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During pregnancy, the vaginal ecosystem undergoes marked changes, including a
significant enrichment with Lactobacillus spp. and profound alterations in metabolic
profiles. A deep comprehension of the vaginal environment may shed light on the
physiology of pregnancy and may provide novel biomarkers to identify subjects at risk
of complications (e.g., miscarriage, preterm birth). In this study, we characterized the
vaginal ecosystem in Caucasian women with a normal pregnancy (n � 64) at three different
gestational ages (i.e., first, second and third trimester) and in subjects (n � 10) suffering a
spontaneous first trimester miscarriage. We assessed the vaginal bacterial composition
(Nugent score), the vaginal metabolic profiles (1H-NMR spectroscopy) and the vaginal
levels of two cytokines (IL-6 and IL-8). Throughout pregnancy, the vaginal microbiota
became less diverse, being mainly dominated by lactobacilli. This shift was clearly
associated with marked changes in the vaginal metabolome: over the weeks, a
progressive reduction in the levels of dysbiosis-associated metabolites (e.g., biogenic
amines, alcohols, propionate, acetate) was observed. At the same time, several
metabolites, typically found in healthy vaginal conditions, reached the highest
concentrations at the end of pregnancy (e.g., lactate, glycine, phenylalanine, leucine,
isoleucine). Lower levels of glucose were an additional fingerprint of a normal vaginal
environment. The vaginal levels of IL-6 and IL-8 were significantly associated with the
number of vaginal leukocytes, as well as with the presence of vaginal symptoms, but not
with a condition of dysbiosis. Moreover, IL-8 concentration seemed to be a good predictor
of the presence of vaginal Candida spp. Cytokine concentrations were negatively
correlated to lactate, serine, and glycine concentrations, whereas the levels of 4-
hydroxyphenyllactate, glucose, O-acetylcholine, and choline were positively correlated
with Candida vaginal loads. Finally, we found that most cases of spontaneous abortion
were associated with an abnormal vaginal microbiome, with higher levels of selected
metabolites in the vaginal environment (e.g., inosine, fumarate, xanthine, benzoate,
ascorbate). No association with higher pro-inflammatory cytokines was found. In
conclusion, our analysis provides new insights into the pathophysiology of pregnancy
and highlights potential biomarkers to enable the diagnosis of early pregnancy loss.
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INTRODUCTION

In healthy reproductive-aged women, the vaginal microbiome
is generally dominated by different species of Lactobacillus
genus (Hickey et al., 2012; Smith and Ravel, 2017). However,
the composition of the vaginal microbiome can vary in
response to various factors, such as hormonal levels, sexual
habits, hygiene, pregnancy, pharmaceutical treatments, and
urogenital infections (Kroon et al., 2018; Noyes et al., 2018;
Parolin et al., 2018).

During pregnancy, the vaginal microbiome undergoes
marked changes, including a significant decrease in overall
diversity, increased stability, and enrichment with
Lactobacillus spp. (Aagaard et al., 2012; DiGiulio et al.,
2015; Gupta et al., 2020).

It is well known that the vaginal bacterial composition plays a
crucial role in maternal-fetal health (Fox and Eichelberger, 2015;
Nelson et al., 2016). Indeed, healthy pregnancies are characterized
by low numbers of vaginal bacterial communities dominated by
Lactobacillus, whereas reduced lactobacilli with an increased
bacterial diversity are associated with pregnancy-related
complications and preterm birth (Prince et al., 2014; Di
Simone et al., 2020).

The changes in the bacterial communities are
accompanied by profound alterations in the composition
of vaginal metabolites: specific vaginal molecules (e.g.,
acetone, ethylene glycol, formate, isopropanol, and
methanol) can predict the risk of preterm birth, with a
negative correlation with gestational age at birth (Ghartey
et al., 2015; Ansari et al., 2020).

Moreover, several studies have investigated the association
between vaginal bacterial composition and miscarriage
(Zhang et al., 2019; Al-Memar et al., 2020; Fan et al., 2020;
Xu et al., 2020). First trimester miscarriage seems to be
associated with reduced prevalence of Lactobacillus spp.
and higher alpha diversity compared to viable pregnancies
(Al-Memar et al., 2020; Xu et al., 2020). Furthermore, it has
been shown that the vaginal levels of interleukin 2 (IL-2) is
higher and interleukin 10 (IL-10) lower in women with
embryonic miscarriages than in control subject (Xu et al.,
2020).

Despite the recent advances in the study of the vaginal
environment during pregnancy (Vinturache et al., 2016; Gupta
et al., 2020), the way in which a balanced vaginal microbiome
helps prevent gynecological diseases and maintain maternal-fetal
health remains to be fully elucidated.

Therefore, the aim of this study was to get new insights into the
vaginal ecosystem in Caucasian women with a normal pregnancy
(n � 64) at different gestational ages (i.e., first and second and
third trimester). Ten subjects suffering a first trimester
miscarriage were also included. For each woman, we
characterized the vaginal bacterial composition (microscopic
scoring system), the vaginal metabolic profiles (1H-NMR
spectroscopy) and the concentrations of two cytokines
(interleukin 6, IL-6, and interleukin 8, IL-8).

MATERIALS AND METHODS

Study Group and Sample Collection
From April 2019 all the Caucasian pregnant women presenting to
the Family Advisory Health Centers of Ravenna (Italy) for
prenatal care were enrolled.

Exclusion criteria were the following: i) age <18 years; ii) HIV
positivity; iii) body mass index (BMI) > 33; iv) medically assisted
procreation; v) use of any antibiotics in the past month; vi) use of
vaginal douches or topical agents in the last two weeks; vii)
presence of uncontrolled chronic diseases (e.g., diabetes,
autoimmune disorders, malignancies); viii) drug addiction or
heavy smokers (> 15 cigarettes/day). Moreover, women with
urogenital infections due to sexually transmitted pathogens
(i.e., Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas
vaginalis, Mycoplasma genitalium) or erobic vaginitis were further
excluded after the laboratory testing.

At gestational ages 9–13 weeks (first trimester), 20–24 weeks
(second trimester), 32–34 weeks (third trimester), women
underwent a clinical visit. For all patients, demographic data
and information about urogenital symptoms were recorded.

Two vaginal swabs were collected at each time point (first,
second trimester and third trimester). The first one (E-swab,
Copan, Brescia, Italy) was used for microbiological diagnostic
tests and Nugent score assessment. The second was collected
with a sterile cotton bud, re-suspended in 1 ml of sterile saline,
and stored at ‒80°C until use. Frozen vaginal swabs were
thawed, vortexed for 1 min and removed from the liquid.
The liquid was centrifuged at 10,000 × g for 15 min, and
cell-free supernatants were used for metabolomic analysis,
as described below.

A written informed consent was obtained from all subjects and
the study protocol was approved by the Ethics Committee of
Romagna (CEROM) (n° 2032 of 21st February 2018). This study
was carried out in accordance with the Declaration of Helsinki,
following the recommendations of the Ethics Committee.

Microbiological Investigations
A commercial nucleic acid amplification technique (NAAT) was
used for C. trachomatis, N. gonorrhoeae, T. vaginalis, and M.
genitalium detection (Seeplex STI Master Panel 1; Seegene, Seoul,
KR). Microscopic examination and semi-quantitative cultures
were performed for candidiasis and erobic vaginitis diagnosis
(Donders et al., 2011; Yano et al., 2019). Candida identification at
the species level was obtained by means of a matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS) (Oliver et al., 2020).

The composition of the vaginal microbiome was assessed by a
Gram stain scoring system (Nugent score), evaluating for the
presence of different bacterial morphotypes (Lactobacillus spp.,
Gardnerella vaginalis andMobiluncus spp.) (Nugent et al., 1991).
Based on this score, women were divided into three groups: “H”
(score 0–3; normal lactobacilli-dominated microbiota), “I” (score
4–6; intermediate microbiota), “BV” (score 7–10; bacterial
vaginosis) (Zozaya-Hinchliffe et al., 2010).
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Vaginal leukocytes (white blood cells: WBCs) were quantified
after visualization of a minimum of five fields under light
microscopy at 400×. Vaginal WBC counts were categorized
into either <5 WBCs in all visualized fields (representing
minimal or no inflammation) or ≥5 WBCs in at least one field
visualized (considered elevated and more suggestive of significant
inflammation) (Geisler et al., 2004).

