeneous variance. Accordingly, the results are expressed
as log10 of gene copies (per gram of wet weight; Supplementary
Table S8).

Integrative Statistical Analysis
Data integration was carried out using several approaches and
different combinations of data sets.

Prior to the integration, we applied an additional pre-
processing step for the biochemical assay data, metabolome
data and gene expression data. In particular, to eliminate
intra-individual variability and focus on the respective
differential signals between T1 and T0, we considered Δ values
(T1–T0) for each of these data sets, as previously described by
Plancade et al. (2019). For the transcriptome, we constructed a
matrix (“E2”) of log-transformed expression values between T1
and T0 (i.e., the difference in log2-normalized expression between
T1 and T0, equivalent to the log2 value of the T1/T0 ratio) for the
differentially expressed mt-related genes.

In the case of fecal microbiota, since proportions data have
been shown to perform poorly in differential abundance testing
and data integration (Rohart et al., 2017), we have instead decided
to apply a centered log-ratio (CLR) transformation to the genera
count matrix using the mixMC framework of the mixOmics R
package (version 6.10.9) (Rohart et al., 2017). The CLR
transformation, which is well suited to highly sparse
compositional data, consists in dividing each sample by the
geometric mean of its values and calculating its logarithm.
Raw data were first pre-filtered by removing the genera for
which the percentage of the sum of counts was lower than 1%
compared to the total sum of all counts. Then, the pre-filtered
data were transformed using CLR and applying an offset of 1. The
filtered genera matrix “G2” obtained in this way included 85
genera (Supplementary Table S9).

The integration of data was then performed using three
different methods and working with all six data sets available,
namely: 1) Δ values of mt-related genes; 2) Δ values of 1H NMR
metabolites; 3) Δ values of the biochemical assay metabolites; 4)
the fecal SCFAs at T0; 5) the fecal 16S rRNA gene sequencing data
at T0 (i.e., the “G2” matrix); and 6) the concentration of fecal
microorganisms at T0.

As a first integration approach, a global non-metric
multidimensional scaling (NMDS) ordination was used to
extract and summarize the variation in mt-related genes (the
“response variable”) using the “metaMDS” function in vegan R

package. To determine the number of dimensions for each
NMDS, stress values were calculated. Stress values are a
measure of how much the distances in the reduced ordination
space depart from the distances in the original p-dimensional
space. High stress values indicate a greater possibility that the
structuring of observations in the ordination space is entirely
unrelated to that of the original full-dimensional space.

The other five data sets (the “explanatory variables”) were then
fitted to the ordination plots using the “envfit” function in the
vegan R package (Clarke and Ainsworth, 1993) with 10,000
permutations. The “envfit” function performs a multivariate
analysis of variance (MANOVA) and linear correlations for
categorical and continuous variables. The effect size and
significance of each covariate were determined comparing the
difference in the centroids of each group relative to the total
variation, and all of the p-values derived from the “envfit”
function were Benjamini–Hochberg adjusted. The obtained r2

gives the proportion of variability (that is, the main dimensions of
the ordination) that can be attributed to the explanatory variables.

As a second integration approach, a forward-selection model-
building method for redundancy analysis (RDA) (Blanchet et al.,
2008) was used to extract and summarize the variation in mt-
related genes (the “response variable”) that could be explained by
the other five data sets (the “explanatory variables”). To
determine which set of covariates provided the most
parsimonious model, automatic stepwise model selection for
constrained ordination methods was used as implemented by
the “ordistep” function of the vegan R package. To test for
robustness, a forward automatic model selection on a distance
based RDA (db-RDA) was then performed using the
“ordiR2step” function of the vegan package in R (Oksanen
et al., 2013). This provided an estimation of the linear
cumulative effect size of all the identified non-redundant
covariates and of their independent fraction in the best model.
In the case of this latter function, the mt-related genes matrix was
modified using the Hellinger transformation prior to the analysis.
These two RDA functions use different criteria for variable
selection. The “ordistep” funciton uses the Akaike’s
information criterion (AIC) and p-value < 0.05 obtained from
Monte Carlo permutation tests, while “ordiR2step” uses the
adjusted coefficient of determination (r2adj). In both cases, the
procedure begins by comparing a null model containing no
variables and a test model containing one variable, where
every possible covariate is considered.

