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Most research on mechanisms of aging is being conducted in a very limited
number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus
norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm
(Caenorhabditis elegans). The obvious advantages of using these models are access
to resources such as strains with known genetic properties, high-quality genomic
and transcriptomic sequencing data, versatile experimental manipulation capabilities
including well-established genome editing tools, as well as extensive experience in
husbandry. However, this approach may introduce interpretation biases due to the
specific characteristics of the investigated species, which may lead to inappropriate,
or even false, generalization. For example, it is still unclear to what extent knowledge
of aging mechanisms gained in short-lived model organisms is transferable to long-
lived species such as humans. In addition, other specific adaptations favoring a long
and healthy life from the immense evolutionary toolbox may be entirely missed. In
this review, we summarize the specific characteristics of emerging animal models that
have attracted the attention of gerontologists, we provide an overview of the available
data and resources related to these models, and we summarize important insights
gained from them in recent years. The models presented include short-lived ones
such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix
jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber,
Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland
sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and
Planaria.

Keywords: Senescence, Heterocephalus glaber, Myotis, Nothobranchius furzeri, Proteus anguinus, Hydra
oligactis, Greenland shark, resistance to cancer
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INTRODUCTION

Most of our current knowledge on mechanisms of aging
has been acquired using classical model systems such as
mouse (Mus musculus) and rat (Rattus norvegicus domestica)
as well as the common fruit fly (Drosophila melanogaster)
and roundworm (Caenorhabditis elegans). The well-known
advantages are easy handling, short generation times, availability
of normed strains and standardized husbandry, a wealth of pre-
existing information including high-quality and well-annotated
genomic and transcriptomic sequencing data (for references
see Table 1). The commercial availability of knock-in and
knock-out models, cell lines comprising embryonic stem cells,
and accessibility to genetic engineering tools such as CRISPR/Cas
systems opens the possibility to investigate the underlying
biological mechanisms of aging, e.g., by manipulation of related
expression patterns (Conn, 2008; Roy et al., 2018).

The drawback of narrowing the view to only a few model
species is, however, that it impairs our efforts to gain a
broad and general understanding of mechanisms underlying the
fundamental biological processes that determine aging. Flies and
nematodes with their maximum lifespans of up to a few months
(Tacutu et al., 2018) are only to a limited extent representative of
the entire animal kingdom in which aging rates vary 40,000-fold
(Finch, 1994; Figure 1). Also, mice and rats, with a lifespan of up
to 4 years and zebrafishes with up to 5.5 years (Tacutu et al., 2018),
are considered short-lived. However, this does not only apply
in absolute terms, but also with respect to the known positive
correlation between lifespan and body size that explains 63%
of the variation in maximum longevity across mammals, birds,
amphibians and reptiles (de Magalhães et al., 2007; Fushan et al.,
2015; Figure 1). With a life expectancy of only half that expected,
mice and rats represent significant negative outliers (Prothero
and Jürgens, 1987; de Magalhães et al., 2007). The correlation is
highest in mammals and birds, slightly lower in reptiles, and even
lower in amphibians, in which longevity further shows a relevant
positive correlation with low ambient temperature, nocturnal
lifestyle, poison defense, and captivity (Stark and Meiri, 2018).
Data regarding fish and invertebrates are scarce, but suggest
a similar positive allometric relationship of body weight and
lifespan, e.g., among insects (Holm et al., 2016).

It is still unclear to what extent knowledge about molecular
aging mechanisms obtained in the canonical model species
can be extrapolated to positive outliers such as humans who
accordingly live more than 4.5 times as long as expected (Tacutu
et al., 2018). For example, life-prolonging effects developed for
short-lived species do not necessarily unfold the same beneficial
effects in long-lived organisms (Miller and Nadon, 2000). Key
components that have been successfully manipulated on a regular
basis to extend lifespan in short-lived model organisms are, e.g.,
the growth hormone/insulin-like growth factor 1 (GH/IGF1)
system or the mechanistic target of rapamycin (mTOR) pathway
(Laplante and Sabatini, 2012; Junnila et al., 2013). Experimentally
prolonged lifespans in short-lived species (Folch et al., 2018) are
frequently associated with undesirable side-effects, e.g., decreased
fertility or reduced pathogen resistance (Fontana et al., 2010).
Finally, the classical model species themselves are equipped with

possibly interfering, unique adaptations. For example, mice and
rats display specific characteristics such as high fecundity which
is associated with a vast range of physiological consequences
(Hansen et al., 2014). In addition, research on traditional
model organisms often focuses heavily on specific inbred lines,
e.g., the mouse strain C57BL/6, which is used in about 90%
of biomedical work on this species (Selman and Swindell,
2018). More natural populations show lifespans that in most
cases far exceed those conferred by anti-aging interventions
on conspecifics of such inbred strains. In addition, there is
evidence that wild mouse populations, for instance, already have
lower GH/IGF1 signaling - a condition that might thus merely be
restored by many classical anti-aging interventions in inbred lines
(Miller et al., 2002). The generalizability of findings from short-
lived model organisms can and should be validated by studies in
positive outliers of the lifespan to body mass correlation or by
comparing these outliers with less long-lived species.

Based on those findings from short-lived, canonical model
organisms three major categories for hallmarks of aging have
been described (López-Otín et al., 2013). ‘Primary’ hallmarks
are causally related to molecular damage during aging and
comprise genomic instability, telomere attrition, epigenetic
alteration, and loss of proteostasis. The ‘antagonistic’ hallmarks,
deregulated nutrient sensing, mitochondrial dysfunction, and
cellular senescence, have protective and beneficial hormetic
effects at low, but detrimental effects at high levels. ‘Integrative
hallmarks’ comprise stem cell exhaustion and altered intercellular
communication, leading to loss of reserve capacity or resilience.

This review highlights some lesser known, non-canonical and
emerging animal models of aging research by giving a short
overview on their advantages and limitations, with the aim to
facilitate the choice of model species, and to encourage further
comparative approaches (Figures 1, 2). By exploring the greater
picture, the variety of solutions for exceptional lifespans that
originated over the course of evolution can help to identify
relevant mechanisms, to gain a more holistic understanding of
the processes involved, and eventually may contribute to efforts
of extending human healthy aging. This besides underlines the
importance of protecting these treasures of biodiversity.

MAMMALS

Primates
Due to their similar aging physiology, humans’ closest
living relatives, chimpanzees (Pan troglodytes) and bonobos
(P. paniscus) are of highest interest for research aiming at
developing life-extending treatments for humans. However, this
advantage is relativized by substantial financial, ethical (Gagneux
et al., 2005), legal, and species conservation considerations, and
by the impracticability imposed by lifespans of up to 60 years.
New World marmosets and Old World macaques are also subject
to strict ethical regulations (Mitchell et al., 2021), high cost of
housing and long lives, but may embody a suitable compromise.
They represent positive outliers from the positive allometric
relationship between body weight and lifespan (Figure 1).
Total metabolic energy per lifespan, per 1 kg body mass among
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TABLE 1 | Overview of alternative animal models.

Common name Latin name Taxonomy
(Phylum, Class)

Adult body mass Conservation
status [1]

Genome
sequenced (size,

quality, #
protein-coding

genes)

Transcriptome
available

Life span Expected life
span*

Laboratory
husbandry effort

Laboratory mouse Mus musculus Chordata,
mammalia

20–35 g [2] LC 2.6-Gb; 47x;
30,000 [3]

10 tissues [4] 2-3, max. 3.8 y [5] 0.51 [5] Small [6]

Laboratory rat Rattus norvegicus
domestica

Chordata,
mammalia

250-550 g [7] LC 2.75-Gb; 7x;
22,841 [8]

11 tissues [9] 2-3, max. 4 y [10] 0.32 [5] Small [6]

Common fruit fly Drosophila
melanogaster

Arthropoda, insecta 0.8–1.3 mg [11] n.n. 120-Mb;
whole-genome

shotgun; 13,600
[12]

5 tissues; 30 dev.
Stages [e.g ., 13]

60 – 80 d [14] - Small [15]

Roundworm Caenorhabditis
elegans

Nematoda,
chromadorea

1µg [16] n.n. 97-Mb; 6x; 19,099
[17]

4 tissues [18] 14 – 21 d [19] - Small [15]

Capuchin monkey Cebus imitator Chordata,
mammalia

2.7-3.7 kg [20] VU 2.6-Gb; 47x;
20,740 [21]

- 55 y [22] High [23]

Rhesus monkey Macaca mulatta Chordata,
mammalia

6.3-11.4kg [24] LC 2.87-Gb; 5x;
21,256 [25]

11 tissues [26] 40 y [27] High [28]

Common
marmoset

Callithrix jacchus Chordata,
mammalia

400 g [29] LC 2.26-Gb; 6x;
21,168 [30]

4 tissues [31] 22 y [32] Medium to high [33]

Bowhead whale Balaena mysticetus Chordata,
mammalia

50 to > 100 t [34] LC 2.87-2.91 Gb;
150x; 22,672 [35]

3 tissues [36] 211 y [37] Longest-lived
mammal [37]

Impossible

Mechow’s mole-rat Fukomys mechowii Chordata,
mammalia

345 g (M) 252 g (F)
[38]

LC - 5 tissues [10] 20 y [39] 1.94 [39] Medium [40]

Naked mole rat Heterocephalus
glaber

Chordata,
mammalia

33.9 ± 4.9 g [41] LC 2.7-Gb; > 20 x;
22,561 [42]

10 tissues [43] 32 y [44] 5 [45] Medium [46]

