
fmolb-08-657222 March 23, 2021 Time: 15:41 # 1

PERSPECTIVE
published: 29 March 2021

doi: 10.3389/fmolb.2021.657222

Edited by:
Agnel Praveen Joseph,

Science and Technology Facilities
Council, United Kingdom

Reviewed by:
Valeria Losasso,

United Kingdom Research
and Innovation, United Kingdom

Sophie Sacquin-Mora,
UPR 9080 Laboratoire de Biochimie

Théorique (LBT), France

*Correspondence:
Paulo C. T. Souza

paulo.telles-de-souza@ibcp.fr
Sangwook Wu

s.wu@pharmcadd.com
Vittorio Limongelli

vittoriolimongelli@gmail.com
Siewert J. Marrink
s.j.marrink@rug.nl

Luca Monticelli
luca.monticelli@inserm.fr

Specialty section:
This article was submitted to

Biological Modeling and Simulation,
a section of the journal

Frontiers in Molecular Biosciences

Received: 22 January 2021
Accepted: 05 March 2021
Published: 29 March 2021

Citation:
Souza PCT, Limongelli V, Wu S,

Marrink SJ and Monticelli L (2021)
Perspectives on High-Throughput

Ligand/Protein Docking With Martini
MD Simulations.

Front. Mol. Biosci. 8:657222.
doi: 10.3389/fmolb.2021.657222

Perspectives on High-Throughput
Ligand/Protein Docking With Martini
MD Simulations
Paulo C. T. Souza1,2,3* , Vittorio Limongelli4,5* , Sangwook Wu2,6* , Siewert J. Marrink1* and
Luca Monticelli3*

1 Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of
Groningen, Groningen, Netherlands, 2 PharmCADD, Busan, South Korea, 3 Molecular Microbiology and Structural
Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, Lyon, France, 4 Faculty of Biomedical Sciences, Institute of
Computational Science, Università della Svizzera Italiana (USI), Lugano, Switzerland, 5 Department of Pharmacy, University of
Naples “Federico II”, Naples, Italy, 6 Department of Physics, Pukyong National University, Busan, South Korea

Molecular docking is central to rational drug design. Current docking techniques suffer,
however, from limitations in protein flexibility and solvation models and by the use of
simplified scoring functions. All-atom molecular dynamics simulations, on the other
hand, feature a realistic representation of protein flexibility and solvent, but require
knowledge of the binding site. Recently we showed that coarse-grained molecular
dynamics simulations, based on the most recent version of the Martini force field, can be
used to predict protein/ligand binding sites and pathways, without requiring any a priori
information, and offer a level of accuracy approaching all-atom simulations. Given the
excellent computational efficiency of Martini, this opens the way to high-throughput drug
screening based on dynamic docking pipelines. In this opinion article, we sketch the
roadmap to achieve this goal.

Keywords: molecular dynamics, coarse-grain, ligand-protein, protein-protein interaction, Martini, dynamic
docking, high-throughput screening, drug design