Metabolomic Analysis
Metabolomic analysis was performed by means of a 1H-NMR
spectroscopy starting from 700 µL of the cell-free supernatants of
the vaginal swabs, added to 100 μL of a D2O solution of 3-
(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP)
10 mM set to pH 7.0.

1H-NMR spectra were recorded at 298 K with an AVANCE III
spectrometer (Bruker, Milan, Italy) operating at a frequency of
600.13 MHz, equipped with Topspin software (Ver. 3.5) (Foschi
et al., 2018). The signals originating from large molecules were
suppressed by a CPMG filter of 400 spin-echo periods, generated
by 180° pulses of 24 μs separated by 400 μs (Ventrella et al., 2016).

To each spectrum, line broadening (0.3 Hz) and phase
adjustment was applied by Topspin software, while any further
spectra processing, molecules quantification and data mining step
was performed in R computational language (R: A Language and
Environment for Statistical Computing) by means of scripts
developed in house.

The spectra were aligned toward the right peak of alanine
doublet, set to 1.473 ppm. The spectra were then baseline-
adjusted by means of peak detection according to the “rolling
ball” principle Kneen and Annegarn (1996) implemented in the
“baseline” R package (Liland et al., 2010). A linear correction was
then applied to each spectrum, so tomake the points pertaining to
the baseline randomly spread around zero.

The signals were assigned by comparing their multiplicity and
chemical shift with Chenomx software data bank (ver 8.3,
Chenomx Inc., Edmonton, Alberta, Canada). Quantification of
the molecules was performed in the first sample acquired by
employing the added TSP as an internal standard.

To compensate for differences in sample amount, any other
sample was then normalized to such sample by means of
probabilistic quotient normalization (Dieterle et al., 2006).
Integration of the signals was performed for each molecule by
means of rectangular integration.

The concentration of each molecule resulted in any case above
the limit of quantification, fixed at ten times the 1H-NMR spectra
noise (Schievano et al., 2009), assessed between the chemical
shifts of 9.5 and 10.

Considering the collection method (i.e., vaginal swab) and the
sample preparation, the metabolite levels should be interpreted as
a concentration in the 1H-NMR sample and not as a primary
concentration in the vaginal fluid.

Cytokine Detection
Starting from the cell-free supernatants of the vaginal swabs, the
concentration of IL-6 (pg/ml) and IL-8 (pg/ml) was determined
by means of commercial ELISA assays (Simple Plex Human IL-6
and IL-8 Cartridges) run on Ella automated immunoassay system

(R&D systems, Minneapolis, United States), following the
manufacturer’s instructions (Brys et al., 2020).

Data Analysis and Statistics
Data were analyzed with Prism 5.02 version for Windows
(GraphPad Software, San Diego, CA, United States) and R
computational language. Differences in clinical data (e.g.,
Nugent score) across the three stages of pregnancy were
searched by Chi-square test. Differences in metabolic profiles
among experimental groups were assessed by Friedman test (first
vs second vs third trimester) or by Kruskal-Wallis test (H vs I vs
BV), followed by Dunn’s Multiple Comparison test. Mann
Whitney test was used for assessing differences in cytokines
levels among the groups (e.g., presence/absence of vaginal
leukocytes or Candida spp.) and for assessing differences
between women with a normal pregnancy compared to
miscarriages. Both for Candida presence and vaginal
inflammation status, all the cases were included, irrespective of
the trimester of pregnancy, also considering women with a
repeated positivity across the stages of pregnancy.

Metabolite concentrations were correlated to clinical data by
calculating Spearman correlation coefficient. A p value <0.05 was
considered as statistically significant. For all metabolomic data,
statistical significance was assessed after adjustment for multiple
comparisons (i.e., Benjamini-Hochberg correction, with a false
discovery rate of 0.25).

Trends encompassing the overall metabolome were
highlighted with a robust principal component analysis
(rPCA) model, according to Hubert (Hubert et al., 2005). For
this purpose, we employed the PcaHubert algorithm
implemented in the rrcov package of the R computational
platform. The main features of the rPCA are summarized by a
scoreplot and a correlation plot. The former represents the
samples in the principal components (PCs) space, so that it
evidences the overall structure of the data. The latter reports
the correlations between the concentration of each variable and
the PCs, so that it highlights the molecules mostly determining
the structure of the data. Correlation between each molecule’s
importance over PCs and its concentration were assessed
according to Pearson.

Data Availability Statement
Raw metabolomic data are available as a Supplementary material
(Supplementary Data Sheet S1).

RESULTS

Study Population
A total of 64 Caucasian pregnant women with a mean age of
31.1 ± 4.9 years (min-max: 21–44) completed the study. In
addition, 10 women (mean age: 33.2 ± 7.3 years; min-max:
23–41) who had a spontaneous miscarriage at the first
trimester of pregnancy (gestational age: 11–13 weeks) were
also included (see specific paragraph below).

The main characteristics of the 64 women with a normal
pregnancy are displayed in Table 1.
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Going from the first to the third trimester of pregnancy, we
noticed a significant decrease of cases of bacterial vaginosis,
together with an increase of cases characterized by a normal
microbiota (p � 0.0008). At the first trimester (gestational age:
10.4 ± 1.3 weeks), 32 (50%) women showed a lactobacilli-
dominated vaginal flora (Nugent score: 0–3), 24 (37.5%) were
characterized by an intermediate microbiota (Nugent score; 4–6),
whereas the remaining eight (12.5%) harbored a BV-associated
microbial composition.

Conversely, at the second trimester of pregnancy
(gestational age: 22.6 ± 0.8), a greater number of women
showed a normal microbiota (47 women; 73.4%), with a
reduction of cases of dysbiosis (15.6% intermediate
microbiota; 11% BV-associated flora). Finally, at the third
trimester (gestational age: 32.5 ± 0.7), most women (51;
79.7%) were characterized by a normal microbiota, with
only four cases of BV (6.2%).

At the first trimester, all the women (including those with a
BV-related microbiota) denied the presence of urogenital
symptoms, whereas three in the second and 11 in the third
reported the presence of itching and/or vaginal discharge.

Vaginal changes over time at an individual level are presented
as Supplementary material (Supplementary Table S1).

A vaginal colonization/infection by Candida spp. was found in
a total of 19 women, with 10 cases (15.6%) both at the first, second
and third trimester. Four women were positive for Candida
across all stages of pregnancy, whereas in three women
Candida was detected in two out of the three stages. No
changes in the dominant species between the three trimesters
was found. C. albicans represented the commonest yeast found
(20/30 cases), followed by C. glabrata (7/30) and C. krusei (3/30).
Most cases were associated to a normal vaginal flora (17/30;
56.6%), while only three (3/30; 10%) were found in BV-
positive women.

A total of 30 women (46.8%) were characterized by at least one
episode of significant vaginal inflammation (≥5 WBCs in at least
one field visualized) during pregnancy, with 15 cases in the first,
14 in the second, and 17 in the third trimester. Four subjects
showed a high number of WBCs across all the three trimesters.

A high number of leukocytes was significantly associated with
the vaginal presence of Candida spp. (p � 0.0001) but not with a
status of BV (p � 0.57).

IL-6 and IL-8 Detection
Overall, the mean concentration of IL-6 and IL-8 in the vaginal
environment was 2.88 ± 7.6 pg/ml (min-max: 0.0–57.8) and
3,497 ± 6,299 pg/ml (min-max: 11.3 – 43,248), respectively.
The levels of the two cytokines were positively correlated to
each other (Spearman r: 0.63; p < 0.0001).

For both IL-6 and IL-8, the lowest concentrations were
detected in the second trimester with a significant difference
over time (IL-6, p � 0.02; IL-8, p < 0.0001).