Brandt’s bat Myotis brandtii Chordata,
mammalia

7 g [47] LC 2.0 Gb;
whole-genome

shotgun; 22,256
[48]

3 tissues [48] 41 y [49] 9.8 [49] Difficult [50]

Budgerigar Melopsittacus
undulatus

Chordata, aves 40 g [51] LC 1.1 Gb; 160x;
15,470 [52]

1 tissue [53] > 20 [54] >1 [55];
reproductive life

span 5x rats/mice
[51]

Small[56]

Northern fulmar Fulmarus glacialis Chordata, aves 650-1000 g [57] LC 1.14 Gb; 33x;
14306 [52]

- > 50 [51]; Mean
30 y [58]

Ages more slowly
than humans [59]

Medium to high [60]

Japanese quail Coturnix japonica Chordata, aves 100 g [51] NT 1.75 Gb; 172x;
30,810 [61]

7 tissues [62] 6 y, max. 11 y [51] short-lived for birds
[51]

Small [63]

Blanding’s Turtle Emydoidea
blandingii

Chordata, reptilia 750-1400 g [64] EN - - 75 y [65] 37 [65] Medium [66]

Painted Turtle Chrysemys picta Chordata, reptilia 600 g [67] LC 2.59-Gb;18x;
21,796 [68]

1 tissue [69] 40 y [67] 15-25 [67] Medium [66]

Axolotl Ambystoma
mexicanum

Chordata, amphibia 60–110 g [70] CR 32-Gb, 7x; 23,251
[71]

16 tissues [72] 10-15 y; max. 25 y
[70]

> 1 [70] Small [70]

(Continued)
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TABLE 1 | Continued

Common name Latin name Taxonomy
(Phylum, Class)

Adult body mass Conservation
status [1]

Genome
sequenced (size,

quality, #
protein-coding

genes)

Transcriptome
available

Life span Expected life
span*

Laboratory
husbandry effort

Olm Proteus anguinus Chordata, amphibia 15–20 g [73] VU In progress [74] In progress [74] Ø 68.5 y,
max > 100 y [75]

3 [75] Difficult [73]

Mudpuppy Necturus
maculosus

Chordata, amphibia 50-400 g [76] LC - - up to 30 y [77] > 1 [77] Small [78]

Turquoise killifish Nothobranchius
furzeri

Chordata,
osteichthyes

3 g [79] LC 1.24 Gb; 158x;
26,141 [80]

3 tissues [79; 81] 9 (max. 12) weeks
[82]; 3-7 months

[83]

< 1 [66] shortest
captive lifespan for
a vertebrate [84]

Small [85]

Clownfish Amphiprion
ocellaris

Chordata,
osteichthyes

2-24 g [86] n.n. 791 - 794 Mb; 3x;
27 420 [87]

Whole-body, 1
tissue [87,88]

> 20 y [89] >1 [89] Medium [90]

Greenland shark Somniosus
microcephalus

Chordata,
chondrichthyes

140 kg [91] NT - - 392 ± 120 y [92] Longest-lived
vertebrate [92,93]

Impossible

Octopus Octopus vulgaris Mollusca,
Cephalopoda

175-3,500 g [94] LC 2.4-Gb; 76x;
23,509 [95]

5 tissues [96] 1 y [97] Medium [98]

Red sea urchin Strongylocentrotus
franciscanus

Echinodermata,
Echinoidea

497.8 ± 32.6 g [99] n.n. 0.6 Gb; 83x [100] Developmental
[101]

200 y [102] one of the
longest-lived sea
urchin[103]/animal

species [104]

Medium [105]

Green sea urchin Lytechinus
variegatus

Echinodermata,
Echinoidea

19.5 ± 2.0 g [106] n.n. 1.3 Gb; 74x
[100,107]

Developmental
[108]

Average 3 y, max. 4
y [109]

< 1 [95] Medium [105]

Ocean quahog clam Arctica islandica –
Iceland

Mollusca, bivalvia 39-90 g [110] n.n. - 2 tissues [111] Max. 507 y [112] > 1; Longest-lived
non-colonial animal

[112]

Small [113]

Planarian Schmidtea
mediterranea

Platyhelminthes,
rhabditophora

17-57 µg [114] n.n. 782.1 Mb; 60x [115] All cell types [116] Non-aging [115] - Small [117]

Hydra Hydra vulgaris/H.
magnipapillata

Cnidaria, hydrozoa 2 × 10−4 g [118] n.n. 0.9-1.05 Gb; 2x;
20,000 [119]

All tissues [120] Potentially eternal
(5% > 1000y) [121]

- Small [122]

*For mammals: Maximum lifespan divided by expected maximum lifespan (based on the body weight) according to AnAge data and formula (Tacutu et al., 2018); for other species: Different formulas/rationales for
expected lifespan as indicated in the respective references.
[1] IUCN, 2020; [2]Dutta and Sengupta, 2016; [3]e.g., Waterston and Pachter, 2002; [4]e.g., Harr et al., 2016; [5]Sahm et al., 2018b; [6]National Research Council, 2010; [7]Sengupta, 2013; [8]e.g., Gibbs and Pachter,
2004; [9]e.g., Ji et al., 2020; [10]Sahm et al., 2018a; [11]Kammerer and Young, 1983; [12]Adams et al., 2000; [13]e.g., Graveley et al., 2011; Dobson et al., 2018; [14]Bjedov et al., 2010; [15]Smith et al., 2011; [16]Muschiol
et al., 2009; [17]C. elegans Sequencing Consortium, 1998; [18]e.g., Kaletsky et al., 2018; [19]Lapierre and Hansen, 2012; [20]Jack et al., 2014; [21]Orkin et al., 2021; [22]Hakeem et al., 1996; [23]Anderson and Visalberghi,
2010; Schapiro, 2000; [24]Ramsey et al., 2000; [25]Gibbs et al., 2007; [26]Magness et al., 2005; [27]Tigges et al., 1988; Dyke et al., 1986; [28]Schapiro, 2000; [29]Hearn, 1983; [30]Marmoset Genome Sequencing and
Analysis Consortium, 2014; [31]Shimizu et al., 2014; [32]Ross et al., 2017; [33]Layne and Power, 2003; [34]Ma and Gladyshev, 2017; Wêsławski et al., 2000; [35]Keane et al., 2015; [36]Seim et al., 2014; [37]George
et al., 1999; [38]Scharff et al., 2001; [39]Dammann et al., 2011; [40]Kott et al., 2016; [41]Brett, 1991; [42]Kim et al., 2011; Keane et al., 2014; [43]Yu et al., 2011; Bens et al., 2016; Bens et al., 2018; [44]Ruby et al.,
2018; [45]Edrey et al., 2011; [46]Petry, 2003; [47]Munshi-South and Wilkinson, 2010; [48]Seim et al., 2013; Bat 1K, https://bat1k.ucd.ie/, Jebb et al., 2020; [49]Podlutsky et al., 2005; [50]Racey, 1970; [51]Holmes and
Ottinger, 2003; [52]Zhang et al., 2014; [53]Künstner et al., 2010; [54]Kamara et al., 2007; [55]Pamplona et al., 2005; [56]Eatwell and Taylor, 2000; [57]Fisher, 1952; [58]Mallory et al., 2012; [59]de Magalhães, 2006;
[60]McWilliams, 2008; [61]Kawahara-Miki et al., 2013; Morris et al., 2020; [62]Oster et al., 2020; Finseth and Harrison, 2014; Caetano-Anolles et al., 2015; Marasco et al., 2016; [63]Huss et al., 2008; [64]Congdon
et al., 2001; [65]Congdon et al., 2008; [66]Johnson, 2004; [67]Congdon et al., 2003; [68]Shaffer et al., 2013; [69]Manshack et al., 2017; [70]Vladimirova et al., 2003; Farkas and Monaghan, 2015; Vieira et al., 2020;
[71]Nowoshilow et al., 2018; [72]Bryant et al., 2017; [73]Holtze et al., 2017; [74]Mulec, 2020; [75]Voituron et al., 2011; [76]Van Devalk and Coleman, 2010; [77]Bonin et al., 1995; [78]Bancroft, 1980; [79]Fumagalli et al.,
2020; [80]Reichwald et al., 2015; Valenzano et al., 2015; [81]Petzold et al., 2013; [82]Genade et al., 2005; [83]Platzer and Englert, 2016; [84]Di Cicco et al., 2011; [85]Dodzian et al., 2018; [86]Khoo et al., 2018; [87]Tan et al.,
2018; [88]Yang et al., 2019; [89]Sahm et al., 2019; [90]Olivotto et al., 2011; Pryor et al., 2020; [91]Rusyaev and Orlov, 2013; [92]Nielsen et al., 2016; [93]Ste-Marie et al., 2020; [94]Giménez and García, 2002; [95]Zarrella
et al., 2019; [96]Zhang et al., 2012; Castellanos-Martínez et al., 2014; [97]Perales-Raya et al., 2014; [98] Iglesias et al., 2004; [99]Warren and Pearce, 2020; [100]Sergiev et al., 2016; [101]Wong et al., 2019; [102]Ebert and
Southon, 2003; [103]Francis et al., 2006; [104]Bodnar, 2013; [105]McBride et al., 1997; James, 2007; Taylor et al., 2017; [106]Heflin et al., 2012; [107]Davidson et al., 2020; [108]Hogan et al., 2020; [109]Beddingfield and
McClintock, 2000; [110]Stott et al., 2010; [111]Philipp et al., 2012; [112]Butler et al., 2013; [113]Lutz et al., 1981; [114]Oviedo et al., 2003; [115]Grohme et al., 2018; [116]Fincher et al., 2018; [117]Merryman et al., 2018;
[118]Fenchel, 1974; [119]Chapman et al., 2010; [120]Wenger and Galliot, 2013b; [121]Schaible et al., 2014; Bellantuono et al., 2015; Klimovich et al., 2018; [122]Lenhoff and Brown, 1970.
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FIGURE 1 | Overview of the body mass to life expectancy relation of canonical and alternative models of aging research. In mammals and many other species,
lifespan generally correlates with body weight; therefore, larger species are expected to live longer (compare with Table 1). Note that the canonical models of aging
research are all short-lived in relation to body mass. Selected remarkable traits of some of the mentioned species are highlighted.