INTRODUCTION

Structure-based drug design has been extensively used by pharmaceutical companies and academic
research groups to reduce the cost and time necessary for the discovery of new drugs. The approach
relies on the knowledge of the atomistic structure of the biological target, obtained by experiments
(e.g., X-ray crystallography, NMR spectroscopy, cryo-electron microscopy) or modeling (e.g., based
on homology). Standard pipelines often start with in silico docking experiments, used for virtual
screening of thousands of compounds or molecular fragments (Sliwoski et al., 2014; Leelananda
and Lindert, 2016; Duarte et al., 2019). After a significant reduction of the chemical space, a
selected group of molecules can be optimized by all-atom (AA) molecular dynamics (MD) based
simulations (Jorgensen and Thomas, 2008; Jorgensen, 2009; Vivo et al., 2016; Limongelli, 2020). AA
MD simulations can be used not only to improve the prediction of the binding pose and affinity,
but also to get insight into (un)binding rates and pathways (Dror et al., 2011; Shan et al., 2011;
Limongelli et al., 2013; Tiwary et al., 2015; Copeland, 2016; Bruce et al., 2018). As a third step,
further selection can be performed considering predictions of absorption, distribution, metabolism,
excretion and toxicity (ADMET) (Van De Waterbeemd and Gifford, 2003; Cheng et al., 2013). The
obtained lead compounds need to be validated by in vitro assays and structurally improved – lead
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optimization – to achieve drug candidates, which are tested
in animal models and eventually enter clinical trials before
final approval. Despite the rapid advances in computer-aided
drug discovery methods, the limitations of such approaches
are still major. Docking assays remain to date the first option
in the drug discovery pipeline thanks to their capability of
“virtually” testing thousands of molecules in a short time.
However, docking accuracy is poor due to limitations in
simplified energy (“scoring”) functions, sampling ligand and
protein flexibility (Grinter and Zou, 2014), and representation
of the environment – crucial in hydrated binding pockets and
in transmembrane proteins, that represent a large fraction of the
pharmaceutically relevant protein targets. AA MD simulations
can tackle these limitations, but they are still computationally
prohibitively expensive (Durrant and McCammon, 2011; Liu
et al., 2018; Miller et al., 2020), due to relatively long time scales
of conformational dynamics in proteins. Moreover, predictions
of dissociation pathways and rates are extremely challenging, and
require high performance computing and enhanced sampling
techniques (Limongelli et al., 2013; Casasnovas et al., 2017;
Brotzakis et al., 2019; Schuetz et al., 2019). Peptide and protein
design for biopharmaceutical applications have similar pitfalls,
with the current approaches reasonably successful in predicting
protein structures (Hutson, 2019; Callaway, 2020) and rigid-body
protein-protein interactions (Siebenmorgen and Zacharias, 2020)
but with limitations in the design of conformational changes
(Feldmeier and Höcker, 2013; Yang and Lai, 2017; Perkel, 2019;
D’Annessa et al., 2020).

Coarse-grained (CG) modeling is a computationally cheaper
alternative to high-resolution atomistic approaches (Ingólfsson
et al., 2014; Kmiecik et al., 2016), as it reduces the computational
cost by grouping atoms into effective interaction sites. Numerous
CG models have been developed during the past two decades,
with different levels of coarsening and different mathematical
representations. CG models have been successfully applied to
study a large range of processes in biology (Yen et al., 2018;
Bruininks et al., 2020; Lucendo et al., 2020) and materials
science (Casalini et al., 2019; Alessandri et al., 2020; Li
et al., 2020; Vazquez-Salazar et al., 2020). Applications such
as structure-based drug design are particularly challenging for
CG modeling because of the severe requirements: (1) high
chemical specificity (i.e., allowing to distinguish most chemical
groups); (2) capability to represent all possible components of
the system (proteins, cofactors, nucleic acids, drug candidates,
waters, lipids, etc.) in a coherent way; (3) realistic representation
of conformational flexibility of each molecule in the system;
and (4) accurate thermodynamics and kinetics of binding.
Currently, none of the CG force fields available fulfills all
the requirements above, but the Martini CG force field fulfills
at least some (Marrink et al., 2007; Marrink and Tieleman,
2013), as it allows modeling all main biomolecules (Monticelli
et al., 2008; López et al., 2009; de Jong et al., 2013, 2015;
Uusitalo et al., 2015, 2017; Wassenaar et al., 2015) with
relatively high chemical specificity, and proteins may still retain
reasonable conformational flexibility (Periole et al., 2009; Melo
et al., 2017; Poma et al., 2017). As in AA MD simulations,
most of the details of the environment can be included in

Martini CG simulations, for instance an explicit solvent model
or a complex bilayer composition (Ingolfsson et al., 2015;
Marrink et al., 2019).