As a third integrative approach, the N-integration algorithm
DIABLO of the mixOmics R package was used. It is to be noted
that, in the case of the N-integration algorithm DIABLO, the
variables of all the data sets were also centered and scaled to unit
variance prior to integration. In this case, the relationships
existing among all six data sets were studied by adding a
further categorical variable, i.e., the performance of horses.
Horses that had a poor performance or that had been
eliminated (n � 8) were compared to horses that had
completed the race (n � 12, Supplementary Table S1).
DIABLO seeks to estimate latent components by modeling
and maximizing the correlation between pairs of pre-specified
datasets to unravel similar functional relationships between them
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(Singh et al., 2019). A full weighted design was considered and, to
predict the number of latent components and the number of
discriminants, the “block.splsda” function was used. In both
cases, the model was first fine-tuned using the leave-one-out
cross-validation by splitting the data into training and testing.
Then, classification error rates were calculated using balanced
error rates (BERs) between the predicted latent variables with the
centroid of the class labels (i.e., eliminated vs non eliminated
horses) using the “max.dist” function. BERs account for

differences in the number of samples between different
categories. Only interactions with r ≥ |0.70| were visualized
using CIRCOS. To visualize the high-confidence molecule co-
associations determined by CIRCOS, only those with r ≥ |0.70|
and more than 15 connections were automatically visualized
using the organic layout algorithm in Cytoscape (version
3.8.1) (http://cytoscape.org).

Finally, we performed a pairwise integration, focusing only on
mt-related genes and microbiota data, and using the regularized

FIGURE 1 |Description of the cohort and of the data analysis workflow. (A) Key features of the experimental design. (B)Overview of the data analysis workflow. On
the left, the six datasets used in the study are depicted, indicating whether they were obtained at T0 and T1 or at T0 only. Data information: written permission for
publication of the drawings corresponding to endurance event in the panel A was obtained. In the A panel, the pictures of the blood and plasma tubes were download
from https://smart.servier.com. In all cases, no changes were made. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported
License.
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canonical correlation analysis (rCCA) method as implemented by
the mixOmics R package (https://cran.r-project.org/web/packages/
mixOmics/). The penalization parameters were estimated using the
“shrinkage” method and setting the “ncomp” parameter to two.
The correlation matrix thus obtained was filtered by retaining only
the genes and the genera for which at least one association value
data point presented r ≥ |0.55|.

RESULTS

Cohort Characteristics
To elucidate how mitochondria and gut microbiota are linked
during endurance exercise, we studied 20 healthy endurance
horses selected from the cohort already described by Plancade
et al. (2019) and Le Moyec et al. (2019) (Figure 1). All of the
animals were of similar age and performance level
(Supplementary Table S1). They performed a long exercise
during about 8 h at an average speed of 17.1 ± 1.67 km/h with
some rest periods every 30–40 km.

Whole transcriptome profiles, 1H NMR metabolome profiles
and biochemical assay data were obtained from blood samples

collected at both T0 (pre-ride) and T1 (post-ride), while SCFAs
measurements, 16S rRNA data and the concentration of bacteria,
anaerobic fungi and ciliate protozoa were generated from fecal
samples at T0 alone.

Blood Transcriptome Profiles and
Mitochondrial Related Genes
To gather information about the global structure of the blood
transcriptome, a scaled PCA was carried out on the expressed
genes (n � 11,232). The first component accounted for 43% of the
total variability and revealed a marked separation of the two time
points (Figure 2A). We then carried out a standard differential
analysis between the two time points. After Bonferroni correction
of the raw p-values, a total of 6,021 differentially expressed genes
was obtained at an adjusted p < 0.05, of which 2,658 were
upregulated and 3,363 downregulated at T1 respect to T0
(Supplementary Table S10; Figure 2B).

These results were then complemented using a WGCNA
(Langfelder and Horvath, 2008) on the expressed genes.
WGCNA identified three gene modules, corresponding to
7,914 genes, that were correlated to the 1H NMR and

FIGURE 2 |Overview of the mt-related genes. (A) Plot of the first two components of the PCA obtained using all of the expressed genes. (B) Sankey diagram of the
differentially expressed genes, showing the numbers of up-regulated, down-regulated and mt-related genes. Only a relatively small fraction of the mt-related genes (249
out of 801) was up-regulated, whereas most (552 out of 801) were down-regulated. (C) Venn diagrams illustrating the overlaps among expressed genes (blue),
differentially expressed genes (purple), genes included in WGCNA modules (yellow) and mt-related genes (green). (D) Illustration of the proportion of mt-related
genes encoded by the mitochondrial and by the nuclear genomes. Except forMT-ND6, all of the other genes are encoded by the nuclear genome. Data information: in
panel D, the picture of the mitochondria was download from https://smart.servier.com. In all cases, no changes were made. Servier Medical Art by Servier is licensed
under a Creative Commons Attribution 3.0 Unported License.
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biochemical assay metabolites (Supplementary Table S11).
These genes strongly overlapped with the set of DEGs, 91.1%
of which (i.e., 5,486 out of 6,021 genes) were included among
them. The metabolites which showed the highest levels of
correlation with the gene modules were bilirubin, non-
esterified fatty acids (NEFAs), tyrosine, lactate and, to a lesser
extent, β-hydroxybutyrate (BHB) (Supplementary Figure S1).