terrestrial mammals in captivity was found to be highest in
monkeys (Atanasov, 2006). The white-faced capuchin monkey
(Cebus capucinus) has a maximal life expectancy of 55 years
(Hakeem et al., 1996), the rhesus monkey (Macaca mulatta) of
40 years (Dyke et al., 1986; Tigges et al., 1988), and the common
marmoset (Callithrix jacchus) of 22 years (Ross et al., 2017).
Especially macaques and callitriche share many aging-related
diseases with humans, affecting the skeletal, reproductive (Black
and Lane, 2002; Colman et al., 2005) and vascular system
(Clarkson and Mehaffey, 2009), sensory (Bito et al., 1982; Torre
et al., 2004), and cognitive function (Voytko et al., 2009). They
also develop diseases such as Alzheimer-like cerebral proteopathy
(Heuer et al., 2012; Arnsten et al., 2019), cancer, amyloidosis,
diabetes, and chronic renal disease (Tardif et al., 2011), as well
as cellular aging (Shimizu et al., 2003). Aging interventions have
shown increased longevity due to caloric restriction (Colman
et al., 2014), and improved cognitive function due to estrogen
therapy in postmenopausal monkeys (Voytko et al., 2009). The
effect of rapamycin on non-human primates, a drug showing
life-prolonging effects in many model organisms, show basic
metabolic effects of long-term treatment on marmosets similar
to that seen in short-lived species, with few adverse side effects
(Ross et al., 2015; Colman, 2018).

State-of-the-art molecular techniques implemented for
monkeys comprise embryonic stem cells of rhesus macaque and
common marmoset (Thomson and Marshall, 1997), cloning
(Chan et al., 2000) and genetic modification (Wolfgang et al.,
2001; Sasaki et al., 2009). The genomes of both species were
sequenced (Gibbs et al., 2007; Marmoset Genome Sequencing
and Analysis Consortium, 2014) and induced pluripotent stem

cells from somatic cells, capable of being differentiated into any
cell type established (Liu et al., 2008; Wu et al., 2010). By genetic
manipulation and incorporation into embryos, these may serve
to generate genetically modified animals.

The disadvantages of using monkeys for aging research may
be successfully addressed in the future. The risk associated with
monkeys carrying zoonotic diseases, such as hepatitis A, herpes
B virus, and tuberculosis (Rothschild, 2015) may be avoided
by establishing specific pathogen free populations (Ross et al.,
2017). Difficulties arising from the long developmental period
and lifespan to perform studies of anti-aging interventions in
these models may be solved by the application of modern precise
methods of biological age measurements such as the Horvath
epigenetic clock (Horvath et al., 2012) which allows for the
detection of an intervention effect on a much shorter timescale.
And finally, the ethical and conservation-related concerns of
research on primates may be altogether circumvented by using
the manifold and newly arising possibilities of in vitro and
stem cell research.

Fukomys Mole-Rats
African mole-rats (family Bathyergidae) are subterranean rodents
that have attracted the attention of gerontologists for more than
20 years due to their generally high longevity. This applies
especially to the eusocial Fukomys and Heterocephalus genera.
These genera typically live in extended family groups in which
reproduction is monopolized by a few individuals (usually the
founder pair). The other family members usually forego their
own reproduction within the confines of their natal colonies
(Jarvis and Bennett, 1993; Burda et al., 2000). Compared to their
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FIGURE 2 | Classical and alternative model species of aging research. In order from left to right, top to bottom: I Human (Homo sapiens); II Laboratory mouse
(Mus musculus); III laboratory rat (Rattus norvegicus domestica); IV common fruit fly (Drosophila melanogaster); V roundworm (Caenorhabditis elegans); VI Rhesus
monkey (Macaca mulatta); VII white-faced capuchin monkey (Cebus imitator); VIII bowhead whale (Balaena mysticetus); IX Mechow’s mole-rat (Fukomys mechowii);
X naked mole-rat (Heterocephalus glaber); XI Brandt’s bat (Myotis brandtii); XII budgerigar (Melopsittacus undulatus); XIII northern fulmar (Fulmarus glacialis); XIV
Japanese quail (Coturnix japonica); XV Blanding’s turtle (Emydoidea blandingii); XVI painted turtle (Chrysemys picta); XVII axolotl (Ambystoma mexicanum); XVIII olm
(Proteus anguinus); XIX turquoise killifish (Nothobranchius furzeri); XX clownfish (Amphiprion ocellaris); XXI Greenland shark (Somniosus microcephalus); XXII octopus
(Octopus vulgaris); XXIII lobster (Homarus americanus); XXIV red sea urchin (Strongylocentrotus franciscanus); XXV green sea urchin (Lytechinus variegatus); XXVI
ocean quahog clam (Arctica islandica); XXVII Planarian (Schmidtea mediterranea); XVIII hydra (Hydra vulgaris). Attributions for used images: V Janine Kirstein; VIII A
bowhead whale spyhops off the coast of western Sea of Okhotsk by Olga Shpak licensed under CC BY-SA 3.0; IX Philip Dammann; X, XIII, XVII, XVIII Susanne
Holtze; XI Marcus Fritze; XIV; Male Japanese Quail by Ingrid Taylor licensed under CC BY 2.0; IXX Nadine Grimm on behalf of the FLI, Jena; XXI Close up image of a
greenland shark taken at the floe edge of the Admiralty Inlet, Nunavut. by Hemming 1952 licensed under CC BY-SA 4.0; XXVI Arctica islandica (Ocean Quahog) by
S. Rae licensed under CC BY 2.0; XXVII Anne Schroll on behalf of the FLI, Jena; XVIII Hydra oligactis by Marta Boroń licensed under CC BY 2.0; all other images
were taken from Pixabay under the Simplified Pixabay License, links can be provided upon request. This figure was created by Susanne Holtze, IZW Berlin and is
licensed under CC BY-SA 4.0.
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body size which lies between that of mice and rats, Fukomys
species are very long-lived: maximum lifespans of > 20 years have
been reported for the Ansell’s mole-rat (F. anselli; Dammann and
Burda, 2006) and the giant mole-rat F. mechowii (Begall et al.,
2021), respectively. Possible key factors are enhanced proteasome
activity and that Fukomys mole-rats exhibit a comparatively high
stability of gene expression during aging (Sahm et al., 2018a,
2021). Fukomys species are of particular interest to gerontologists
because breeders of both sexes live on average approximately
twice as long as their non-reproductive conspecifics (Dammann
and Burda, 2006; Schmidt et al., 2013). Interestingly, it
could be excluded that differences in food intake or behavior
cause the different lifespans (Dammann et al., 2011). This
feature, probably unique among mammals, offers researchers
the opportunity to study highly divergent survival patterns
within one genotype, without the inevitable shortcomings of
inter-species comparisons. Furthermore, the higher longevity of
the breeders is associated with several properties that are the
opposite of what is often predicted based on findings from
short-lived model species. For example, breeders, contrary to
the predictions of the oxidative stress theory of aging, have
more advanced glycation end products than age-matched non-
breeders (Harman, 2001; Dammann et al., 2012). In addition,
anabolic pathways such as insulin signaling and protein synthesis
are up-regulated in breeders, which typically shortens the life
of short-lived model organisms (Pan and Finkel, 2017; Sahm
et al., 2021). Genome-wide comparisons of several long-lived,
phylogenetically distinct subterranean rodents including Spalax
galili, Heterocephalus glaber, and Fukomys damarensis have
associated lifespan extensions with sequence changes in genes
related to mitonuclear balance, protein synthesis, autophagy,
inflammation as well as resistance to hypoxia, cytotoxins and
cancer (Bennett and Faulkes, 2000; Begall et al., 2007; Davies et al.,
2015; Sahm et al., 2018b).

Maintaining and breeding Fukomys species in captivity is
relatively easy, yet time consuming due to generally long
generation times and small litters. In fact, gestation and lactation
times of ca. 3 month each, and mean litter sizes of 2-3 are typical,
while full maturity is usually not reached before the second year
of life. Maybe due to these difficulties, only a handful of academic
laboratories currently breed Fukomys species. As ressources,
for comparative studies on aging transcriptome assemblies are
available for multiple species including F. anselli, F. mechowii
and F. damarensis (Fang X. et al., 2014; Sahm et al., 2018b).
A scaffold-level genome assembly is available for F. damarensis
(Fang R. et al., 2014).