Although Martini-based CG MD simulations have been used
to study a wide range of biomolecular processes, examples
of protein–ligand binding are still scarce (Negami et al.,
2014, 2020; Delort et al., 2017; Ferré et al., 2019; Jiang
and Zhang, 2019; Dandekar and Mondal, 2020). Studies
of protein-protein interactions are more common, although
usually restricted to membrane environments (Baaden and
Marrink, 2013; Castillo et al., 2013; Lelimousin et al., 2016;
Sun et al., 2020). In some cases, binding of lipids to sites
deeply buried inside the protein can be obtained by brute
force Martini MD (Arnarez et al., 2013; Van Eerden et al.,
2017; Corradi et al., 2019). Overall, some limiting factors
hampered the use of Martini in small-molecule and protein
design: (1) chemical specificity to reproduce the broad chemical
space of drugs; (2) the thermodynamics of ligand-protein
and protein-protein interactions are generally overestimated
(Stark et al., 2013; Javanainen et al., 2017; Alessandri et al.,
2019); and (3) introduction of conformational flexibility in
proteins requires case-by-case optimization (Negami et al.,
2020; Ahalawat and Mondal, 2021). A new version of the
Martini force field, named Martini 3 (Souza et al., 2021),
partly solves these issues: it can represent a broader variety
of chemical compounds, and it features improved molecular
packing and optimized molecular interactions (along with
specific interactions mimicking H-bonding and electronic
polarizability). Recently, Martini 3 was successfully applied to
a range of protein-ligand system examples, from the well-
characterized T4 lysozyme to members of the GPCR family and
nuclear receptors to a variety of enzymes (Souza et al., 2020).
In addition, combination of Martini 3 and Gō-like potentials
can substantially improve the modeling of protein flexibility
(Poma et al., 2017; Souza et al., 2019). Combined, these new
features open the possibility of computer-aided drug design
based on CG models.

In this perspective, we sketch a possible roadmap for a drug
design pipeline using Martini, where no a priori information
about the target pocket is necessary. Competition between ligands
for different pockets and environments can be included in the
screening. Protein flexibility can be incorporated to a certain
degree, allowing the possible discovery of cryptic (hidden)
pockets (Kuzmanic et al., 2020). Ligand (un)binding pathways
are accessible via enhanced sampling techniques (Raniolo and
Limongelli, 2020), and enable for the first time the possibility of
a “dynamic” drug screening based not only on ligand binding
modes, but also on kinetically relevant states – that is considering
binding affinity and dissociation rates (i.e., drug residence time).
The next sections detail the key steps of this pipeline.

LIGAND DATABASES:
COARSE-GRAINING THE LIGANDS

The very first step to develop a Martini drug design pipeline is
to create curated and validated databases containing hundreds
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to thousands of small-molecule models. This CG database needs
to include molecular moieties usually found in drugs, such
as halogens, heterocycles, and sulfamides. Alternatively, the
databases of low-molecular-weight molecules (∼150 Da) can
also be created for fragment-based drug discovery campaigns
(Rognan, 2012). Parameters for molecules/fragments of
pharmaceutical interest need to be validated by comparison
between CG, AA and, if available, experimental data for
a subset of relevant target systems. Once validated, all the
models will be made available via the open-access Martini
Database (MAD) web server1. The initial CG databases are
also the foundation to develop and calibrate automatic tools
to generate parameters for new CG models. Such automatic
tools should perform AA to CG mapping [as performed by
auto-martini (Bereau and Kremer, 2015)], bead assignment (i.e.,
the choice of the CG interaction parameters), and determination
of the bonded parameters [as PyCGTOOL (Graham et al.,
2017) or Swarm-CG (Empereur-mot et al., 2020)], allowing
further coverage of chemical space. The creation of accurate
databases and integration of automatic tools is currently
one of the main bottlenecks hampering high-throughput
screening with Martini.

VIRTUAL SCREENING: MARTINI
DYNAMIC DOCKING

Virtual screening is the core of the drug design pipeline,
and usually relies on docking algorithms. The use of Martini
CG models will enable a new approach: dynamic docking
with no a priori knowledge of the binding pocket in the
target structure. The concept here is to sample protein–
ligand interactions with CG MD simulations, which is around
300 to 1,000 times faster than atomistic MD (Souza et al.,
2020). A practical example of such speed up can be given
for propranolol binding to β2 adrenergic receptor, which has
been simulated in atomistic (Dror et al., 2011) and coarse-
grained (Souza et al., 2020) resolution. Atomistic simulations
showed one binding event every 11.9 µs, which for a single
simulation would take 84 days of computing time (using
the 4 CPUs and 1 GPU in a computer/conditions described
in the performance tests of Souza et al., 2020). The same
system in CG simulations showed roughly the same number
of binding events per µs (considering a normalization based
in the different concentration of ligands), and would take 2
to 7 h of computing time, on the same hardware. We remark
that a fair comparison between coarse-grained and atomistic
simulation time is not trivial, since this should consider the
different simulation conditions (e.g., ligand concentration) and
parameters (Souza et al., 2020).