Because we were especially interested in understanding the
role played by mitochondria in our biological system, we then
decided to study in more detail the features related to these
organelles. To this end, we used a literature-based meta-analytic
approach to build a non-redundant consensus list of 2,082 genes
related to mitochondria, based on the information available in the
Integrated Mitochondrial Protein Index (IMPI) (Smith and
Robinson, 2019), the Mitocarta Inventory (Calvo et al., 2016)
and the literature (Supplementary Information and
Supplementary Table S2). This consensus list was also
descriptively annotated to gain global insight into the main
biological functions represented within it. A total of 80 third-
level KEGG hierarchies were identified, with a strong
representation of pathways related to carbohydrate and lipid
metabolism (8 and 9 ontology terms, respectively). Eight
pathways were associated with amino acid metabolism, while
five were linked to the apoptosis process (Supplementary Figure
S2). This subset was crossed with each of the DEG and WGCNA
module gene lists. In the case of the DEG list, the intersection with
this subset yielded a total of 801 genes (Supplementary Table S12
and Figure 2C). Both the Fisher’s exact test and the
hypergeometric test showed strong levels of over-
representation, with p-values of 1.0 × 10−5 and 9.02 × 10−7,
respectively. In the case of the WGCNA gene modules, the
intersection included 1,011 genes (Figure 2C). Again, both
statistical tests indicated strong enrichment, with p-values of
1.0 × 10−5 and 1.07 × 10−5, respectively.

The set of 801 genes in the intersection of the mitochondrial
consensus and DEG list, which will be referred to hereafter simply
as “mt-related genes”, was selected for the downstream steps of
analysis. All of the mt-related genes were encoded by the nuclear
genome except for MT-ND6 (MT-NADH dehydrogenase,
subunit 6), which was encoded by the antisense strand of the
mt-DNA (Figure 2D). These mt-related genes were further
characterized to gather information about their molecular
function. The functional analysis showed that roughly 75% of
these genes were directly involved in energy metabolism (i.e.,
pathways such as OXPHOS and FAO) and metabolite synthesis
and degradation (Supplementary Figure S3). For instance, we
observed an enrichment of genes related to nutrient transport
across the mitochondrial inner membrane (TOM/TIM units,
VDAC, MPC1, ACAA1, members of the mitochondrial carrier
family SLC25 and of the pyruvate dehydrogenase kinase
isozyme), fatty acid metabolism (ELOVL7, SIRT5, and ACAD
members), lipogenesis (FASN and PPARc), and fatty acid
channelling into oxidation (CPT1B, ACADVL, ACOT9,
ACOX1, ACSL1, ACSL4, ACSS3). Additionally, key genes
involved in the mitochondrial biogenesis (POLG and POLG2),
mitochondrial fission (PINK1), mitochondrial fusion (OPA1),
mitophagy (BNIP3 and PINK1), oxidative stress (SOD1, SOD2,

glutathione S-transferases and glutathione peroxidases families),
and the resolution of lipopolysaccharide induced pro-
inflammatory pathway (C1QBP) were also found in this list.
CREB, the most potent activator of PGC-1α (Wu et al., 2006)
was also differentially expressed upon endurance exercise.

Our data further indicated that among the mt-related genes, at
least 21 genes encoding rps and rpl proteins of the small and large
subunits of ribosomes (rpl3, rpl4, rpl5, rpl6, rpl18, rpl23, rpl27,
rpl36, rps3, rps8, rps9, rps10, rps11, rps12, rps13, rps14, rps15,
rps16, rps17, rps18, rps19) (Esser et al., 2004; Maier et al., 2013;
Janouškovec et al., 2017) were common with the
α-Proteobacteria. This was also the case for the methionine
sulfoxide reductase A (MSRA) and NAD(P)H dehydrogenase
quinone 1 (NQO1) (Crisp et al., 2015), consistent with a vertical
origin in the mitochondrial endosymbiont.