Naked Mole-Rats (Heterocephalus
glaber)
Naked mole-rats, despite their small body mass (∼ 32 g; Brett,
1991) are the longest-lived rodents. Their maximal lifespan,
exceeding 30 years (Buffenstein, 2005; Grimes et al., 2012; Ruby
et al., 2018), is ten times longer than that of mice and five times
longer than expected by body mass (Prothero and Jürgens, 1987).
Only humans are similarly strong upward outliers among land-
living mammals (Austad and Fischer, 1991). Phenotypical aging

appears virtually absent for 80% of their lifespan (Edrey et al.,
2011) including sarcopenia (Stoll et al., 2016), neurodegeneration
(Edrey et al., 2013), disease, and cancer (Buffenstein, 2008;
Delaney et al., 2013). Based on sustained fecundity and an
apparently age-independent mortality rate, some authors even
suggest that the naked mole-rat is the first known example of a
non-aging mammal (Buffenstein, 2008; Ruby et al., 2018). Others
consider this statement premature due to limited data of older
cohorts (Dammann et al., 2019). At the molecular/physiological
level, the naked mole-rat shows typical age-related decline, e.g.,
in activity levels, skin structure (Buffenstein and Jarvis, 2002),
liver detoxification pathways (Heinze et al., 2018), lesion and
lipofuscin accumulation in various organs (Edrey et al., 2011).

Various, partly overlapping mechanisms were suggested to
contribute to longevity and cancer resistance (Shepard and Kissil,
2020), e.g., over-expression of alpha-2 macroglobulin (Thieme
et al., 2015), efficient DNA damage repair (MacRae et al.,
2015), apoptosis and autophagy of damaged cells (Zhao et al.,
2014, 2016; Evdokimov et al., 2018), cytoprotective pathways
(Lewis et al., 2015) and proteasome activity (Rodriguez et al.,
2014). This list continues with translational fidelity (Azpurua
et al., 2013), telomere and epigenome maintenance (Tan et al.,
2017; Shekhidem et al., 2019), post-translational deimination
(Pamenter et al., 2019), well-maintained splicing regulation (Lee
et al., 2020), long non-coding RNAs (Jiang et al., 2016), and
a strong innate immune response due to a highly developed
myeloid compartment (Hilton et al., 2019; Shebzukhov et al.,
2019). The surprisingly low incidence of cancer (Shepard and
Kissil, 2020) was associated in particular with early contact
inhibition (Seluanov et al., 2009). Accordingly, naked mole-rat
cell division would arrest at a comparatively low cellular density
mediated by ultra-high molecular mass hyaluronan (Tian et al.,
2013, 2015). However, this explanation has been questioned due
to non-replicability of central results (Braude et al., 2020; Hadi
et al., 2020; del Marmol et al., 2021).

Naked mole-rats show remarkable hypoxia- and hypercapnia-
resistance (Larson and Park, 2009) by switching their metabolism
to fructose-driven glycolysis (Park et al., 2017) and induction
of hypoxia inducible factor 1α and vascular endothelial
growth factor A (Xiao et al., 2017). Hypoxia may reduce
metabolic rate (Zhang and Lu, 2012) and cause hormetic effects
(López-Otín et al., 2013).

Naked mole-rats challenge the free radical theory of aging,
predicting reactive oxygen species (ROS) to result in cumulative,
irreversible damage causing cellular senescence (Miwa et al.,
2008). Despite low body temperature and resting metabolic rate,
naked mole-rat mitochondrial oxygen consumption and ROS
release are unexpectedly high (Munro et al., 2019). Accordingly,
lipid (Andziak and Buffenstein, 2006; Edrey et al., 2014), protein,
and DNA oxidation (Andziak et al., 2006) exceed levels of mice,
but lack an age-related increase (Andziak and Buffenstein, 2006).
Despite low glutathione levels, ROS damage-coping mechanisms
such as superoxide dismutase, catalase (Andziak et al., 2005),
α-tocopherol activity (Viltard et al., 2019), mitochondrial protein
expression (Kim et al., 2011), function, and ROS production are
maintained over their lifespan (Holtze et al., 2016; Skulachev
et al., 2017; Vyssokikh et al., 2020). Isolated naked mole-rat

Frontiers in Molecular Biosciences | www.frontiersin.org 7 May 2021 | Volume 8 | Article 660959

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-660959 May 11, 2021 Time: 20:29 # 8

Holtze et al. Alternative Aging Models

mitochondria detoxify more ROS than mouse mitochondria
via their antioxidative systems (Munro et al., 2019). Also, cell
membranes (Hulbert et al., 2006) and arteries are ROS-insensitive
(Labinskyy et al., 2006). Genes associated with oxidoreduction,
detoxification and mitochondria are under positive selection
(Sahm et al., 2018b), and differentially expressed (Yu et al., 2011;
Stoll et al., 2016; Heinze et al., 2018).

Colonies of up to 300 individuals of the eusocial naked mole-
rats usually contain one breeding pair (Brett, 1991) whose life
expectancy exceeds that of non-breeders (Hochberg et al., 2016;
Ruby et al., 2018), as in Fukomys spp., offering the unique
opportunity to compare intraspecific, e.g., transcriptomic (Bens
et al., 2018) differences in aging mechanisms.

The long lifespan, complex social system and lower
reproductive rate render research on naked mole-rats more
challenging compared to the similarly sized mice. The sacrifice
or loss of a naked mole-rat queen may lead to long periods of
social instability without reproduction or even the death of many
individuals during fighting for successorship.

Bats (Chiroptera)
Bats can live at least 3 times longer than similarly sized non-
flying eutherians (Brunet-Rossinni and Austad, 2004; Wilkinson
and Adams, 2019), and Brandt’s bat (Myotis brandtii) can
live > 41 years, which is up to 9.8 times longer (Podlutsky
et al., 2005). Bats reconcile longevity with a high metabolic rate
that results in a lifespan-energy expenditure that exceeds that
of other mammals by as much as 2 times (Austad and Fischer,
1991). Vespertilionid bats show the greatest longevity-to-body-
mass variation among mammals (Munshi-South and Wilkinson,
2010).

Bats’ efficient antiviral immune response (Huang et al., 2019)
and tight inflammation control (Kacprzyk et al., 2017) may be
primarily adaptations to flight-related rapid body temperature-
surges and molecular damage as well as adaptations to crowding
(O’Shea et al., 2014). Bats limit self-damaging inflammatory
responses by altered interferon regulation (IRF3; Banerjee et al.,
2020b), reduced TNF-α- expression (Banerjee et al., 2017), and
dampened cellular damage, infection (Ahn et al., 2019) and
DNA (Xie et al., 2018) sensing pathways, thereby preventing
‘cytokine storms’ and limiting sterile inflammation, linked to
various age-related pathologies (‘inflammaging’; Franceschi et al.,
2018). This enhances coexistence with viruses, rendering bats
viral reservoir hosts (Banerjee et al., 2020a). Chiropteran cellular
homeostatic adaptations may support antiviral mechanisms
(O’Shea et al., 2014; Banerjee et al., 2020a). Elevated basal
levels of autophagy in bats increase both with age (Huang
et al., 2019) and in response to infection (Pteropus alecto; Laing
et al., 2019). Notwithstanding high protein homeostasis, bat
proteasome activity is surprisingly low (Salmon et al., 2009),
probably compensated for by higher heat shock protein activity
(Chionh et al., 2019) and macroautophagy (Pride et al., 2015).
Calcium-dependent neutral proteases (“calpains”) implicated in
degenerative processes show low activity in bats, consistent with
decreased tissue degradation (Baudry et al., 1986).

Telomere length of long-lived Myotis species is telomerase-
independent. Similar to the pattern found in fish (Debes et al.,

2016), telomere length correlates with climatic conditions rather
than with age or heritability in Myotis myotis (Foley et al.,
2020; Seeker, 2020). Telomere-associated genes are under positive
selection (Morgan et al., 2013) and differentially expressed (Foley
et al., 2018). Bats maintain a stable microbiome (Hughes et al.,
2018), and fruit eating species display low thyroxin levels (Ifuta
et al., 1988). Growth hormone-related peculiarities (Seim et al.,
2013) fail to explain longevity in bats (Davies et al., 2014).

In accordance with the oxidative stress theory of aging, bat
mitochondrial ROS production is low given their high metabolic
rates (M. lucifugus; Brunet-Rossinni, 2004). Bat mitochondrial
maintenance is enhanced (Jebb et al., 2018; Vyssokikh et al.,
2020) and mitochondrial DNA is under positive selection
pressure (Nabholz et al., 2008). Bat cells are resistant to ROS-
induced apoptosis (Ungvari et al., 2008), hydrogen peroxide
(Harper et al., 2007) and to protein oxidation (Salmon et al.,
2009). Antioxidant capacity is elevated and DNA-damage is
reduced (Conde-Pérezprina et al., 2012) in long-lived (Desmodus
rotundus) compared to short-lived species (Myotis velifer) and in
torpid compared to active individuals (Sturnia lilium; Wilhelm
Filho et al., 2007). Consistent with low cancer incidence (Kitsoulis
et al., 2020), DNA repair and signaling pathways are maintained
throughout the lifespan (Huang et al., 2019) and two long-lived
species (M. myotis, M. lucifugus) possess additional copies of
the tumor suppressor FBX031 (Seim et al., 2013). The genomes
and transcriptomes published by Seim et al. together with
further finished and ongoing genome sequencing projects of the
approximately 1300 living bat species provide a solid basis for
future comparative studies (Jebb et al., 2020).

Lack of established husbandry and captive breeding protocols
for many species, as well as the long lifespans remain open
challenges. The latter may be addressed e.g., by estimating
chronological age of individual bats by using epigenetic
signatures (Wilkinson et al., 2021).