IL-6 and IL-8 levels were significantly associated with a high
number of vaginal WBCs (IL-6: 5.7 ± 12.2 vs 1.9 ± 5.2; IL-8:
7,186 ± 9,766 vs 2,334 ± 4,122; p < 0.0001), as well as to the
presence of vaginal symptoms (IL-6: 6.03 ± 14.9 vs 2.6 ± 6.7, p �
0.01; IL-8: 8,552 ± 12,403 vs 3,099 ± 5,417; p � 0.03). Moreover,
higher levels of IL-8 were significantly related to the presence of
Candida spp. (8,583 ± 10,551 vs 2,555 ± 4,616; p < 0.0001)
Conversely, no association between cytokine levels and Nugent
score was found.

Vaginal Metabolic Profiles
A total of 63 metabolites (mainly belonging to the groups of
SCFAs, organic acids, amino acids, and biogenic amines;
Supplementary Table S2) were detected and quantified by
1H-NMR spectroscopy.

As shown in Table 2, many metabolites showed significant
different concentrations going from the first to the third trimester
of pregnancy. The major changes concerned the increase in the
levels of lactate and of several amino acids (e.g., phenylalanine,
threonine, glycine, aspartate, glutamate, isoleucine, leucine),
together with the depletion of glucose, maltose, organic acids
(acetate, propionate, malonate), alcohols (methanol, ethanol,
isopropanol) and biogenic amines (methylamine, putrescine).
Vaginal molecules, whose concentrations showed highly
significant differences (p < 0.0001) between the three trimesters
of pregnancy are shown in Figure 1.

These modifications were mainly driven by the composition of
the vaginal microbiota. Indeed, profound differences were found
in the metabolic profiles of women, stratified by the Nugent score
(H vs I vs BV; Table 3).

Overall, in accordance with previous investigations (Yeoman
et al., 2013; Vitali et al., 2015; Ceccarani et al., 2019), BV women
were characterized by higher levels of biogenic amines (tyramine,

TABLE 1 | Main characteristics of the women with a normal pregnancy (n � 64) enrolled for the study.

1st trimester 2nd trimester 3rd trimester p value

Nugent score
0–3 (normal microbiota) 50% (32/64) 73.4% (47/64) 79.7% (51/64) 0.0008
4–6 (intermediate microbiota) 37.5% (24/64) 15.6% (10/64) 14.1% (9/64)
7–10 (bacterial vaginosis) 12.5% (8/64) 11% (7/64) 6.2% (4/64)
Gestational age (weeks; mean ± SD) 10.4 ± 1.3 22.6 ± 0.8 32.5 ± 0.7 —

Vaginal Candida spp. 15.6% (10/64) 15.6% (10/64) 15.6% (10/64) 1.0
-C. albicans 6/10 6/10 8/10
-C. glabrata 3/10 3/10 1/10
-C. krusei 1/10 1/10 1/10
Vaginal WBC count
<5 (minimal or no inflammation) 76.5% (49/64) 78.1% (50/64) 73.4% (47/64) 0.8
≥5 (significant inflammation) 23.4% (15/64) 21.9% (14/64) 26.5% (17/64)
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ethanolamine, cadaverine, trimethylamine -TMA-, methylamine,
putrescine), alcohols, organic acids (e.g. butyrate, formate,
fumarate, malonate, acetate succinate, pyruvate, propionate)
and alanine, while higher levels of lactate, phenylpropionate,
and diverse amino acids (e.g. tryptophan, phenyalanine,
threonine, serine, isoleucine, leucine) were associated to the
healthy status. Lower levels of glucose were an additional
fingerprint of a normal vaginal flora.

To obtain overviews of the differences in metabolomic
profiles, a rPCA model was calculated on the basis of the most
significant molecules whose concentrations were different
between the groups (H vs I vs BV). All the women enrolled
across the three stages of pregnancy were considered. As shown in
Figure 2, a clear separation between H/I and BV metabolomes
along PC1 was detected (p < 0.001). Nevertheless, a significant
difference, even if less marked, was also noticed between H and I
groups (P � 0.005).

As visualized in the correlation plot along PC1 (Figure 2C),
higher levels of leucine, serine, phenylpropionate, isoleucine, and

tryptophan were the hallmark of a healthy vaginal status
during pregnancy, whereas higher concentrations of
putrescine, 2-hydroxyisovalerate, malonate, TMA, tyramine,
and acetate seemed to be the most significant fingerprints
of BV.

Considering separately the three trimesters of pregnancy, we
noticed that over time, the vaginal metabolome became less diverse
and more homogeneous. In the first trimester of pregnancy
(Supplementary Table S3), 36 metabolites showed significant
different concentrations between healthy and BV-women,
compared to 17 molecules in the second trimester
(Supplementary Table S4). At the third trimester of pregnancy,
only four vaginal molecules were differently concentrated between
healthy and BV (Supplementary Table S5).

Miscarriages
Most cases of spontaneous abortion were associated with an
abnormal vaginal microbiome (60% intermediate flora, 20% BV
condition). In these subjects, no cases of vaginal Candida were

TABLE 2 |Molecules whose concentration (mM, mean ± SD) showed significant differences between the first, the second and the third trimester of pregnancy. Differences
were searched by Friedman test, followed by Dunn’s Multiple Comparison test. A p value <0.05, after Benjamini-Hochberg correction, was considered as significant.

Molecules 1 trimester (mM; mean ± SD) 2 trimester (mM; mean ± SD) 3 trimester (mM; mean ± SD) P value Variation