1H NMR Metabolome, Biochemical Assay
and Acetylcarnitine Profiles
The 1H NMRmetabolome and biochemical assay profiles used in
this paper were gleaned from our previous works (LeMoyec et al.,
2019; Plancade et al., 2019). Briefly, a total of 50 1H NMR known
metabolites was detected in the plasma, including several amino
acids, energy metabolism-related metabolites and organic
osmolytes (Supplementary Table S3). Three well-known
microbial derived metabolites were ascertained, including
formate, dimethyl sulfone and trimethyl amine oxide (TMAO).

The relative abundance values of these circulating metabolites
fell within the normal reference range for healthy horses.
However, the concentration of lactate (a proxy for glycolytic
stress and disturbances in cellular homeostasis; Hawley et al.
(2018)) was significantly increased after the race, as well as the
levels of fatty acids from lipoproteins and of certain amino acids,
namely alanine, branched amino acids such as leucine, valine and
iso-valerate, glutamate, glutamine and aromatic amino acids such
as tyrosine and phenylalanine. Ketone bodies were slightly
increased after the race (i.e., acetoacetate and acetate;
Supplementary Table S3). In the case of biochemical profiles,
all of the horses showed above-average concentrations for total
bilirubin, creatine kinase, aspartate transaminase, and serum
amyloid A after the race. The NEFA and BHB concentrations
also showed similar patterns (Supplementary Table S4).

Fecal Short Chain Fatty Acids
Measurement, 16S rRNA Data and
Microorganism Concentrations
The microbiota composition and derived-metabolites were
obtained from Plancade et al. (2019), but it is important to
note that the 16S rRNA raw sequences were re-analysed using
the QIIME 2 plugin, which quantitatively improved results over
QIIME 1 by enhancing the pre-processing of sequenced reads, the
taxonomy assignment, the phylogenetic insertion and the
generation of amplicon sequence variants (ASVs) (Callahan
et al., 2017). A total of 519,866 high-quality sequence reads
were obtained (mean per subject: 21,131 ± 15,625, range:
6,036–57,389). Reads were clustered into 3,385 chimera- and
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singleton-filtered ASVs at 99% sequence similarity
(Supplementary Data Sheet 1). The ASV taxonomical
assignments and ASV counts for each individual are presented
in the Supplementary Table S6). The intestinal microbial
community found in the total set of 20 individuals as a whole
was made up of a core of 23 genera, the core being defined as the
genera shared by 99% of all sampling events with a minimum
0.1% mean relative abundance. Overall, 61% of the core genera
belonged to the Firmicutes phylum, mainly to the
Lachnospiraceae and Ruminococcaceae families
(Supplementary Figure S4A). A total of 100 unique genera
was identified in the microbiota (Supplementary Table S7).
The majority of these genera (80%) fell among the 20 most
abundant (Supplementary Figure S4B) and accounted for more
than 75% of the sequences in the data (Supplementary Table S7).
To deeper understand how the gut microbiota functioned,
SCFAs, pH measurements and the loads of anaerobic fungi,

protozoa and total bacteria in feces were also investigated. The
main products of microbial fermentation were acetate,
propionate and butyrate, with ratios ranging from 60:32:8 to
76:19:5. Small amounts of branched chain fatty acids (iso-
butyrate, valerate and iso-valerate) were also detected
(Supplementary Table S5). Although bacteria represented the
major portion of the fecal microbiota in our horses, the relative
concentrations of anaerobic fungi and ciliate protozoa were 0.82
and 0.76, respectively (Supplementary Table S8).

Integration of Transcriptome, 1H NMR
Metabolites, Biochemical Parameters,
Fecal Microbiota, SCFA and Microorganism
Concentrations
After the identification of the 801 mt-related genes that were
regulated by endurance exercise, it remained to be determined