Whales (Cetacea)
Whales are among the longest-lived mammals, with life
expectancy comparable to, or exceeding, that of humans, as it
is the case of the bowhead whale (Balaena mysticetus), which
typically populates the cold seas of Greenland and represents
the longest-lived extant mammal, being able to survive beyond
200 years of age (George et al., 1999; George and Bockstoce,
2008).

While presenting some age-associated physiological aspects
common to other mammals in the senescent phase, such as the
age-dependent reduction of fertility observed in humans (Tacutu
et al., 2018), whales show an exceptionally low incidence of
disease, even at old age. The natural resistance of bowhead whale
cells to neoplastic degeneration in particular has been reported
(Caulin and Maley, 2011; Magalhães, 2013) and is a classic
example of solving Peto’s paradox, the observation that the
incidence of cancer does not appear to correlate with the number
of cells in an organism (Peto et al., 1975).
However, the molecular mechanisms underlying these
characteristics of longevity and resistance to age-related diseases
(cancer, neurodegeneration, immunosenescence, metabolic
dysfunctions) have not been clarified yet.
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An interesting phenomenon observed in cetacean genomes
is the duplication of genes related to cell cycle control and
cancer protection, a phenomenon observed also in the elephant
genome that contains multiple copies of the prototypical tumor
suppressor TP53 (Sulak et al., 2016) and of further tumor
suppressors (Vazquez and Lynch, 2021). Numerous duplicated
genes have been described in the bowhead whale genome
and some of these are of particular interest in the context
of cell damage and survival: for example, the Proliferation
Cell Nuclear Antigen plays a fundamental role in repairing
DNA damage and is duplicated in the whale genome; both
copies are expressed in different tissues and an amino acid
substitution is present that alters its ability to interact with other
effectors, and therefore its cellular function (Keane et al., 2015).
Similarly, the coding sequence of some genes of the mTOR
pathway such as LAMTOR1, directly involved in the regulation
of various metabolic processes associated with cancer and aging,
are modified (Keane et al., 2015). A subsequent study revealed
duplication of cancer-related/DNA repair genes, a recurring
theme in cetacean evolution. One notable example is UVRAG.
This gene plays a dual role in autophagy and DNA repair and is
present in multiple copies in the genomes of the sperm whale,
North Atlantic right whale, and bowhead whale (Tollis et al.,
2019). Consistently, quantitative transcriptome analysis revealed
up-regulation of genes for DNA repair and autophagy in the gray
whale (Toren et al., 2020). Finally, analysis of coding sequence
variation independently identified positive selection on DNA
repair/cancer suppression genes (Tollis et al., 2019).

In summary, the insights gained from genomic cetacean
studies suggest that molecular adaptations in DNA repair genes
played a key role in the evolution of cancer resistance and
longevity in these species. Crucial resource requirements for these
and presumably future findings were the initial sequencing of the
B. mysticetus genome (Seim et al., 2014; Keane et al., 2015) which
was followed by sequencing of the minke whale (Balaenoptera
acutorostrata; Yim et al., 2014; Park et al., 2015; Malde et al.,
2017), the gray whale (Eschrichtius robustus; Moskalev et al.,
2017; Toren et al., 2020), the humpback whale (Megaptera
novaeangliae; Tollis et al., 2019) and the largest mammal, the
blue whale (Balaenoptera musculus; Árnason et al., 2018). As with
other animals that cannot be kept for obvious reasons, a key
challenge for the future is to identify experimental approaches
that can be used to verify hypotheses derived from such
comparative studies with regard to transferability to humans.

BIRDS

Birds (Aves)
Similar to bats, also birds have an increased life expectancy, e.g.,
more than 50 years in the northern fulmar (Fulmarus glacialis),
despite higher body temperatures, glucose levels and metabolic
rates – as compared to size-matched mammalian species (Holmes
and Ottinger, 2003; Harrison and Lightfoot, 2006; Furness and
Speakman, 2008; Munshi-South and Wilkinson, 2010). This may
be partially explained by their lower reactive oxygen species
generation per unit O2 consumption and lower oxidative damage

levels (Lambert et al., 2007), which has been attributed to reduced
activity of mitochondrial complex I (Barja et al., 1994) and
their uricotelic metabolism, as elevated levels of blood urates
serve as natural antioxidants (Cooper-Mullin and McWilliams,
2016). Among birds, parrots (order Psittaciformes) are especially
longlived. A comparative genomic analysis of an endangered
parrot species, the blue-fronted Amazon (Amazona aestiva) with
30 other bird species has identified longevity-associated genes
under positive selection. These are involved in various cellular
functions, including telomerase activity, DNA damage repair, cell
proliferation control, cancer, immunity as well as anti-oxidative
mechanisms (Wirthlin et al., 2018). Cells of another long-lived
psittacine, the budgerigar (Melopsittacus undulatus) are more
resistant to oxidative damage compared to short-lived Japanese
quail (Coturnix japonica) (Ogburn et al., 2001) and compared
to mice (Pamplona et al., 2005). Both budgerigar and Japanese
quail are easy to keep and breed, and therefore are highly suitable
laboratory species.

Although birds and mammals show similar age-related decline
and pathology (Holmes and Ottinger, 2003), their reproductive
senescence seems to differ. For example, in the short-lived
whinchat, virtually no sign of reproductive senescence could be
identified until the age of 4 years, although survival started to
decline at an age of only 1 year (Fay et al., 2020). Furthermore,
in contrast to mammals, female birds display similar or partially
even shorter life expectancies than males (Orell and Belda,
2002; Fay et al., 2020). In a comprehensive study including 339
bird species, it was demonstrated that brain size, independently
from body mass, correlates with longevity (Jiménez-Ortega
et al., 2020). This supported the “cognitive buffer” hypothesis
predicting reduced levels of extrinsic mortality due to improved
behavioral flexibility by larger brains (Sol, 2009).

Birds as oviparous vertebrates are widely used for the study
of hormone functions on growth and development of the
embryo (Groothuis and von Engelhardt, 2005), because the egg
represents a closed system almost independent from maternal
control once laid. The effects of the hormonal axes on growth,
development, and aging can be tested by direct injection,
e.g., of thyroid hormones into eggs (Sarraude et al., 2020).
The latter increased telomere lengths in collared flycatchers
and it was hypothesized that prenatal hormone exposure by
this mechanism might set the aging clock in birds (Stier
et al., 2020). An age-related decline of telomerase activity
was observed in short- but not in long-lived zebra-finches
(Haussmann et al., 2004), and in different bird species a
negative correlation between telomere shortening and lifespan
was found (Sudyka et al., 2016). The annual rate of telomeric
repeat shortening appears to be slower in long-lived birds
compared to short-lived bird species (Tricola et al., 2018). The
delayed senescence of many bird species represents a tremendous
potential that can be exploited by comparative, descriptive or
conclusive studies.

Despite the many similarities of birds with mammals in terms
of cardiovascular anatomy, endothermy, high basal metabolism,
and cognitive abilities, these traits have evolved convergently in
both phylogenetically distant groups. Therefore, it is plausible
to assume avian physiological mechanisms to substantially differ
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from those of mammals - which nevertheless does not necessarily
render them less valuable.

FISH

Annual Killifishes (e.g., Nothobranchius)
Annual killifishes are adapted to the seasonal alternation of
wet and rainy season and inhabit ephemeral ponds that last
a few weeks or months (Myers, 1952; Vrtílek et al., 2018a).
Duration of the ponds sets a pressure for rapid maturation and
an upper limit to the post-hatch lifespan of these fishes. As a
result, annual killifishes become sexually mature within a couple
of weeks (Vrtílek et al., 2018b) and show rapid age-dependent
physiological decline (Cellerino et al., 2016). The contribution of
annual killifishes to aging research is two-fold: as a model taxon
for comparative approaches based on high-throughput molecular
analysis, and as an experimental model to investigate the effects
of genetic and non-genetic interventions on lifespan and aging-
associated phenotypes (Cellerino et al., 2016; Platzer and Englert,
2016; Poeschla and Valenzano, 2020).

African killifishes of the genus Nothobranchius represent a
model for parallel evolution of lifespan. The distribution range of
the genus overlaps with clines in aridity, and species originating
from more humid habitats have a longer lifespan and slower
accumulation of age-dependent cellular damage in captivity
as compared to species originating from more arid habitats.
This pattern is observed in multiple lineages (Tozzini et al.,
2013) and was exploited to investigate the genetic architecture
of natural lifespan variation (Sahm et al., 2017; Willemsen
et al., 2020). Studies of molecular evolution clearly pointed to
a prominent positive selection on genes coding for proteins
involved in the transcription and translation of mitochondrially
encoded members of the respiratory chain as well as proteins
involved in the assembly of the respiratory complexes, including
nuclearly encoded components of this complex (Sahm et al.,
2017). The process that coordinates expression of nuclearly
and mitochondrially encoded components of the respiratory
chain is known as mitonuclear balance and it has been
demonstrated that experimental interference with mitonuclear
balance induces life-extension in C. elegans (Houtkooper et al.,
2013). Notably, the treatment of annual killifish with low dosage
of a complex I inhibitor also induces life-extension (Baumgart
et al., 2016), demonstrating the complementarity of experimental
and comparative approaches in killifishes.

Comparative approaches have also demonstrated that
evolution of short lifespan is associated with a relaxation of
selection on a large number of genes (Cui et al., 2020).