Adenine 0.011 ± 0.006 0.014 ± 0.008 0.016 ± 0.009 <0.0001 ↑ 1 vs 2; 1 vs 3; 2 vs 3
Tryptophan 0.009 ± 0.002 0.009 ± 0.002 0.01 ± 0.002 0.01 ↑ 1 vs 3
Phenylalanine 0.027 ± 0.014 0.033 ± 0.014 0.038 ± 0.014 <0.0001 ↑ 1vs 2; 1 vs 3
Phenylpropionate 0.035 ± 0.01 0.041 ± 0.01 0.044 ± 0.01 <0.0001 ↑ 1vs 2; 1 vs 3
4-Hydroxyphenyllactate 0.0054 ± 0.002 0.0057 ± 0.002 0.0065 ± 0.002 0.0001 ↑ 1 vs 3; 2 vs 3
UDP 0.013 ± 0.003 0.014 ± 0.003 0.017 ± 0.005 <0.0001 ↑ 1 vs 3; 2 vs 3
Maltose 0.20 ± 0.12 0.15 ± 0.11 0.12 ± 0.09 <0.0001 ↓ 1 vs 2; 1 vs 3; 2 vs 3
Hydroxyacetone 0.0020 ± 0.0008 0.0021 ± 0.001 0.0027 ± 0.001 0.008 ↑ 1vs 3; 2 vs 3
Threonine 0.055 ± 0.01 0.061 ± 0.01 0.069 ± 0.01 <0.0001 ↑ 1 vs 3; 2 vs 3
Lactate 2.3 ± 0.8 2.6 ± 0.8 2.6 ± 0.7 0.006 ↑ 1 vs 2; 1 vs 3
Glycine 0.072 ± 0.026 0.087 ± 0.02 0.091 ± 0.02 <0.0001 ↑ 1vs 2; 1 vs 3
Glucose 0.054 ± 0.04 0.043 ± 0.03 0.044 ± 0.04 <0.0001 ↓ 1 vs 3
Methanol 0.012 ± 0.003 0.011 ± 0.006 0.008 ± 0.004 <0.0001 ↓ 1vs 3; 2 vs 3
O-Acetylcholine 0.0007 ± 0.0004 0.0008 ± 0.0004 0.001 ± 0.0004 0.0005 ↑ 1 vs 3; 2 vs 3
Ethanolamine 0.018 ± 0.007 0.019 ± 0.006 0.021 ± 0.008 0.0006 ↑ 1 vs 3
Malonate 0.0028 ± 0.004 0.0024 ± 0.003 0.0018 ± 0.001 0.01 ↓ 1 vs 3
Creatinine 0.017 ± 0.011 0.013 ± 0.009 0.011 ± 0.009 0.001 ↓ 1 vs 2; 1 vs 3
Creatine 0.024 ± 0.008 0.028 ± 0.009 0.029 ± 0.01 0.0003 ↑ 1 vs 2; 1 vs 3
Aspartate 0.023 ± 0.009 0.026 ± 0.008 0.028 ± 0.008 0.0005 ↑ 1 vs 2; 1 vs 3
Sarcosine 0.011 ± 0.007 0.011 ± 0.006 0.013 ± 0.008 0.01 ↑ 1 vs 3
Methylamine 0.002 ± 0.004 0.0012 ± 0.001 0.0012 ± 0.0007 0.002 ↓ 1 vs 2
Glutamine 0.029 ± 0.01 0.034 ± 0.01 0.039 ± 0.01 <0.0001 ↑ 1 vs 2; 1 vs 3
Pyruvate 0.042 ± 0.04 0.032 ± 0.04 0.021 ± 0.01 0.02 ↓ 1 vs 3
Glutamate 0.26 ± 0.1 0.32 ± 0.08 0.36 ± 0.09 <0.0001 ↑ 1 vs 2; 1 vs 3; 2 vs 3
4-Aminobutyrate 0.02 ± 0.03 0.019 ± 0.03 0.019 ± 0.02 0.003 ↓ 1 vs 3
5-Aminopentanoate 0.025 ± 0.03 0.025 ± 0.02 0.023 ± 0.01 <0.0001 ↓ 1 vs 2; 1 vs 3
Methionine 0.009 ± 0.005 0.013 ± 0.006 0.015 ± 0.007 <0.0001 ↑ 1 vs 2; 1 vs 3
Proline 0.060 ± 0.005 0.056 ± 0.003 0.055 ± 0.002 0.02 ↓ 1 vs 3
Acetate 0.64 ± 0.7 0.42 ± 0.5 0.30 ± 0.1 0.003 ↓ 1 vs 2; 1 vs 3
Putrescine 0.008 ± 0.01 0.004 ± 0.01 0.002 ± 0.005 0.02 ↓ 1 vs 2
Alanine 0.084 ± 0.04 0.087 ± 0.02 0.091 ± 0.02 0.01 ↑ 1 vs 3
3-Hydroxyisovalerate 0.0014 ± 0.0004 0.0017 ± 0.0006 0.0024 ± 0.001 <0.0001 ↑ 1vs 3; 2 vs 3
Ethanol 0.036 ± 0.03 0.025 ± 0.01 0.015 ± 0.01 <0.0001 ↓ 1 vs 2; 1 vs 3; 2 vs 3
Isopropanol 0.001 ± 0.001 0.0009 ± 0.0006 0.0006 ± 0.001 <0.0001 ↓ 1vs 3; 2 vs 3
2,3-Butanediol 0.0034 ± 0.002 0.0032 ± 0.002 0.0026 ± 0.003 0.003 ↓ 1vs 3; 2 vs 3
Propionate 0.026 ± 0.03 0.021 ± 0.05 0.008 ± 0.008 <0.0001 ↓ 1 vs 2; 1 vs 3
Isoleucine 0.021 ± 0.01 0.026 ± 0.01 0.027 ± 0.01 0.0001 ↑ 1 vs 2; 1 vs 3
Leucine 0.10 ± 0.04 0.11 ± 0.04 0.12 ± 0.04 <0.0001 ↑ 1 vs 2; 1 vs 3
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FIGURE 1 | Box and whiskers representing vaginal molecules, whose concentrations showed highly significant differences (p < 0.0001) between the three
trimesters of pregnancy. Differences were searched by Friedman test, followed by Dunn’s Multiple Comparison test. 1 � first trimester; 2 � second trimester; 3 � third
trimester.
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found, whereas two women were characterized by a high number of
vaginal WBCs. For all the women, except one, it was the first
miscarriage.

Differences were searched in cytokine/metabolite
concentrations between women with a normal pregnancy (n
� 64) and women who had a miscarriage (n � 10) at the first
trimester, irrespective of the composition of the vaginal
ecosystem.

No significant difference was observed in IL-6 and IL-8
levels between the two groups, whereas several metabolites
were more concentrated in the vaginal environment of women
who suffered a miscarriage (i.e., xanthine, p � 0.01; benzoate,
p � 0.02, 4-hydroxyphenyllactate, p � 0.02; fumarate, p � 0.001;
inosine, p � 0.004; UDP, p � 0.03; ascorbate; p � 0.01;

ethanolamine, p � 0.02). The most significant are shown in
Figure 3.

Metabolome Correlations
Several correlations were found between cytokine levels and
metabolite concentration (Supplementary Table S6). Among
all, we detected a positive correlation between IL-6/IL-8 levels
and the concentration of glucose and choline. Cytokine
concentrations were negatively correlated to lactate, serine and
glycine. Some of the most significant correlations are shown in
Figure 4.

The levels of 4-hydroxyphenyllactate (Spearman r: 0.22; p� 0.002),
glucose (0.18; p � 0.01), O-acetylcholine (0.22; p � 0.002) and choline
(0.21; p� 0.004) were positively correlatedwithCandida vaginal loads.

TABLE 3 | Concentration (mM) of vaginal metabolites determined by 1H-NMR, stratified by the vaginal status. Results are expressed as mean ± standard deviation. H:
healthy, BV: bacterial vaginosis, I: intermediate flora. Arrows indicate significant variations (p < 0.05, after Benjamini-Hochberg correction) in metabolite concentration (↑
increase, ↓ decrease) between groups. Differences were searched by Kruskal-Wallis test followed by Dunn’s Multiple Comparison test.