Multiple strategies are possible to accelerate sampling even
more, with different computational costs and different levels
of sophistication. Unbiased MD simulations could be applied
in certain cases, to obtain not only binding poses but also
estimates of binding affinities, as recently demonstrated for

1mad.ibcp.fr

T4 lysozyme (Souza et al., 2020). However, for a general
approach to virtual screening, faster methods are necessary. One
possibility is to combine CG models with enhanced sampling
techniques that do not depend on prior knowledge of the
binding pathways. Examples are Gaussian accelerated molecular
dynamics (GaMD) (Miao et al., 2015; Pang et al., 2017), and
Hamiltonian Replica Exchange Molecular Dynamics (H-REMD)
(Wang et al., 2013; Luitz and Zacharias, 2014). Computational
performance can be straightforwardly increased by optimizing
ligand concentration, to increase the probability of binding. The
approach was already tested with atomistic simulations in a
variety of systems (Dror et al., 2011; Shan et al., 2011; Decherchi
et al., 2015; Schneider et al., 2016; Mondal et al., 2018). To
avoid ligand aggregation, artificial repulsive interactions among
ligands may be used (Shan et al., 2011). Similar strategies
are also extensively used in so-called mixed-solvent (or co-
solvent) approaches, where high concentrations of fragments
are used to identify and stabilize cryptic pockets (Guvench
and MacKerell, 2009; Bakan et al., 2012; Schmidt et al., 2019;
Kuzmanic et al., 2020). Another idea is to only use isolated
beads as probes representing chemical groups or fragments,
to predict the chemical topology in pockets and generate
pharmacophore models (Michelarakis et al., 2018; Michelarakis,
2019). The combination of CG models, enhanced sampling, and
ligand/fragment concentration strategies will allow simulations
of competitive binding assays.

An advantage of Martini dynamic docking approach is
the improved representation of protein flexibility via Gō-like
potentials (Poma et al., 2017; Souza et al., 2019). Although some
docking strategies can also include protein flexibility (Amaro
et al., 2018; Evangelista Falcon et al., 2019), they usually depend
on prior sampling of the protein conformational space, followed
by docking in a specific chosen pocket. In the strategy proposed
here, no a priori selection of the binding pocket is needed.
Both induced-fit and conformational-selection mechanisms are
included in MD simulations, as recently demonstrated (Souza
et al., 2020); however, accuracy will depend on the quality of the
protein CG model.

Another major advantage is the possibility to include complex
environments, such as multicomponent membranes, crowded
protein solutions, or other relevant in vivo-like conditions,
allowing more realistic predictions. Competition with the
environment may be relevant for proper interpretation of ligand
biological activity. For instance, lipid membrane composition
may affect kinetic rates and (un)binding constants in GPCRs
(Vauquelin, 2010; Sykes et al., 2014, 2019; Yuan et al., 2018) by
altering ligand partitioning to the membrane where the target
protein is located. Atomistic MD simulations of such complex
systems are computationally very costly, while they are already
within reach with Martini (Marrink et al., 2019).

Combining “standard” docking algorithms with Martini
provides a computationally cheap alternative to all-atom docking.
As recently demonstrated by HADDOCK (Honorato et al., 2019;
Roel-Touris et al., 2019), docking with Martini can be one order
of magnitude faster than atomistic docking. This would allow
to routinely explore very large ligand datasets (Lyu et al., 2019)
or even to use massive docking with grids covering the whole
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the protein, or exploring multiple proteins/conformations at the
same time. However, common problems of docking approaches
(mentioned above) still would be present; probably Martini MD
approaches represent a better compromise between accuracy and
computational performance.