N. furzeri can be cultured in the laboratory with relative ease,
in large numbers (Polačik et al., 2016) and with short generation
times, as it is the vertebrate with the shortest documented
captive lifespan (Di Cicco et al., 2011). Thus, it fills the gap
between C. elegans and D. melanogaster, which are evolutionarily
extremely distant from humans, on the one hand, and mice and
rats, whose lifespan and housing requirements make life-long
investigations unaffordable for many laboratories, on the other.
The development of techniques for over-expression and gene

knock-outs (Harel et al., 2016) enabled the identification and
experimental validation of novel genetic mechanisms of aging. In
particular, it was experimentally shown that activity of complex
I of the respiratory chain can modulate lifespan (Baumgart et al.,
2016), that the microRNA family miR-29 controls neuronal iron
homeostasis (Ripa et al., 2017) and cardiac health (Heid et al.,
2017) during aging and that decay of proteasome activity is
an early event during aging causing loss of stoichiometry in
protein complexes (Kelmer Sacramento et al., 2020). Finally,
comparative studies of regeneration in killifish and zebrafish
revealed evolutionarily conserved enhancers that represent an
early response to amputation and are necessary for regeneration
to occur (Wang et al., 2020).

In summary, annual killifishes and particularly N. furzeri,
are the most diffused among the alternative models due to
relative ease of housing and breeding. This has contributed to
the availability of a number of key resources, such as high-
quality genomes and transcriptomes (Reichwald et al., 2015;
Valenzano et al., 2015), homo- and heterozygous laboratory
strains (Valenzano et al., 2009), genetic manipulation tools (Harel
et al., 2016) as well as an increasing knowledge about N. furzeri’s
ecology and behavior (Thoré et al., 2020). An important challenge
for the future is improved standardization, e.g., through the
development of husbandry protocols, or time- and cost-efficient
test frameworks to determine the effects of chemical compounds
on lifespan (Thoré et al., 2020, 2021).

Long-Lived Fishes
Clownfishes (genus Amphiprion) are small (8-15 cm) marine
fishes that have adapted to a symbiotic interaction with stinging
sea anemones that protect them from predation (Pryor et al.,
2020). Clownfishes form bonds with immobile anemones and
it is possible to observe the same couple in consecutive seasons
(Planes et al., 2009). It is therefore possible to estimate annual
mortality which has been shown to be as low as 10% for
males (Buston and García, 2007). Estimates of maximum natural
lifespan for A. percula, based on recapture probability, indicated a
lower bound of 22 years (Buston and García, 2007). This estimate
is corroborated by observations of living aquarium specimens
of A. ocellaris and A. melanopus, that are over 20 years old
(Sahm et al., 2019).

Transcriptome sequencing of clownfishes revealed positive
selection in genes related to redox, immunity and mitonuclear
balance (Sahm et al., 2019). Further, a comparison with positive
selection in naked mole-rats and killifish revealed convergent
selection of the mitonuclear balance pathway indicating that
selection on the same pathway can modulate lifespan in either
direction (Sahm et al., 2019). The genomes of twelve different
clownfish species are available and extensive transcriptome
information is available for the species A. ocellaris (Pryor et al.,
2020). Clownfishes are among the very few marine fishes that can
be easily cultured in captivity and are currently used as a model
to experimentally induce sex reversal (Casas et al., 2016) and
pigmentation phenotypes (Salis et al., 2019). Clownfishes have the
potential to become the first long-living experimental fish model.

Rockfishes are widely distributed in the Pacific Ocean (Love
et al., 2002) and represent an example of adaptive radiation with
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over 100 species within the genus Sebastes (Hyde and Vetter,
2007). The biology and especially life-history of these fishes
is known in detail because they are targeted by commercial
fisheries and are therefore surveyed by the fishery authorities
of United States and Canada. These fishes inhabit a variety of
bathymetrics, from intertidal to around 1000 m (Love et al.,
2002). A remarkable characteristic of this clade is the large
variation in lifespan that ranges from around ten years to more
than a century. Interestingly, there is a positive correlation
between depth and longevity (Cailliet et al., 2001) and the
longest-living species do not appear to undergo reproductive
senescence, with fecundity increasing monotonically with age,
that would qualify this clade as a model of negligible senescence.
Due to the large number of species and large variation in life-
history traits, rockfishes hold a great potential for comparative
studies and extensive genomic investigations are ongoing
(Xu et al., 2019).

The Greenland shark (Somniosus microcephalus) inhabits the
cold environment of the North Atlantic and Arctic oceans.
Paradoxically, this large (up to 5m) shark shows extremely
slow annual growth. With a maximum reported lifespan of
392 ± 120 years, determined by radiocarbon measurements, it
has been described as the longest-lived vertebrate species known
(Nielsen et al., 2016). Remarkably, sexual maturity seems to be
reached only after an age of over 100 years.

Although main aspects of Greenland shark biology and life-
history are well described (MacNeil et al., 2012), only one
molecular study has been conducted to date which tested a
possible correlation between exceptional longevity of this species
and its specific resistance to oxidative damage (Costantini et al.,
2017). However, the assessment of glutathione peroxidase activity
and protein carbonyls, as compared to other vertebrate species,
did not lend any support for such a relationship.

To exploit the great potential of the Greenland shark for
comparative studies on aging, the hopefully early publication
of some key resources is required: these include not only the
publication of the genome and transcriptome sequences, but also
an expanded knowledge of its specific physiology.

REPTILES

Turtles (Cheloniidae)
Cheloniidae is a long-lived and successful reptilian family.
Perhaps for the same reason, individual turtles protected by a
hard carapace and plastron, tend to be long-lived as well. The
giant tortoises often live past 100 years and many sea turtle
species approach that mark. The genomes of giant Galapagos
and Aldabra tortoises have unique genes for DNA repair,
inflammatory mediators, telomerase, and nutrient sensing cell-
cell inhibition (Quesada et al., 2019), and Leatherback turtles
have highly active telomerase (Plot et al., 2012). However, none
of these giants would be good candidates for a laboratory
model organism because of the challenges of maintaining captive
breeding colonies. Fortunately, Blanding’s turtle (Emydoidea
blandingii) and Painted turtle (Chrysemys picta) are more modest
sized, therefore more suitable for laboratory study and can

live more than 60 years. Even more importantly, long-term
field studies exist (since 1953) of Blanding’s Turtle and Painted
Turtle (Congdon et al., 2001, 2003) which are especially useful
in examining the demographic landscape under which their
cellular and molecular adaptations have evolved. For example,
long term monitoring of wild Painted Turtle populations has
shown that earlier claims that they do not show any signs of
senescence (via fertility decline or mortality increase with age)
are untrue (Warner et al., 2016). Nonetheless, Cheloniidae do
have a number of adaptations to extended hypoxia which may
have led to their resistance to the oxidative damage associated
with age. Many turtle species spend considerable time in hypoxia,
either diving or hibernating in mud. During cycles of diving
and resurfacing, mitochondria are forced to alternate between
anaerobic and aerobic modes, resulting in production of more
reactive oxygen species (Lutz and Prentice, 2002). Turtles deal
with this challenge either by upregulating enzymes that clean
up these reactive oxygen species, such as glutathione reductase,
glutathione synthetase, and glutathione transferase (Willmore
and Storey, 1997b), superoxide dismutase (Willmore and Storey,
1997a), necrosis factor kappa B (Krivoruchko and Storey,
2010) or by repairing the damage to lipids and nucleic acids
(Willmore and Storey, 1997b). Turtles also have mechanisms
for protecting ion channels from reactive oxygen species (Lutz
et al., 2003) which may have particular application to age related
neurodegenerative diseases in humans. While the genome of
Blanding’s turtle has not yet been published, the painted turtle
genome is available (Shaffer et al., 2013).

AMPHIBIANS

Long-Lived Amphibians
As with endothermic species, the lifespan of amphibians as
ectothermic organisms correlates clearly with body mass and
negatively correlates even more strongly than in endothermic
species with body temperature (Keil et al., 2015; Stark et al.,
2018). As an additional relevant factor, neoteny (juvenilization,
decreased rate of development), which is known to be present
in many long-lived species, is widespread among amphibians,
especially in the order Caudata. The olm (Proteus anguinus)
is a neotenic salamander that at a weight of 15-20 g has an
average lifespan of 68 years and a predicted maximum lifespan of
102 years. It inhabits water cave habitats in Southern Europe with
stable temperatures ranges of 9-11◦C (Voituron et al., 2011). At
this time, an ongoing olm genome project is not yet completed1

and little is known about the mechanisms that contribute to
its longevity at the cellular level. It has been reported, however,
that in line with its low metabolic rate the olm shows extremely
low rates of cell proliferation, e.g., in blood cells (Gredar and
Bizjak Mali, 2017). As resources, specific cell populations may
be interesting in the context of long-term genome maintenance,
for example, the so-called cell clusters of the intestine, which
represent slowly proliferating stem cells of intestinal epithelium
(Bizjak Mali and Bulog, 2004). Establishing captive Proteus

1https://www.proteusgenome.com/
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anguinus populations is important not only for studies of the
mechanisms of aging, but also for preservation of this endangered
species (Holtze et al., 2017). Other neotenic amphibians that
demonstrate a longer lifespan compared to endotherms of
similar body mass include the common mudpuppy (Necturus
maculosus), a species of the sister evolutionary branch (Zhang
and Wake, 2009) that has a predicted lifespan of 34 years, and
as a more distant relative, the axolotl (Ambystoma mexicanum)
that lives for about 20 years (Tacutu et al., 2018). The axolotl itself
can be also interesting for the studies on slow aging: researchers
have been focused on their unique regeneration capacity for
a long time, and now it is clear that the cellular mechanisms
controlling epimorphic regeneration are also involved in the
development of cancer and aging (McCusker and Gardiner,
2011; Vieira et al., 2020). For example, the expression of well-
known oncogenes (Foxo1, Myc, Kazald1, etc.) is markedly
increased in axolotl blastemas (tissue of regenerating limb) at
the early stages of wound healing (Stewart et al., 2013; Bryant
et al., 2017). At the same time, low incidence of cancer is
characteristic for this species (Vieira et al., 2020). Recent work on
single-cell sequencing of blastemas highlights the importance of
different cell types involved in limb regeneration. For instance,
highly represented regulatory myeloid and T cells possibly
contribute pro-regenerative over oncogenic molecular context
in growing blastemas (Leigh et al., 2018). Aside from abundant
transcriptomic data, gene-editing methods are largely described
in the axolotl model (Khattak and Tanaka, 2015; Kuo and Whited,
2015; Fei et al., 2017, 2018). Altogether it makes A. mexicanum
a powerful system for searching for genetic or cellular factors
which define differences between similarly built regeneration and
tumorigenesis molecular programs (Boilly et al., 2017), possibly
providing unexpected insights into aging research.