H (n = 130) I (n = 43) BV (n = 19) P value I vs H BV vs H BV vs I

Formate 0.040 ± 0.02 0.043 ± 0.01 0.14 ± 0.01 <0.0001 ↑ ↑
Adenine 0.014 ± 0.008 0.016 ± 0.007 0.007 ± 0.006 <0.0001 ↓ ↓
Xanthine 0.0042 ± 0.001 0.0047 ± 0.001 0.0063 ± 0.003 0.003 ↑
Tryptophan 0.01 ± 0.002 0.01 ± 0.002 0.007 ± 0.003 <0.0001 ↓ ↓
Benzoate 0.0031 ± 0.001 0.0036 ± 0.001 0.0038 ± 0.001 0.001 ↑ ↑
Phenyalanine 0.035 ± 0.01 0.032 ± 0.01 0.018 ± 0.01 <0.0001 ↓ ↓
Phenylpropionate 0.043 ± 0.01 0.041 ± 0.01 0.022 ± 0.01 <0.0001 ↓ ↓
Tyramine 0.0038 ± 0.004 0.0034 ± 0.002 0.026 ± 0.01 <0.0001 ↑ ↑
Fumarate 0.0010 ± 0.0004 0.0011 ± 0.0003 0.0018 ± 0.0006 <0.0001 ↑ ↑
Uridine 0.008 ± 0.004 0.01 ± 0.003 0.01 ± 0.008 0.0002 ↑
Uracil 0.006 ± 0.002 0.007 ± 0.001 0.006 ± 0.001 0.003 ↑
Threonine 0.064 ± 0.01 0.06 ± 0.02 0.05 ± 0.03 0.007 ↓
Lactate 2.7 ± 0.7 2.2 ± 0.7 2.0 ± 0.8 0.0001 ↓ ↓
Serine 0.07 ± 0.03 0.08 ± 0.02 0.03 ± 0.02 <0.0001 ↓ ↓
Glucose 0.04 ± 0.04 0.04 ± 0.03 0.06 ± 0.02 0.0002 ↑
Methanol 0.009 ± 0.004 0.01 ± 0.006 0.01 ± 0.004 <0.0001 ↑ ↑
Taurine 0.07 ± 0.02 0.07 ± 0.02 0.11 ± 0.03 <0.0001 ↑ ↑
O-acethylcholine 0.0009 ± 0.0004 0.001 ± 0.0004 0.0004 ± 0.0005 0.0006 ↓ ↓
Ethanolamine 0.018 ± 0.007 0.017 ± 0.004 0.029 ± 0.01 <0.0001 ↑ ↑
Malonate 0.001 ± 0.0008 0.001 ± 0.0004 0.009 ± 0.006 <0.0001 ↑ ↑
Creatinine 0.012 ± 0.01 0.015 ± 0.01 0.019 ± 0.01 0.01 ↑
Creatine 0.026 ± 0.01 0.026 ± 0.008 0.036 ± 0.01 <0.0001 ↑ ↑
Cadaverine 0.008 ± 0.005 0.006 ± 0.003 0.02 ± 0.02 <0.0001 ↑ ↑
TMA 0.0003 ± 0.0002 0.0003 ± 0.0001 0.007 ± 0.01 <0.0001 ↑ ↑
Aspartate 0.027 ± 0.008 0.025 ± 0.009 0.021 ± 0.008 0.01 ↓
Sarcosine 0.013 ± 0.007 0.011 ± 0.008 0.005 ± 0.003 0.0001 ↓ ↓
Methylamine 0.001 ± 0.0007 0.001 ± 0.0003 0.006 ± 0.007 <0.0001 ↑ ↑
Succinate 0.06 ± 0.06 0.03 ± 0.03 0.3 ± 0.3 <0.0001 ↑ ↑
Pyruvate 0.02 ± 0.02 0.02 ± 0.02 0.1 ± 0.07 <0.0001 ↑ ↑
4-Aminobutyrate 0.02 ± 0.03 0.013 ± 0.006 0.01 ± 0.004 0.001 ↓
5-Aminopentanoate 0.019 ± 0.009 0.019 ± 0.008 0.071 ± 0.04 <0.0001 ↑ ↑
Proline 0.005 ± 0.002 0.004 ± 0.001 0.01 ± 0.007 <0.0001 ↑ ↑
Acetate 0.32 ± 0.2 0.28 ± 0.1 1.75 ± 1.0 <0.0001 ↑ ↑
Putrescine 0.001 ± 0.004 0.001 ± 0.001 0.03 ± 0.02 <0.0001 ↑ ↑
Butyrate 0.019 ± 0.01 0.017 ± 0.01 0.14 ± 0.2 0.0002 ↑ ↑
Alanine 0.08 ± 0.02 0.07 ± 0.02 0.14 ± 0.04 <0.0001 ↑ ↑
Ethanol 0.02 ± 0.01 0.027 ± 0.01 0.055 ± 0.055 <0.0001 ↑ ↑
Isopropanol 0.0007 ± 0.0008 0.0009 ± 0.0005 0.002 ± 0.001 <0.0001 ↑ ↑
2,3-Butanediol 0.002 ± 0.002 0.002 ± 0.001 0.006 ± 0.006 <0.0001 ↑ ↑
Propionate 0.009 ± 0.007 0.01 ± 0.007 0.09 ± 0.09 <0.0001 ↑ ↑ ↑
Isoleucine 0.02 ± 0.009 0.02 ± 0.01 0.01 ± 0.01 <0.0001 ↓ ↓
Leucine 0.12 ± 0.04 0.10 ± 0.05 0.05 ± 0.03 <0.0001 ↓ ↓
2-Hydroxyisovalerate 0.0005 ± 0.0007 0.0005 ± 0.0003 0.006 ± 0.004 <0.0001 ↑ ↑
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DISCUSSION

A deep comprehension of the vaginal ecosystem may hold
promise for unraveling the pathophysiology of pregnancy and
may provide novel biomarkers to identify subjects at risk of

maternal-fetal complications (i.e., miscarriage, preterm
births).

In this study, we characterized the vaginal environment in 64
women with a normal pregnancy at three different gestational
ages and in 10 subjects suffering a spontaneous first trimester

FIGURE 2 | rPCAmodel built on the centered and scaled concentrations of the metabolites showing significant differences between groups (H vs I vs BV). (A) In the
scoreplots, women with a healthy vaginal status (H), an intermediate flora (I) and a BV-related microbiota (BV) are represented in black, red, and green respectively, with
lines connecting each subject to the median of its group. (B) The respective boxplots summarize the position of the groups along PC1. In the barplot (C), describing the
correlation between the concentration of each molecule and its importance over PC1, dark gray bars highlight statistically significant correlations (p < 0.05).

FIGURE 3 |Most significant vaginal metabolites showing different concentrations betweenwomenwith a normal pregnancy and subjects who had amiscarriage. N
� normal pregnancy; M � miscarriage. The graphs display the mean ± SD of each metabolite. Differences were searched by Mann Whitney test.
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miscarriage. In particular, we assessed the vaginal bacterial
composition (Nugent score), the vaginal metabolic profiles
(1H-NMR spectroscopy) and the concentrations of IL-6 and
IL-8.

At first, we confirmed that, throughout pregnancy, the vaginal
microbiota becomes less diverse, being mainly dominated by
lactobacilli (Nuriel-Ohayon et al., 2016; Li et al., 2020; Rasmussen
et al., 2020).

Indeed, at the third trimester of pregnancy, most women
showed a normal flora (about 80%), with a few cases of
BV (6.2%).

This shift toward a less complex ecosystem was clearly
associated with marked changes in the vaginal metabolic
profiles. Over the weeks, a progressive reduction in the levels
of dysbiosis-associated metabolites (e.g., biogenic amines,
alcohols, propionate, acetate) was observed. At the same time,
several metabolites, typically found in healthy vaginal conditions,
reached the highest concentrations at the end of pregnancy (e.g.,
lactate, glycine, phenylalanine, leucine, isoleucine). Moving from
the first to the third trimester of pregnancy, a significant

consumption of vaginal sugars (i.e., glucose and maltose) was
noticed, as well.

Overall, across all stages of pregnancy, higher levels of leucine,
serine, phenylpropionate, isoleucine, and tryptophan were the
hallmark of a healthy vaginal status, whereas higher
concentrations of putrescine, 2-hydroxyisovalerate, malonate,
TMA, tyramine, and acetate were the most significant
fingerprints of BV.

Most of these molecules are known to be modulated by the
balance between lactobacilli and BV-related bacteria. Thus, the
increase in the relative abundance of lactobacilli together with
the reduction of diverse anaerobic bacteria can explain these
findings.

Through carbohydrate fermentation, lactobacilli produce
higher levels of lactate (Vitali et al., 2015; Ceccarani et al.,
2019). Moreover, these microorganisms are known producers
of branched-chain amino acids (Mutaguchi et al., 2018),
being the higher concentrations of some of them, such as
leucine and isoleucine, another hallmark of a vaginal healthy
condition.

FIGURE 4 | Scatterplots showing some of the most significant correlations between cytokine levels and metabolite concentration. Cytokines levels were positively
correlated to glucose concentrations and negatively correlated with lactate levels (p < 0.0001). Raw data were transformed in ranks. Significant correlations were
searched with Spearman coefficient after Benjamini-Hochberg correction.
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The reduction in several SCFAs/organic acids and biogenic
amines reflect the drop of vaginal anaerobes (Vitali et al., 2015;
Ceccarani et al., 2019). Malonate, acetate, and propionate are
usually found at higher concentrations in the vaginal fluids of BV-
positive women, being typical metabolites produced by
anaerobes, as Prevotella and Mobiluncus spp. (Al-Mushrif
et al., 2000). Usually, a condition of dysbiosis is also
characterized by a decrease of certain protein amino acids
(e.g., alanine, proline), probably due to their decarboxylation
to biogenic amines (Vitali et al., 2015).

In addition, over time, the vaginal metabolic composition
became less diverse and more homogeneous: indeed, in the
second/third trimesters of pregnancy, women with BV showed
metabolic profiles more similar to the healthy/intermediate
groups, compared to the first trimester.

We can speculate that, toward the end of pregnancy, BV-
affected women were characterized by a less-complex bacterial
composition (i.e., less severe dysbiosis) with a reduced impact on
the vaginal metabolome.

Other interesting data emerged from the detection of IL-6 and
IL-8 in the vaginal environment. We found that the levels of these
two cytokines were significantly associated with the number of
vaginal leukocytes, as well as with the presence of vaginal
symptoms. Moreover, IL-8 concentration seemed to be a good
predictor of the presence of vaginal Candida spp.