LEAD OPTIMIZATION: BACKMAPPING
AND COARSE GRAINING IN CHEMICAL
SPACE

Accurate predictions of ligand binding poses and affinities
are key aspects for lead optimization (Jorgensen, 2009; Vivo
et al., 2016). In atomistic pipelines, MD simulations can
be used as a post-processing tool to validate and/or refine
the binding poses from docking (Vivo et al., 2016). After
this first check, more rigorous estimates of ligand binding
affinities can be achieved by free energy perturbation (FEP)
or thermodynamics integration (TI) (Jorgensen and Thomas,
2008; Jorgensen, 2009) – methods based on conversion of
one ligand to another, allowing to add or replace substituents,
in order to optimize ligand-protein interactions. In a Martini
drug design pipeline (step 3A of Figure 1), one could simply
convert the CG representation to all-atom (“backmapping”
procedure) to verify and refine the CG docking poses. Currently,
the most reliable approach for backmapping is the geometric
projection implemented in Backward (Wassenaar et al., 2014).
The main disadvantage is the need for mapping files for each
ligand. After obtaining the atomistic structures, any MD-based
simulations can be straightforwardly used. Careful equilibration
is necessary to allow relaxation of the system, in particular,
the water molecules may need to fill small cavities in pockets
not accessible to CG water. One possibility is to model buried
water molecules or ions using smaller beads, as previously
showcased (Souza et al., 2020). Such difficulties are also common
in standard docking approaches, as they usually do not include
water molecules.

An alternative possibility for lead optimization in Martini
would be to reverse the order of the steps, performing first
a preliminary set of FEP/TI calculations at the Martini CG
level. Such approach would allow to explore a broader portion
of the chemical space. On top of the default computational
efficiency of CG models, additional speed up could be obtained.
First, given the smoother potential surface, the replacement of
one bead for another (representing different chemical groups)
could be performed in less FEP/TI windows. Additionally, as
Martini CG beads generally represent more than one chemical
fragment (Menichetti et al., 2019; Bereau, 2020), the exploration
of chemical space increases computational efficiency by an
additional factor 103–104 (Menichetti et al., 2019; Bereau, 2020)
thanks to the reduction in the size of chemical space. Each
bead of the CG model can be transformed into different
chemical groups, for instance by using different mapping files
for each bead in the Backward code (Wassenaar et al., 2014).
With this alternative lead optimization approach, backmapping
would be performed as the last step, to increase accuracy of
the predictions.

FIGURE 1 | One of the possible pipelines for high-throughput dynamic
docking based on Martini coarse-grained modeling. (1) The first step in the
pipeline is the automatic conversion of input libraries of small compounds to
Martini models. The library includes drug-like compounds and small-sized
rigid molecules, useful for fragment-based drug discovery. (2) In the second
step, thousands of parallel simulations are automatically set up, to sample
small-molecule binding to pockets in the target protein. Competition in silico
assays with endogenous ligands are possible in this step. Performance can
be straightforwardly increased by optimizing the ligand concentration as well
as by employing enhanced sampling techniques. At the end, automatic
analysis and ranking of ligands is performed, to obtain estimates of binding
affinity in relation to different pockets and environments (e.g., binding to
protein in relation to water and/or bilayer). (3A) After defining the pocket and a
set of candidates, the accuracy of the prediction can be improved in third
step: backmapping to the atomistic models can be performed, providing
high-resolution details of the binding modes. Additionally, free energy
perturbation (FEP) or thermodynamic integration (TI) estimating the energetic

(Continued)
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FIGURE 1 | cost of converting certain chemical groups into others can allow
further optimization of the molecular structure. Here, coarse-graining in the
chemical space is possible, as Martini CG moieties can represent more than
one chemical fragment at the same time. (3B) An alternative or
complementary third step, based on binding affinity and kinetics, is also
considered here. Analysis of trajectories obtained in step 2 can help to identify
the drug (un)binding pathways, which can be used in methods as
Funnel-Metadynamics to provide lowest energy binding modes and
dissociation rates koff (drug residence time) states determining. (4) The
combined analysis of steps II and III can be used for predictions of activity,
which in combination with ADMET predictions leads to the final rankings and
selection of the lead compounds for in vitro assays. Part of the figure is
adapted from Souza et al. (2020).