The assembly of salamander genomes is challenging because
of its large size and excessive number of repetitive regions
(axolotl genome; Nowoshilow et al., 2018). On the other hand,
transcriptomic data is available for a number of salamanders
(Joven et al., 2019), including axolotl (Stewart et al., 2013; Bryant
et al., 2017) and the genome sequencing of further species such
as the olm and Chinese giant salamander (Andrias davidianus) is
currently on the way.

INVERTEBRATES

Cephalopods
Coleoid cephalopods (octopuses, squids) have attracted the
interest of gerontologists because of their highly variable lifespans
(Schwarz et al., 2018). However, the significant variation in
cephalopod lifespans remains little studied (Schwarz et al.,
2018). For instance, littoral (O. minor, O. bimaculoides) and
shallow water octopuses (O. vulgaris, O. maya) usually live
for 1-2 years (Rodríguez-Domínguez et al., 2013; Perales-Raya
et al., 2014; Kim et al., 2018), while the estimated lifespan
of cold-water (Pareledone charcoti) or deep-sea octopuses (e.g.,
Graneledone boreopacifica) is 7-10 years (Schwarz et al., 2018).
Both short-lived and long-lived octopods perform one cycle of
reproduction, and die after hatching of the eggs, a phenomenon

called phenoptosis – programmed death of the entire organism
(Skulachev, 2012). Maximum lifespan in these species thus
appears to be strictly tied to the duration of puberty and
subsequent mating. Interestingly, parental behavior in octopods
depends on a specific organ, the optic gland. During brooding the
optic gland induces fasting by expression of steroids and insulin
signaling regulators (Wang and Ragsdale, 2018). The removal of
optic glands prolongs life and prevents parental care in octopuses
(Wodinsky, 1977; Wang and Ragsdale, 2018). Furthermore,
octopuses are the most highly organized invertebrates: their large
neural and sensory systems as well as complex behavior keep
gaining researchers’ attention (Huffard, 2013).

A large number of studies show a correlation between
environmental temperature and growth rate in octopod embryos
and larvae (Hoving and Robison, 2017; Schwarz et al., 2018; Braga
et al., 2021). Thus, cold water species apparently have a prolonged
maturation period. On the other hand, long-lived octopuses
exhibit parental care and guard their egg-clutches throughout all
embryonic stages; therefore, the period of brooding lasts longer
(Robison et al., 2014). The molecular basis of these adaptations
in long-lived octopuses remains largely unknown, but may be
related to effective antioxidant systems. For instance, the short-
lived O. vulgaris and O. tehuelchus demonstrate flexibility of
antioxidant systems in different environments (Fassiano et al.,
2017; Sillero-Ríos et al., 2018).

Laboratory housing conditions are well described for a variety
of octopod species (Van Heukelem, 1977; Iglesias et al., 2004;
Semmens et al., 2011), and keep improving. This opens the path
to address novel biological questions, e.g., regarding evolutionary
developmental biology (Maldonado et al., 2019). Genomic
(Albertin et al., 2015; Kim et al., 2018; Zarrella et al., 2019) and
transcriptomic (Zhang et al., 2012; Castellanos-Martínez et al.,
2014) data so far are available only for short-lived octopuses. The
combination of the rare semelparous reproductive strategy and
their cognitive abilities render octopuses interesting alternative
models of aging. To exploit this potential for comparative studies
on aging, some key resources, such as genomes of longer-lived
species and an expanded knowledge about their physiology need
to be established.

Hydra
In demographic studies with species of the genus Hydra
(freshwater polyps) it was shown that several of them have
constant low mortality and high fertility rates over long periods
of time (Martínez, 1998; Jones et al., 2014; Schaible et al., 2015)
leading to the widespread view that these animals are non-
senescent (Schaible et al., 2014; Bellantuono et al., 2015; Tomczyk
et al., 2015; Klimovich et al., 2018). These studies predicted that
at least 5% of the Hydra population would reach an age of
more than 1000 years under laboratory conditions. It is assumed
that this high potential for longevity has largely evolved as a
by-product of Hydra’s regenerative capacity which allows these
animals to fully restore any part of their body within days in
the event of injury (Vogg et al., 2019b). When cut into pieces, a
complete animal can regenerate from each piece, in extreme cases
even from excisions corresponding to 1% of the original animal
(Shimizu et al., 1993). The approximately 1 cm long body consists
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of essentially a digestive tube, with the mouth/anus on one side
surrounded by the tentacles arranged in a circle, and a foot on
the other. An adult polyp has at maximum about 100,000 cells of
twelve cell types and three distinct stem cell lineages (Tomczyk
et al., 2015). The regenerative ability is the result of a high
proportion of stem cells, which ensures constant self-renewal
with a cell cycle of 1-4 days depending on the stem cell lineage
(Bosch and David, 1984; Bode, 1996). Driven by the continuous
proliferation of stem cells, under optimal conditions Hydra
usually reproduces asexually through budding. A reduction of
the water temperature from 18◦ to 10◦Celsius results in a
time-dependent mortality increase among H. oligactis (Yoshida
et al., 2006) suggesting that this measure is sufficient to induce
aging. This offers the apparently unique opportunity to compare
molecular signatures of non-aging and aging-like phenotypes
within a single species (Bellantuono et al., 2015). Both annotated
genomes (H. vulgaris, H. viridissima and H. oligactis) and a
transcriptome (H. vulgaris) are available (Chapman et al., 2010;
Wenger and Galliot, 2013a; Vogg et al., 2019a). Furthermore,
high-resolution gene expression data sets are available, e.g., with
respect to regeneration time series (Petersen et al., 2015) or on
single cell level (Siebert et al., 2019). Despite being taxonomically
more distant, Hydra shares as many genes with humans as
D. melanogaster (both about 6000) and even more than C. elegans
(about 4500) (Wenger and Galliot, 2013a). Particular attention
has been paid, e.g., to the evolutionarily conserved transcription
factor FoxO, which is believed to play a possible key role in
maintaining the inexhaustible self-renewal capacity of Hydra
stem cells and thus in apparent biological immortality (Boehm
et al., 2012; Bellantuono et al., 2015; Martins et al., 2016).
Generations of stable transgenic animals have been used several
times both for overexpression and knockdown experiments
(Wittlieb et al., 2006; Gee et al., 2010; Vogg et al., 2019a). Also,
inducible RNA interference based gene silencing approaches can
be applied (Watanabe et al., 2014; Vogg et al., 2019a). Hydra is
easy to keep, both individually, e.g., in Petri dishes, and en masse,
e.g., in glass bowls, at water temperatures of 18◦Celsius and
feeding them every one to three days. One of the key challenges
for the future will be to transfer the knowledge gained from
this evolutionarily distant species to humans, e.g., in the field of
regenerative medicine.

Long-Lived Marine Non-colonial
Invertebrates
Marine invertebrate species can be found in different invertebrate
groups (Mollusca, Crustacea, Echinodermata), with different
ecological niches, inhabiting a range of geographical zones at
different temperatures and depths (Bodnar, 2009; Murthy and
Ram, 2015; Ram and Costa, 2018). Among the features that unite
these organisms are delayed growth and relatively low extrinsic
mortality due to protective structures (shell, spines).

The most widely studied long-lived bivalve clam is the ocean
quahog of the North Atlantic (Arctica islandica), the highest
documented lifespan of which reaches at least 507 years. It should
be noted that this abnormally high lifespan is characteristic
for Icelandic population of A. islandica, while the Baltic Sea

and White sea populations have a maximum lifespan of 30-
50 years (Basova et al., 2012; Gruber et al., 2015). Ocean quahog
is often mentioned as a candidate for negligible senescence:
individuals develop rapidly until sexual maturation, then the
growth ceases, and the organism exhibits no signs of senescence
for decades. The same molecular dynamic was established for
the antioxidant system: young ocean quahogs exhibit high
antioxidant capacity compared to other bivalves, but then, at
age of 30, the mitochondrial citrate synthase as well as the
catalase and glutathione stabilize at lower post-maturation levels
and show no tendency for further decline with age (Abele
et al., 2008). A more recent study of mitochondrial membrane
lipidome demonstrated lower peroxidation indexes in long-lived
A. islandica than in short-lived bivalve species (Munro and
Blier, 2012). However, an intraspecific study of six A. islandica
populations suggests that lipid membrane composition does not
correlate with longevity.