FIGURE 3 | Associations between mt-related genes, microbiota and circulating metabolites. (A) Dissimilarities in mt-related gene expression represented by the
non-metric multidimensional scaling (NMDS) ordination plot. The Bray–Curtis dissimilarity index was calculated on normalised data; the samples were coloured
according to the total length of the race and the two different shapes of the dots indicate if the horses finished the race or if they were eliminated. (B) Effect sizes of gut
microbiota, fecal SCFAs, 1H NMR and biochemical assay metabolites over NMDS ordination. Covariates are coloured according to the type of dataset: 1H NMR
metabolites are in orange, biochemical assay metabolites in red, fecal SCFAs in violet and bacteria in dark blue. Horizontal bars show the amount of variance (r2)
explained by each covariate in the model as determined by ‘envfit’ function. (C) Grouped bar chart showing the cumulative effect sizes of covariates on mt-related gene
expression (coloured bars) compared to individual effect sizes assuming covariate independence (grey bars) using a stepwise model selection using distance-based
redundancy analysis (dbRDA). Covariates are coloured according to the type of dataset: red for biochemical assay metabolites, and blue for bacteria. (D) Plot showing
the covariates that contribute significantly to the variation of mt-related genes determined by stepwise model selection using redundancy analysis (RDA). The arrows for
each variable show the direction of the effect and are scaled by the unconditioned r2 value. Covariates are coloured according to the type of dataset: red for biochemical
assay metabolites and dark blue for bacteria.
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which genes were interconnected to the gut microbiota and
responded to specific circulating molecules. To this aim, we
applied four independent statistical methods using the mt-
related genes as the response variable and the other data sets,
namely 1H NMR metabolome, biochemical assay profiles, the
filtered fecal microbiota (Supplementary Table S9), fecal SCFAs
and the concentrations of bacteria, anaerobic fungi and protozoa
as exploratory variables.

We first used global NMDS ordinations to visualize the
structure of mt-related gene expression (ordination stress �
6%, k � 2, non-metric fit r2 � 0.0.996, linear fit r2 � 0.988)
and we then fitted all sets of explanatory variables to the
ordination to find the most influential variables (Figure 3A).
Bacteria such as Oribacterium, Rikenellaceae RC9,
Ruminococcaceae NK4A214, unclassified rumen bacterium and
Clostridium sensu stricto showed the strongest correlation to all
ordinations, together with some microbial-derived metabolites
(i.e., dimethyl sulfone, formate, valerate and iso-valerate) and the
plasmatic NEFA (adjusted p < 0.05; Figures 3A,B).

To control for spatial variance and to identify the minimal
combination of non-redundant covariates that would best fit with
the mt-related gene profiles, a more rigorous multivariate
distance-based redundancy analysis was used on constrained
NMDS ordinations. In agreement with the aforementioned
results, the expression of mt-related genes responded most
strongly to bacteria such as Treponema (r2adj � 0.48,
p � 0.007), followed by Butyrivibrio (r2adj � 0.45, p � 0.002),
plasmatic NEFA (r2adj � 0.38, p � 0.003), Fibrobacter (r2adj � 0.31,
p � 0.0008) and Oribacterium (r2adj � 0.24, p � 0.003; Figure 3C).
The 1H NMRmetabolites and fecal SCFAs and the concentration
of fecal microorganism did not directly contribute to the variation
of mt-related genes. Therefore, they were not selected by the
dbRDA model.

These findings were further confirmed by an RDA forward-
selection model based on the Akaike information criterion.
Specifically, Oribacterium (F � 7.26, p < 0.005), Fibrobacter
(F � 2.96, p < 0.005), Butyrivibrio (F � 2.91, p < 0.005),
Agathobacter (F � 2.12, p < 0.005), Treponema (F � 7.15,
p < 0.01), unclassified rumen bacterium (F � 1.96, p < 0.01),
and the concentration of plasmatic NEFA (F � 2.91, p < 0.005)
explained most of the variance observed in mt-related genes
(Figure 3D). However, the 1H NMRmetabolites, the fecal SCFAs
and concentration of microorganisms were not found to
contribute significantly to the variability in mt-related gene
expression. The first constrained axis (RDA1) explained 44%
of the variance in mt-related gene expression, and the second
(RDA2) explained 9.4% of the variance; on the other hand, the
two first unconstrained axes (PC1 and PC2) represented less than
8% of the total variance, i.e., much less than that explained by the
explanatory variables together.

To uncover other potential underlying mechanisms of
mitochondrial regulation, we then sought to examine the
relationships existing among all aforementioned data sets by
adding a further categorical variable, namely the racing
performance of horses. To perform this task, we used the
DIABLO framework from mixOmics (Singh et al., 2019).
While the mt-related genes showed high levels of covariation

with the fecal microbiota (r2 > 0.91, Figure 4A), it was not
possible to identify a tight relationship with the other data sets. A
more fine-grained view of this biological system was then
obtained by focusing on pairwise correlations between
variables. The first component of the DIABLO analysis
highlighted a significant link between a subset of 45 mt-related
genes (all encoded by the nuclear genome) and four gut taxa
(i.e., the genus Mogibacterium, the species Eubacterium
coprostanoligenes and the groups Rikenellaceae RC9 and
Ruminococcaceae NK4A214). A link to blood metabolites
related to energy supply (i.e., methyl groups of FAs and
choline-containing compounds) and metabolites related to the
TCA cycle such as glutamine, glutamate, and α-glucose was also
unveiled (Figures 4B,C). Moreover, mt-related genes co-
occurred with pronounced variations of microbiota derived
metabolites, including fecal acetate and valerate, and plasmatic
concentrations of TMAO, dimethyl sulfone, and formate. The
subset of 45 mt-related genes was functionally enriched in
pathways related to fatty acid β-oxidation, mitochondrial
apoptosis and biogenesis, respiratory electron transport and
signaling and innate immune system response
(Supplementary Table S13).