In line with these findings, it is known that epithelial cells
respond to Candida invasion by releasing a specific profile of
cytokines, including IL-6 and IL-8, that recruit, activate, and
differentiate immune cells (Verma et al., 2017).

The vaginal ecosystem of women colonized by Candida spp.
was characterized by significantly higher levels of 4-
hydroxyphenyllactate, choline, and O-acetylcholine.

Interestingly, 4-hydroxyphenyllactate has been recognized as
an antifungal molecule produced by lactic acid bacteria; thus, this
metabolite can certainly contribute to an anti-Candida effect, in
synergy with other antimicrobial mechanisms (Mu et al., 2010).

Candida spp. produces various hydrolytic enzymes that are
implicated in adhesion, invasion, and destruction of vaginal
epithelial cells (Cauchie et al., 2017). Higher levels of choline
can be ascribed to the production of phospholipases secreted by
Candida during the switch from a commensal to a vaginal
pathogen (Chittim et al., 2019).

Moreover, a significant association between Candida and
glucose levels was found. High levels of glucose enhance the
nutritive substrate of Candida and increase its adhesion, by
promoting the expression of binding molecules in vaginal
epithelial cells (Van Ende et al., 2019).

In line with these findings, glucose levels were positively
associated with the vaginal concentrations of pro-
inflammatory cytokines.

Moreover, we found a negative correlation between cytokine
concentrations and vaginal lactate levels. It is worth mentioning
that lactate, besides its significant antimicrobial actions, possesses
immune modulating properties, thus potentially mediating anti-
inflammatory effects (Aldunate et al., 2015).

We did not find any association between cytokine levels and
conditions of abnormal vaginal microbiota (i.e., BV or

intermediate flora). These results are in contrast with
previous works showing that BV by Nugent score is
associated with a significant increase in several
proinflammatory cytokines/chemokines, such as IL-1α, IL-
1β, IL-6, and IL-8 (Balkus et al., 2010; Kyongo et al., 2015;
Florova et al., 2021).

Further studies, with a detailed evaluation of the vaginal
microbiome (i.e., by means of 16 s rRNA sequencing), are
needed to better understand the dynamics that take place in
the vaginal ecosystem and to better relate inflammatory markers
and vaginal metabolic profiles with peculiar microbial
fingerprints.

When looking to women who had a first trimester miscarriage,
we found that most cases of spontaneous abortion were
associated with an abnormal vaginal microbiome, with higher
levels of selected metabolites in the vaginal environment (e.g.,
fumarate, ethanolamine).

As previously observed, first trimester miscarriage can be
associated with reduced prevalence of Lactobacillus spp. and
with changes in the relative abundance of several bacterial
genera, including Fam_Finegoldia, Lac_Coprococcus_3, and
Lac_Roseburia (Al-Memar et al., 2020; Xu et al., 2020).

The increased concentration of specific vaginal metabolites
could be linked to peculiar changes in the microbial composition:
as an example, fumarate and ethanolamine have been recognized
as BV-associated metabolites (Vitali et al., 2015).

The exact role of the vaginal metabolome in first trimester
miscarriages, as well as the causative relationship between
microbiota and immune responses should be further
elucidated, to enable the possible diagnosis and therapeutics of
early pregnancy loss.

In conclusion, our analysis described the dynamic changes of
the vaginal metabolome in the different gestational ages,
providing new insights into the pathophysiology of pregnancy
and highlighting potential biomarkers for spontaneous abortion.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethics Committee of Romagna (CEROM). The
patients/participants provided their written informed consent
to participate in this study.

AUTHOR CONTRIBUTIONS

AM, CF, and VS conceived and designed the study. GP and SZ
recruited the patients. CZ, LL, MP, and SM performed the
experiments. AM, CF, and LL analyzed the data. AM, LL, VS

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 65684410

Marangoni et al. Vaginal Ecosystem and Pregnancy

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


contributed reagents/materials/analysis tools. AM and CF wrote
the paper. All the authors read, reviewed, and approved the final
manuscript.

FUNDING

This study was supported by “Fondazione del Monte di Bologna e
Ravenna” (Prot. N°329bis/2017). The funder had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.

ACKNOWLEDGMENTS

We are grateful to Oriana Gasperoni of the Family Advisory Health
Center in Ravenna for her skillful support during the study.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2021.656844/
full#supplementary-material

REFERENCES

Aagaard, K., Riehle, K., Ma, J., Segata, N., Mistretta, T.-A., Coarfa, C., et al. (2012).
A Metagenomic Approach to Characterization of the Vaginal Microbiome
Signature in Pregnancy. PLoS One 7, e36466. doi:10.1371/journal.pone.0036466

Al-Memar, M., Bobdiwala, S., Fourie, H., Mannino, R., Lee, Y. S., Smith, A., et al.
(2020). The Association between Vaginal Bacterial Composition and
Miscarriage: a Nested Case-Control Study. BJOG 127, 264–274. doi:10.1111/
1471-0528.15972

Al-Mushrif, S., Eley, A., and Jones, B. M. (2000). Inhibition of Chemotaxis by
Organic Acids from Anaerobes May Prevent a Purulent Response in Bacterial
Vaginosis. J. Med. Microbiol. 49, 1023–1030. doi:10.1099/0022-1317-49-11-
1023

Aldunate, M., Srbinovski, D., Hearps, A. C., Latham, C. F., Ramsland, P. A.,
Gugasyan, R., et al. (2015). Antimicrobial and Immune Modulatory Effects of
Lactic Acid and Short Chain Fatty Acids Produced by Vaginal Microbiota
Associated with Eubiosis and Bacterial Vaginosis. Front. Physiol. 6, 164. doi:10.
3389/fphys.2015.00164

Ansari, A., Lee, H., You, Y.-A., Jung, Y., Park, S., Kim, S. M., et al. (2020).
Identification of Potential Biomarkers in the Cervicovaginal Fluid by Metabolic
Profiling for Preterm Birth. Metabolites 10, 349. doi:10.3390/metabo10090349

Balkus, J., Agnew, K., Lawler, R., Mitchell, C., and Hitti, J. (2010). Effects of
Pregnancy and Bacterial Vaginosis on Proinflammatory Cytokine and
Secretory Leukocyte Protease Inhibitor Concentrations in Vaginal
Secretions. J. Pregnancy 2010, 1–3. doi:10.1155/2010/385981

Brys, A., Stasio, E. D., Lenaert, B., Picca, A., Calvani, R., Marzetti, E., et al. (2020).
Peridialytic Serum Cytokine Levels and Their Relationship with Postdialysis
Fatigue and Recovery in Patients on Chronic Haemodialysis - A Preliminary
Study. Cytokine 135, 155223. doi:10.1016/j.cyto.2020.155223

Cauchie, M., Desmet, S., and Lagrou, K. (2017). Candida and its Dual Lifestyle as a
Commensal and a Pathogen. Res. Microbiol. 168, 802–810. doi:10.1016/j.resmic.
2017.02.005

Ceccarani, C., Foschi, C., Parolin, C., D’Antuono, A., Gaspari, V., Consolandi, C.,
et al. (2019). Diversity of Vaginal Microbiome and Metabolome during Genital
Infections. Sci. Rep. 9, 14095. doi:10.1038/s41598-019-50410-x

Chittim, C. L., Martínez del Campo, A., and Balskus, E. P. (2019). Gut Bacterial
Phospholipase Ds Support Disease-Associated Metabolism by Generating
Choline. Nat. Microbiol. 4, 155–163. doi:10.1038/s41564-018-0294-4

Di Simone, N., Santamaria Ortiz, A., Specchia, M., Tersigni, C., Villa, P.,
Gasbarrini, A., et al. (2020). Recent Insights on the Maternal Microbiota:
Impact on Pregnancy Outcomes. Front. Immunol. 11, 528202. doi:10.3389/
fimmu.2020.528202