ALTERNATIVE ROUTE: LIGAND BINDING
PATHWAYS, BINDING AFFINITIES, AND
KINETIC RATES

Drug discovery is historically focused on the elucidation and
optimization of the ligand binding mode and binding affinity.
However, in vivo drug activity is quantitatively correlated to
the drug residence time – i.e., dissociation constant rate koff –
more than binding affinity Kb (Copeland et al., 2006). The idea
of integrating kinetic data in drug screening has been around
since the beginning of 2000s (Limongelli, 2020; Nunes-Alves
et al., 2020). However, ligand binding kinetics is determined
by rare events, crossing ephemeral, high-energy states, elusive
to both experiments, and computations (Copeland, 2016). The
recent proof of concept with Martini 3 (Souza et al., 2020)
opens the possibility of including information on ligand binding
pathways in drug design pipelines (step 3B of Figure 1). The
data coming from unbiased CG MD simulations should be
integrated in a rigorous theoretical framework. One possibility
would be to use Markov state models (Husic and Pande,
2018) based on Martini dynamic docking screening (step 2
of in Figure 1). The method has proven useful in atomistic
ligand binding simulation studies (Buch et al., 2011) but it
shows difficulties in defining the macrostates of the process,
the choice of lag-time, and the sampling necessary to ensure
statistical significance. An attractive strategy is to combine
CG MD with Funnel-Metadynamics (Limongelli et al., 2013;
Raniolo and Limongelli, 2020) that has emerged as a powerful
method to reproduce binding mechanisms in ligand/protein
and ligand/DNA complexes, identify crystallographic binding
modes and predict binding free energies (Troussicot et al., 2015;
Comitani et al., 2016; Moraca et al., 2017; Saleh et al., 2017; Yuan
et al., 2018; D’Annessa et al., 2019). During FM simulations, the
whole drug binding mechanism is reproduced, from the fully
solvated state to the final binding mode, allowing to disclose
important aspects of the binding process such as (i) the presence
of alternative binding modes; (ii) the role of the solvent; and
(iii) the kinetically relevant states (Tiwary et al., 2015; Brotzakis
et al., 2019; Raniolo and Limongelli, 2020). CG-FM allows
quantitative predictions of koff and Kb, ligand binding modes, and
rate determining steps (Figure 1). This advance will represent
a paradigm shift in drug design, as medicinal chemists would
optimize the structure of drug candidates not only based on the

static representation of the ligand binding mode, but also on
the structures of kinetically relevant states. We point out that
the reduction of friction from the missing atomistic degrees of
freedom speeds up CG dynamics and affects kinetic estimates.
However, estimating trends may be useful enough for ligand
screening, while realistic kinetics rates might be recovered from
estimates of the friction reduction (Español and Zúñiga, 2011).

FURTHER CONSIDERATIONS AND
DISCUSSION

We described a new vision of high-throughput drug screening
based on Martini CG models. Although most of the recent
efforts in new drug design approaches focused on artificial
intelligence (AI), the development of new methods covering gaps
in standard approaches is equally important. Machine learning
and other AI approaches have great advantages when tackling
problems with enough experimental data to be used as training
dataset. In situations where this is not the case, physics-based
approaches (such as CG molecular dynamics) can perform better.
In particular, structural databases of transmembrane proteins are
still limited. The same is also true for databases that include
dynamic information, which can be important to elucidate
hidden allosteric pockets, to properly model fit-induced ligand
binding process or to determine ligand association/dissociation
pathways. More than complementary, AI and physics-based
approaches can be combined, with CG MD simulations being
used for the training of AI models or for the further refinement
of AI predictions.

The proposed Martini drug design workflow (Figure 1)
could be applied in full, or specific modules could be adapted
in more traditional virtual screening campaigns. Screening of
drugs based on ligand binding pathways and dissociation rates
is currently out of reach for all-atom descriptions, due to
the prohibitively high computational cost. Flexible proteins in
complex environments are also too costly for all-atom docking
approaches. Martini greatly reduces the computational costs of
MD, while offering reasonable accuracy and structural detail.
Accuracy will be further improved with the implementation of
polarizable models (Yesylevskyy et al., 2010; de Jong et al., 2013;
Michalowsky et al., 2017, 2018; Khan et al., 2020). Additionally,
protonation state changes and pH effects can be included
with Titratable Martini approaches (Grünewald et al., 2020).
Also within reach is the design of epitopes and nucleic acids,
useful for rational vaccine development (Kulp and Schief, 2013;
Hodgson, 2020; Norman et al., 2020). In this context, even
CG MD simulations may be overly expensive, as the approach
demands scanning of protein-protein and protein-nucleic acid
interfaces. Here, combination with standard docking is already
a reality, as recently implemented in HADDOCK (Honorato
et al., 2019; Roel-Touris et al., 2019). Overall, we believe dynamic
docking with CG models has great innovation potential, both in
academic and private sectors, and we hope this Perspective will
contribute to motivate the modeling community to expand the
efforts in this area.
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