Finally, a rCCA analysis was also carried out to study in a more
targeted way the relationships between mt-related genes and gut
microbiota. In this case, the most relevant associations were
represented by 90 genes and 9 bacterial genera
(Supplementary Table S14). Overall, this method largely
validated the associations already detected with the other
aforementioned approaches. First, all of the four genera
highlighted by DIABLO were confirmed, as well as the genus
Fibrobacter, which had already been detected using NMDS and
the db-RDA method. Second, three more taxa found with rCCA
appeared to be functionally related to other previously identified
microorganisms, thus providing indirect support to those
findings. This was the case for Ruminococcaceae UCG-002,
Pseudobutyrivibrio and the Eubacterium hallii group.

DISCUSSION

In this work, we present an integrative study that combines the
whole blood transcriptomic with untargeted serum metabolome
data, blood biochemical assay profiles and gut metagenome in
20 equine-athletes. We assumed the adaptive response to extreme
endurance exercise was essentially explained through the gut-
mitochondria axis. Indeed, the different and complementary
statistical approaches that we used confirmed this hypothesis,
highlighting that the two main omic layers at play were the mt-
related genes and the gut microbiota composition (r2 > 0.91).

Whole blood transcriptome underlines in a clear manner the
global response to exercise in equines (Barrey et al., 2006;
Capomaccio et al., 2013; Mach et al., 2016; Mach et al., 2017b;
Ropka-Molik et al., 2017), including the inflammatory response
of the muscle associated with sarcolemma permeability and
rhabdomyolysis (displayed in our study by the high levels of
plasma creatine kinase and aspartate aminotransferase after the
race). Yet, it remains to be explored whether the whole blood
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transcriptome reflects the physiological events occurring at the
mitochondrial level, notably in the tissues that are highly solicited
under endurance, like for instance, the skeletal muscles, the heart
and the liver (Gunn, 1987). In addition, whether the transcription
of nuclearly-encoded and mitochondrially-encoded genes are
regulated in a coordinated way is much less well understood.
We therefore compared the transcriptome profile in equine-
athletes before and after exercise and we used a meta-
analytical approach that allowed us to identify 801
differentially expressed genes that were putatively linked to
mitochondria. These genes fit neatly into the well-
characterized context of adaptive mitochondrial regulation to
endurance and mostly belonged to molecular pathways such as
mitochondrial biogenesis, energy metabolism through OXPHOS
and FAO, resistance to oxidative stress, mitophagy and
inflammation regulation.

We then specifically focused on the mechanisms underlying
the biological links between the aforementioned mt-related genes
and the gut microbiota to untangle the gut-mitochondria
crosstalk. The interdependence of mitochondria and gut
microbiota is underscored by several lines of evidences
(Mottawea et al., 2016; Gruber and Kennedy, 2017; Han et al.,

2017; Qi and Han, 2018; Saint-Georges-Chaumet and Edeas,
2018; Yardeni et al., 2019; Ruiz et al., 2020; Zhang et al.,
2020), although the range and extent of this interplay are
largely unknown. For example, Mottawea et al. (2016) showed
that butyrate-producing bacteria and mitochondrial proteins
were positively correlated, suggesting a signaling role for
butyrate in mitochondrial gene expression. In support of this
observation, our results revealed that several functionally
redundant butyrate-producing bacterial families were
associated with the mt-related genes, namely Lachnospiraceae
(Oribacterium, Butyrivibrio, Agathobacter and Eubacterium
spp.), Ruminococcaceae, Spirochaetaceae (Treponema spp.)
(Vital et al., 2015; Gharechahi et al., 2020; Vacca et al., 2020)
and Rikenellaceae (Vital et al., 2015). The bioavailability of
butyrate is obviously related to endurance performance
because of the role played by this molecule in energy
metabolism (Mollica et al., 2017). Beyond the scope of its
energy producing capacity, butyrate is also known to induce
the expression of PPARc gene (Gao et al., 2009) and downstream
targets in different cells. Our blood transcriptomic analysis
indicated an upregulation of PPARc following exercise, raising
the possibility that the enrichment in butyrate-producing bacteria