Dieterle, F., Ross, A., Schlotterbeck, G., and Senn, H. (2006). Probabilistic Quotient
Normalization as Robust Method to Account for Dilution of Complex
Biological Mixtures. Application in1H NMR Metabonomics. Anal. Chem.
78, 4281–4290. doi:10.1021/ac051632c

DiGiulio, D. B., Callahan, B. J., McMurdie, P. J., Costello, E. K., Lyell, D. J.,
Robaczewska, A., et al. (2015). Temporal and Spatial Variation of the Human
Microbiota during Pregnancy. Proc. Natl. Acad. Sci. USA 112, 11060–11065.
doi:10.1073/pnas.1502875112

Donders, G., Bellen, G., and Rezeberga, D. (2011). Aerobic Vaginitis in Pregnancy.
BJOG 118, 1163–1170. doi:10.1111/j.1471-0528.2011.03020.x

Fan, T., Zhong, X.-M., Wei, X.-C., Miao, Z.-L., Luo, S.-Y., Cheng, H., et al. (2020).
The Alteration and Potential Relationship of Vaginal Microbiota and
Chemokines for Unexplained Recurrent Spontaneous Abortion. Medicine
(Baltimore) 99, e23558. doi:10.1097/MD.0000000000023558

Florova, V., Romero, R., Tarca, A. L., Galaz, J., Motomura, K., Ahmad, M. M., et al.
(2021). Vaginal Host Immune-Microbiome Interactions in a Cohort of
Primarily African-American Women Who Ultimately Underwent
Spontaneous Preterm Birth or Delivered at Term. Cytokine 137, 155316.
doi:10.1016/j.cyto.2020.155316

Foschi, C., Laghi, L., D’Antuono, A., Gaspari, V., Zhu, C., Dellarosa, N., et al.
(2018). Urine Metabolome in Women with Chlamydia trachomatis Infection.
PLoS One 13, e0194827. doi:10.1371/journal.pone.0194827

Fox, C., and Eichelberger, K. (2015). Maternal Microbiome and Pregnancy
Outcomes. Fertil. Sterility 104, 1358–1363. doi:10.1016/j.fertnstert.2015.09.037

Geisler, W. M., Yu, S., Venglarik, M., and Schwebke, J. R. (2004). Vaginal
Leucocyte Counts in Women with Bacterial Vaginosis: Relation to Vaginal
and Cervical Infections. Sex. Transm. Infections 80, 401–405. doi:10.1136/
sti.2003.009134

Ghartey, J., Bastek, J. A., Brown, A. G., Anglim, L., and Elovitz, M. A. (2015).
Women with Preterm Birth Have a Distinct Cervicovaginal Metabolome. Am.
J. Obstet. Gynecol. 212, 776.e1–776.e12. doi:10.1016/j.ajog.2015.03.052

Gupta, P., Singh, M. P., and Goyal, K. (2020). Diversity of Vaginal Microbiome in
Pregnancy: Deciphering the Obscurity. Front. Public Health 8, 326. doi:10.3389/
fpubh.2020.00326

Hickey, R. J., Zhou, X., Pierson, J. D., Ravel, J., and Forney, L. J. (2012).
Understanding Vaginal Microbiome Complexity from an Ecological
Perspective. Translational Res. 160, 267–282. doi:10.1016/j.trsl.2012.02.008

Hubert, M., Rousseeuw, P. J., and Vanden Branden, K. (2005). ROBPCA: A New
Approach to Robust Principal Component Analysis. Technometrics 47, 64–79.
doi:10.1198/004017004000000563

Kneen, M. A., and Annegarn, H. J. (1996). Algorithm for Fitting XRF, SEM and
PIXE X-Ray Spectra Backgrounds. Nucl. Instr. Methods Phys. Res. Section B:
Beam Interactions Mater. Atoms 109-110, 209–213. doi:10.1016/0168-583X(95)
00908-6

Kroon, S. J., Ravel, J., and Huston, W. M. (2018). Cervicovaginal Microbiota,
Women’s Health, and Reproductive Outcomes. Fertil. Sterility 110, 327–336.
doi:10.1016/j.fertnstert.2018.06.036

Kyongo, J. K., Crucitti, T., Menten, J., Hardy, L., Cools, P., Michiels, J., et al. (2015).
Cross-Sectional Analysis of Selected Genital Tract Immunological Markers and
Molecular Vaginal Microbiota in Sub-saharan African Women, with Relevance
to HIV Risk and Prevention. Clin. Vaccin. Immunol. 22, 526–538. doi:10.1128/
CVI.00762-14

Li, D., Chi, X.-Z., Zhang, L., Chen, R., Cao, J.-r., Sun, X.-y., et al. (2020). Vaginal
Microbiome Analysis of HealthyWomen during Different Periods of Gestation.
Biosci. Rep. 40, BSR20201766. doi:10.1042/BSR20201766

Liland, K. H., Almøy, T., and Mevik, B.-H. (2010). Optimal Choice of Baseline
Correction for Multivariate Calibration of Spectra. Appl. Spectrosc. 64,
1007–1016. doi:10.1366/000370210792434350

Mu, W., Yang, Y., Jia, J., Zhang, T., and Jiang, B. (2010). Production of 4-
hydroxyphenyllactic Acid by Lactobacillus Sp. SK007 Fermentation. J. Biosci.
Bioeng. 109, 369–371. doi:10.1016/j.jbiosc.2009.10.005

Mutaguchi, Y., Kasuga, K., and Kojima, I. (2018). Production of D-Branched-
Chain Amino Acids by Lactic Acid Bacteria Carrying Homologs to Isoleucine

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 65684411

Marangoni et al. Vaginal Ecosystem and Pregnancy

https://www.frontiersin.org/articles/10.3389/fmolb.2021.656844/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2021.656844/full#supplementary-material
https://doi.org/10.1371/journal.pone.0036466
https://doi.org/10.1111/1471-0528.15972
https://doi.org/10.1111/1471-0528.15972
https://doi.org/10.1099/0022-1317-49-11-1023
https://doi.org/10.1099/0022-1317-49-11-1023
https://doi.org/10.3389/fphys.2015.00164
https://doi.org/10.3389/fphys.2015.00164
https://doi.org/10.3390/metabo10090349
https://doi.org/10.1155/2010/385981
https://doi.org/10.1016/j.cyto.2020.155223
https://doi.org/10.1016/j.resmic.2017.02.005
https://doi.org/10.1016/j.resmic.2017.02.005
https://doi.org/10.1038/s41598-019-50410-x
https://doi.org/10.1038/s41564-018-0294-4
https://doi.org/10.3389/fimmu.2020.528202
https://doi.org/10.3389/fimmu.2020.528202
https://doi.org/10.1021/ac051632c
https://doi.org/10.1073/pnas.1502875112
https://doi.org/10.1111/j.1471-0528.2011.03020.x
https://doi.org/10.1097/MD.0000000000023558
https://doi.org/10.1016/j.cyto.2020.155316
https://doi.org/10.1371/journal.pone.0194827
https://doi.org/10.1016/j.fertnstert.2015.09.037
https://doi.org/10.1136/sti.2003.009134
https://doi.org/10.1136/sti.2003.009134
https://doi.org/10.1016/j.ajog.2015.03.052
https://doi.org/10.3389/fpubh.2020.00326
https://doi.org/10.3389/fpubh.2020.00326
https://doi.org/10.1016/j.trsl.2012.02.008
https://doi.org/10.1198/004017004000000563
https://doi.org/10.1016/0168-583X(95)00908-6
https://doi.org/10.1016/0168-583X(95)00908-6
https://doi.org/10.1016/j.fertnstert.2018.06.036
https://doi.org/10.1128/CVI.00762-14
https://doi.org/10.1128/CVI.00762-14
https://doi.org/10.1042/BSR20201766
https://doi.org/10.1366/000370210792434350
https://doi.org/10.1016/j.jbiosc.2009.10.005
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


2-Epimerase of Lactobacillus Buchneri. Front. Microbiol. 9, 1540. doi:10.3389/
fmicb.2018.01540

Nelson, D. B., Rockwell, L. C., Prioleau, M. D., and Goetzl, L. (2016). The Role of
the Bacterial Microbiota on Reproductive and Pregnancy Health. Anaerobe 42,
67–73. doi:10.1016/j.anaerobe.2016.09.001