FIGURE 4 | Data integration using mt-related genes, 1H NMR metabolites, biochemical assay metabolites, fecal SCFAs and gut bacteria. (A) Matrix scatterplot
showing the correlation between the first components related to each dataset in DIABLO according to the input design. (B) CIRCOS plot of the final multi-omics final
signature. Each dataset is given a different colour: mt-related genes are in green, 1H NMR metabolites in orange, biochemical assay metabolites in red, fecal SCFAs in
violet and gut bacteria in dark blue. Red and blue lines indicate positive and negative correlations between two variables, respectively (r ≥ |0.70|). (C) Visualization of
the network obtained with Cytoscape using the final DIABLO multi-omics signature as an input. Only features with more than 15 connections are shown. The size of the
nodes indicates the number of interacting partners within the network.
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increased the expression of this transcription factor and
downstream signaling, leading to fatty acid shuttling into and
oxidation by the mitochondria. Notably, the redox imbalance
during strenuous exercise might be also attenuated by butyrate
(Dobashi et al., 2011; Mottawea et al., 2016). The potential of
butyrate to improve exercise capacity has been further posited by
Gao et al. (2009) and Henagan et al. (2015), who observed that the
supplementation of this molecule improved the oxidative skeletal
muscle phenotype, its mitochondrial content and its proportion
of type I fibers. Concomitantly, it is possible that serum lactate,
which appeared to be significantly increased in our horses upon
prolonged exercise, entered the gut lumen, where it was
subsequently transformed into butyrate by Eubacterium hallii
(Duncan et al., 2004; Scheiman et al., 2019). Indeed, Eubacterium
hallii was associated to a subset of mt-related genes according to
our rCCA analysis. Eubacterium-derived butyrate could then be

absorbed into the portal vein and serve as an energy source to the
different organs. Another plausible mechanisms employed by
microbiota to communicate with mitochondria involved valerate,
a branched SCFA formed from protein and amino acid
degradation (Fernandes et al., 2014). It may be debated
whether the urea produced by the host during endurance
could be hydrolyzed by commensal gut microbiota resulting in
valerate.

Beyond SCFAs, the secondary bile acids could also play an
important role in gut-microbiota crosstalk. The genera
Eubacterium and Clostridium, which contributed significantly
to our biological system, have the capacity to degrade 5–10% of
the primary bile acids forming secondary bile acids (Gérard,
2013). Secondary bile acids might interact with the mitochondria
via the activation FXR-CREB axis. CREB, which was significantly
increased in our horses after the endurance race, is a sensor of

FIGURE 5 | The bidirectional crosstalk between the gut microbiota and mitochondria in endurance horses. The intertwined communication between mitochondria
and gut microbiota was likely mediated by microbiota derived byproducts (SCFA and secondary bile acids), which regulate mitochondrial redox balance, inflammation
and energy production during intense exercise. Among the SCFA, butyrate appeared as a key regulator of mitochondrial energy production and oxidative stress.
Increased lactate and urea concentrations upon prolonged exercise likely entered the gut lumen and were subsequently transformed into SCFA. It is also
suggested that circulating free fatty acids participated in the mitochondrial regulation of the inflammatory processes elicited by oxidative stress, microbial dissemination
and microbial lipopolysaccharides translocation outside of the gastrointestinal tract, as often occurs in endurance athletes. Whether these mechanisms confer an
advantage for endurance performance remains still speculative, but results raise the possibility that gut-microbiota crosstalk is pivotal for greater energy availability,
aerobic metabolism, glycogen preservation, resistance to fatigue and to maintain speed during the race. Written permission for publication of the horse drawings was
obtained. The pictures of the mitochondria and gut were downloaded from https://smart.servier.com. In all cases, no changes were made. Servier Medical Art by Servier
is licensed under a Creative Commons Attribution 3.0 Unported License.
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energy charge and other stress signals, and is a regulator of
metabolism that activates autophagy and lipid catabolic functions
(Seok et al., 2014). Therefore, a picture emerges that, under
conditions that foster an increased colonization by these
microorganisms, the production of butyrate, valerate and
secondary bile acids in the intestine is likely increased, with
potential effects on the mitochondria functionality and
endurance performance (Figure 5). Yet, evidence of causality
of microbiome-derived metabolites on the gut-mitochondria
crosstalk remains elusive.