Noyes, N., Cho, K.-C., Ravel, J., Forney, L. J., and Abdo, Z. (2018). Associations
between Sexual Habits, Menstrual Hygiene Practices, Demographics and the
Vaginal Microbiome as Revealed by Bayesian Network Analysis. PLoS One 13,
e0191625, doi:10.1371/journal.pone.0191625

Nugent, R. P., Krohn, M. A., and Hillier, S. L. (1991). Reliability of Diagnosing Bacterial
Vaginosis Is Improved by a Standardized Method of Gram Stain Interpretation.
J. Clin. Microbiol. 29, 297–301. doi:10.1128/JCM.29.2.297-301.1991

Nuriel-Ohayon, M., Neuman, H., and Koren, O. (2016). Microbial Changes during
Pregnancy, Birth, and Infancy. Front. Microbiol. 7, 1031. doi:10.3389/fmicb.
2016.01031

Oliver, J. C., Laghi, L., Parolin, C., Foschi, C., Marangoni, A., Liberatore, A., et al.
(2020). Metabolic Profiling of Candida Clinical Isolates of Different Species and
Infection Sources. Sci. Rep. 10, 16716. doi:10.1038/s41598-020-73889-1

Parolin, C., Foschi, C., Laghi, L., Zhu, C., Banzola, N., Gaspari, V., et al. (2018).
Insights into Vaginal Bacterial Communities and Metabolic Profiles of
Chlamydia trachomatis Infection: Positioning between Eubiosis and
Dysbiosis. Front. Microbiol. 9, 600. doi:10.3389/fmicb.2018.00600

Prince, A. L., Antony, K. M., Chu, D. M., and Aagaard, K. M. (2014). The
Microbiome, Parturition, and Timing of Birth: More Questions Than
Answers. J. Reprod. Immunol. 104-105, 12–19. doi:10.1016/j.jri.2014.03.006

Rasmussen, M. A., Thorsen, J., Dominguez-Bello, M. G., Blaser, M. J., Mortensen,
M. S., Brejnrod, A. D., et al. (2020). Ecological Succession in the Vaginal
Microbiota during Pregnancy and Birth. ISME J. 14, 2325–2335. doi:10.1038/
s41396-020-0686-3

Schievano, E., Guardini, K., and Mammi, S. (2009). Fast Determination of
Histamine in Cheese by Nuclear Magnetic Resonance (NMR). J. Agric. Food
Chem. 57, 2647–2652. doi:10.1021/jf803364k

Smith, S. B., and Ravel, J. (2017). The Vaginal Microbiota, Host Defence and
Reproductive Physiology. J. Physiol. 595, 451–463. doi:10.1113/JP271694

Van Ende, M., Wijnants, S., and Van Dijck, P. (2019). Sugar Sensing and Signaling
in Candida Albicans and Candida Glabrata. Front. Microbiol. 10, 99. doi:10.
3389/fmicb.2019.00099

Ventrella, D., Laghi, L., Barone, F., Elmi, A., Romagnoli, N., and Bacci, M. L. (2016).
Age-Related 1HNMRCharacterization of Cerebrospinal Fluid in Newborn and
Young Healthy Piglets. PLoS One 11, e0157623, doi:10.1371/journal.pone.
0157623

Verma, A., Gaffen, S., and Swidergall, M. (2017). Innate Immunity to Mucosal
Candida Infections. JoF 3, 60. doi:10.3390/jof3040060

Vinturache, A. E., Gyamfi-Bannerman, C., Hwang, J., Mysorekar, I. U., and
Jacobsson, B. (2016). Preterm Birth International Collaborative
(PREBIC).Maternal Microbiome - A Pathway to Preterm Birth. Semin. Fetal
Neonatal Med. 21, 94–99. doi:10.1016/j.siny.2016.02.004

Vitali, B., Cruciani, F., Picone, G., Parolin, C., Donders, G., and Laghi, L. (2015).
Vaginal Microbiome andMetabolomeHighlight Specific Signatures of Bacterial
Vaginosis. Eur. J. Clin. Microbiol. Infect. Dis. 34, 2367–2376. doi:10.1007/
s10096-015-2490-y

Xu, L., Huang, L., Lian, C., Xue, H., Lu, Y., Chen, X., et al. (2020). Vaginal
Microbiota Diversity of Patients with Embryonic Miscarriage by Using 16S
rDNA High-Throughput Sequencing. Int. J. Genomics 2020, 1–12. doi:10.1155/
2020/1764959

Yano, J., Sobel, J. D., Nyirjesy, P., Sobel, R., Williams, V. L., Yu, Q., et al. (2019).
Current Patient Perspectives of Vulvovaginal Candidiasis: Incidence,
Symptoms, Management and Post-treatment Outcomes. BMC Women’s
Health 19, 48. doi:10.1186/s12905-019-0748-8

Yeoman, C. J., Thomas, S. M., Miller, M. E. B., Ulanov, A. V., Torralba, M., Lucas,
S., et al. (2013). A Multi-Omic Systems-Based Approach Reveals Metabolic
Markers of Bacterial Vaginosis and Insight into the Disease. PLoS One 8,
e56111. doi:10.1371/journal.pone.0056111

Zhang, F., Zhang, T., Ma, Y., Huang, Z., He, Y., Pan, H., et al. (2019). Alteration of
Vaginal Microbiota in Patients with Unexplained Recurrent Miscarriage. Exp.
Ther. Med. 17, 3307–3316. doi:10.3892/etm.2019.7337

Zozaya-Hinchliffe, M., Lillis, R., Martin, D. H., and Ferris, M. J. (2010).
Quantitative PCR Assessments of Bacterial Species in Women with and
without Bacterial Vaginosis. J. Clin. Microbiol. 48, 1812–1819. doi:10.1128/
JCM.00851-09

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Marangoni, Laghi, Zagonari, Patuelli, Zhu, Foschi, Morselli,
Pedna and Sambri. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 65684412

Marangoni et al. Vaginal Ecosystem and Pregnancy

https://doi.org/10.3389/fmicb.2018.01540
https://doi.org/10.3389/fmicb.2018.01540
https://doi.org/10.1016/j.anaerobe.2016.09.001
https://doi.org/10.1371/journal.pone.0191625
https://doi.org/10.1128/JCM.29.2.297-301.1991
https://doi.org/10.3389/fmicb.2016.01031
https://doi.org/10.3389/fmicb.2016.01031
https://doi.org/10.1038/s41598-020-73889-1
https://doi.org/10.3389/fmicb.2018.00600
https://doi.org/10.1016/j.jri.2014.03.006
https://doi.org/10.1038/s41396-020-0686-3
https://doi.org/10.1038/s41396-020-0686-3
https://doi.org/10.1021/jf803364k
https://doi.org/10.1113/JP271694
https://doi.org/10.3389/fmicb.2019.00099
https://doi.org/10.3389/fmicb.2019.00099
https://doi.org/10.1371/journal.pone.0157623
https://doi.org/10.1371/journal.pone.0157623
https://doi.org/10.3390/jof3040060
https://doi.org/10.1016/j.siny.2016.02.004
https://doi.org/10.1007/s10096-015-2490-y
https://doi.org/10.1007/s10096-015-2490-y
https://doi.org/10.1155/2020/1764959
https://doi.org/10.1155/2020/1764959
https://doi.org/10.1186/s12905-019-0748-8
https://doi.org/10.1371/journal.pone.0056111
https://doi.org/10.3892/etm.2019.7337
https://doi.org/10.1128/JCM.00851-09
https://doi.org/10.1128/JCM.00851-09
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	New Insights into Vaginal Environment During Pregnancy
	Introduction
	Materials and Methods
	Study Group and Sample Collection
	Microbiological Investigations
	Metabolomic Analysis
	Cytokine Detection
	Data Analysis and Statistics
	Data Availability Statement

	Results
	Study Population
	IL-6 and IL-8 Detection
	Vaginal Metabolic Profiles
	Miscarriages
	Metabolome Correlations

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