The coordination between mitochondria and gut microbiota
was presumably regulated by the circulating free fatty acids, the
so-called NEFAs. It is becoming clearer that NEFAs not only
serves as energy source in the working muscles but act as
extracellular signaling molecules that modulate the production
of chemokines and cytokines, and the synthesis of pro-
inflammatory lipid-derived species (Rodríguez-Carrio et al.,
2017). Thus, a provocative extension of our work suggests that
increased release of NEFAs participated in the mitochondrial
regulation of the inflammatory processes elicited by oxidative
stress, microbial dissemination and microbial
lipopolysaccharides translocation outside of the gastrointestinal
tract, commonly observed in endurance athletes (Fielding and
Dechant, 2012). Increased release of free fatty acids may dampen
the inflammatory response and prevent or mitigate the negative
effects of redox imbalance. Supporting this notion, the
mitochondrial sirtuin (SIRT5) and SIRT1, which have an anti-
inflammation function (Wang et al., 2017), were found to be
increased during endurance.

The observations presented herein indicate that the horse
could be considered as an interesting in vivo model for
research in the field of human exercise given its large body
size, the aptitude for endurance exercise (Votion et al., 2012;
van der Kolk et al., 2020), that is, high baseline maximal oxygen
uptake (VO2max; ∼120 ml min−1 kg−1) and the ability to sustain
work at a high percentage of VO2max without either the
accumulation of exponential levels of blood lactate or skeletal
muscle fatigue and the exercise economy (Cottin et al., 2010;
Goachet and Julliand, 2015; van der Kolk et al., 2020). The level of
exercise performed by a horse during an endurance competition
is similar to that of a humanmarathon runner (Capomaccio et al.,
2013; Mach et al., 2016) or ultramarathon runner (Scott et al.,
2009). Nevertheless, despite the usefulness of this model, the
differences between the microbiota of horses and humans are
relevant. In contrast to what happens in humans, in horses the
cecum is large relative to the total gastrointestinal tract and it is an
important site for the fermentation of plant materials. Our study
presents other limitations. Although the omic approaches used
here are considered robust and generate high quality data, they
still present several limitations. For instance, 16S rRNA
sequencing measures the relative abundance of bacterial
genera contained in it, but it does not give any information
about its actual functionality, which should be therefore evaluated
using other methods, such as for instance metatranscriptomics.
Moreover, in our case, 1H NMR has been able to detect only
metabolites at high concentrations, like in the cases of amino
acids, lipids, choline and N-acetylglucosamine. In this regard, the

combination of 1H NMR and mass spectrometry should result in
better coverage of metabolites derived from bacteria, metabolites
that are produced by the host and then modified by bacteria and
metabolites that are de novo synthesized by bacteria. Lastly, it still
remains to be determined how the individual components of
blood, including plasma, platelets, erythrocytes, nucleated blood
cells and exosomes reflect the transcriptomic profiles in horses.
Upon endurance, contracting muscles release proteins and
metabolites that have endocrine-like properties (Hawley,
2020), but they might also release long non-coding RNAs,
myo-miRs and circulating cell-free respiratory competent
mitochondria (Al Amir Dache et al., 2020; Song et al., 2020)
that might participate in the aforementioned crosstalk by using
the microbiota-derived metabolites.

Taken together, the present study offers extensive novel insight
into the mitochondria-gut microbiota axis and opens the way for
mechanistic studies that will lead to a better understanding of the
orchestrated molecular pathways that underpin endurance
adaptations and contribute to the holobiont biology. This is the
first description of how metabolites derived from commensal gut
microbiota (SCFAs and secondary bile acids), or produced by the
host and biochemically modified by gut bacteria (lactate and urea),
might influence the genes related to the mitochondria and involved
in energy production, redox balance and inflammatory cascades,
making them a potential therapeutic target for the endurance. The
activation of PPARγ and the FRX-CREB axis are likely key
mechanisms through which SCFAs and bile acids coordinately
engage multiple converging pathways to regulate mitochondrial
functions, including fatty acid uptake and oxidation to forestall
hypoglycemia and ensure longer running time.

Our results also suggest that free fatty acids may not only serve
as an important fuel for skeletal muscle during endurance, but
may also regulate mitochondrial inflammatory responses through
a plethora of mechanisms, the principal one likely being the
modulation of the intestinal barrier-ROS production and
lipopolysaccharide translocation. Further research focusing on
the role that gut microbiota plays on the mitochondrial function
across a wide range of tissues and cell types may be highly
informative to improve the athlete’s energy metabolism, redox
status and inflammatory response.
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