Highly variable mean telomere length and activity of
telomerase, which is continuously expressed in different
tissues, were investigated in the longest- versus shortest-lived
populations of A. islandica. But the fact that equal telomere
dynamics are shared between A. islandica populations with
extremely different maximum lifespans indicates that constant
telomerase activity apparently contributes to longevity but does
not determine it (Gruber et al., 2014). Thus, unique factors
defining the ocean quahog’s longevity remain to be discovered.
A. islandica’s genome has not been published so far but a
mitochondrial genome is available (Glöckner et al., 2013).

Genome sequencing of the red sea urchin (Strongylocentrotus
franciscanus), which reaches a lifespan about 200 years (Tacutu
et al., 2018), and of the green sea urchin (Lytechinus
variegatus) allowed for a comparison between closely related
long and short-living species. Mitochondrial proteins, lipid
transport proteins (ApoB), proteins involved in amyloidogenesis
(PSEN1) and the system of telomere maintenance (particularly,
TERT) of S. franciscanus were enriched in amino acid
substitutions which are specific for a long-lived species
(Sergiev et al., 2016).

Homarus is a genus of lobsters whose members are estimated
to reach lifespans of up to 50 years in the wild (Wolff, 1978) and
up to 100 years in captivity (Bowden et al., 2020). They grow
indefinitely, are able to regenerate limbs even at high ages and
old animals may be more fertile than young ones (Klapper et al.,
1998; Koopman et al., 2015; Tacutu et al., 2018). Unlike in most
other animals, telomerase activity is high also in adults and in all
tissues (Klapper et al., 1998).

Overall, marine invertebrates represent powerful models
for aging research, combining ease of chronological age
determination if captured in the wild and convenience of
culturing in captivity. Further studies on longevity using these
models require development of methods, such as cell culturing
and gene manipulation, to be adapted for the marine invertebrate
species (Ram and Costa, 2018).

Planaria (Tricladida)
Like Hydra, planarian flatworms are described as theoretically
non-aging based on their regeneration ability (Sahu et al., 2017;
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Johnson et al., 2019). Although they are complex organisms
with, for example, a central nervous system, a digestive tract
and eyes, a complete individual can grow from small excised
body fragments of almost any tissue. A high proportion of
partly pluripotent adult stem cells (about 25-30% of all cells),
called neoblasts, play a decisive role in this ability (Reddien and
Sánchez Alvarado, 2004). The neoblasts incorporate positional
signals into the processes of proliferation and differentiation and
thus guarantee the almost perfect scaling of tissues and organs
during regeneration (Reddien, 2018). Based on this, Planaria
evolved asexual reproduction by fission as an alternative to sexual
reproduction. The worm splits horizontally into a head and
a tail part, each then restoring the missing part (Malinowski
et al., 2017). Some species even reproduce exclusively this
way. This means that in these species the neoblasts completely
take over the function of the germline. Therefore, at least
a part of the soma of these Planaria has to be non-aging.
This "somatic immortality" can be illustrated by experiments in
which the injection of a single neoblast was sufficient to save
individuals in which all cycling cells were killed by irradiation
and who then went on to establish new populations (Wagner
et al., 2011). Stem cell aging is a major reason why organs
and tissues in other species become less and less able to
perform their tasks over time. It is therefore plausible that
mechanisms associated with this process can be avoided in
Planaria. In this context, it has been shown, e.g., that continuous
telomere-shortening is avoided in the soma of asexual Planaria
because telomerase is up-regulated in regeneration (Tan et al.,
2012). On the other hand, the main biological function of
cellular senescence is tumor suppression in tissues affected by
somatic mutations (van Deursen, 2014). Therefore, it is often
assumed that Planaria must have a high genomic stability and/or
efficient DNA repair mechanisms (Sahu et al., 2017; Barghouth
et al., 2019). In line with that, it was observed that the Piwi-
piRNA pathway, which normally protects the germline from
transposable element activity, is somatically expressed both in
Planaria and Hydra (Sturm et al., 2017). More research is
needed to find out whether activation of germline pathways can
be a strategy to prevent stem cell aging. High-quality genome
transcriptome assemblies are available for the frequently used
species Schmidtea mediterranea (Grohme et al., 2018; Swapna
et al., 2018) that contains both sexual and asexual strains. For
the same species a single cell transcriptomics-based cell type
atlas was published (Plass et al., 2018). Further genome and
transcriptome assemblies are available for several additional
species, including Dugesia japonica (Nishimura et al., 2012; An
et al., 2018), Procotyla fluviatilis (Sikes and Newmark, 2013)
and Dendrocoelum lacteum (Liu et al., 2013). Gene knock-
down via RNA interference is well established and often used
in Planaria (Rouhana et al., 2013). Further valuable tools are
irradiation protocols for targeted or complete elimination of
an individual’s neoblasts in combination with the possibility
of transplantation of tissue or even single neoblasts (Wagner
et al., 2011; Rojo-Laguna et al., 2019). As with Hydra, one
of the great challenges for the future will be to explore
applications for transferring the knowledge gained in these
invertebrates to humans.

DISCUSSION

Any selection of non-canonical model organisms is necessarily
incomplete. Similar to African mole-rats, blind mole rats
(Spalax), e.g., are strong positive outliers from the lifespan to
body mass correlation (Tacutu et al., 2018) and also extremely
cancer resistant – the latter possibly mediated by a concerted
necrotic cell death mechanism (Gorbunova et al., 2012). Also,
elephants exhibit strong cancer resistance, which was associated
with a high number of copies of tumor suppressor TP53 (Sulak
et al., 2016) and further tumor suppressors (Vazquez and Lynch,
2021). Ant queens reach extreme lifespans of up to 45 years
unexpected for their size and, moreover, usually live many
times longer than workers (Giraldo and Traniello, 2014). Deep-
sea vestimentiferan tubeworms such as Lamellibrachia luymesi,
Seepiophila jonesi and Escarpia laminata can reach lifespans of
more than 250 years (Durkin et al., 2017). The "immortal jellyfish"
Turritopsis dohrnii undergoes a reverse development from the
medusa to the actually preceding, more juvenile polyp stage in
case of injuries or age weakness due to transdifferentiation. It is
assumed that this process can be repeated indefinitely and thus
their lifespan, in contrast to most other species, is not intrinsically
limited (Piraino et al., 1996). Chameleons of the genus Furcifer
have highly variable life spans. For example, members of the
southern population of the species F. labordi are considered
the shortest-lived known tetrapods, with mean lifespans of 4-
5 months, while parts of the northern population live twice as
long and other species of the same genus even live more than 10
times as long (Karsten et al., 2008; Eckhardt et al., 2017; Tacutu
et al., 2018). One criterion’ for selecting suitable models was the
availability of scientific, age-relevant knowledge on a species or
taxon. Nevertheless, we readily concede that the distinction is a
matter of interpretation and that other species, as those briefly
mentioned above, could possibly have been included.

Regarding potential molecular targets to slow down the
aging process, unsurprisingly, the most promising targets from
established (short-lived) model organisms also appear to some
extent in the studies conducted in non-canonical species. As
described above, this applies, e.g., to the GH/IGF1 axis, the
mTOR pathway, and sirtuins (Fontana et al., 2010; Longo
et al., 2015; Pan and Finkel, 2017; Duran-Ortiz et al., 2021).
It is interesting to note, however, that especially in long-lived
alternative model organisms other mechanisms seem to play an
even more prominent role. This is particularly true for enhanced
DNA repair, for which there is ample evidence from various
extremely long-lived mammals, turtles, and Planaria that it may
be a critical factor in longevity. The same applies to evolutionary
adaptations that are associated with the coordination of protein
synthesis of nuclear and mitochondrially coded components
of the respiratory chain, called mitonuclear balance. Such
adaptations have been seen so far in mole-rats, bats, killifishes and
clownfishes. Moreover, findings in two long-lived social mole-
rat genera (Heterocephalus and Fukomys) suggest that enhanced
proteasome activity contributes to their long life and healthspan.
There is also evidence that specific adaptations regarding the
immune systems of mole-rats, bats and clownfish significantly
contribute to their longevity (Figure 3A). Regarding the impact
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FIGURE 3 | Biological pathways and mechanisms identified as potential contributors to longevity on alternative model organisms of aging and survival curve types.
(A) The assignment of mechanisms and species does not claim to be complete, as alternative model organisms are not only less well studied than canonical ones,
but also not all of the selected mechanisms have so far been addressed in all of the mentioned non-canonical species. Created with BioRender.com. (B) The
assignment of survival curve types and species can only be done schematically.

of oxidative stress and telomere maintenance on aging, however,
findings from non-canonical model organisms are similarly
ambiguous as those from canonical ones.

Apart from this, our review has not uncovered convergently
evolved longevity patterns regarding cellular and molecular
mechanisms yet. However, this is not very surprising given

that high longevities evolved independently in very different
phylogenetic lineages and equally different aquatic, fossorial,
terrestrial, or airborne environments. Under so manyfold
combinations of phylogenetic and ecological constraints that
have shaped the gradual adaptation of the respective genomes,
we should not a priori expect evolution to have always followed
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the same paths to reach converging solutions for this complex
trait. Therefore, the recurrence of at least some patterns of
genetic architecture, as described above, is far from trivial. Most
surprising is that adaptations of processes such as mitonuclear
balance or resistance to oxidative stress seem to play an important
role both for longevity and extremely short lifespans. This
suggests that evolutionary trade-offs exist along these processes
that allow either adaptation toward selection advantages during
the early stages of ontogenesis, e.g., rapid growth in N. furzeri, or
modification toward longer lifespans. Furthermore, it is perhaps
simply too early to expect more such patterns to emerge before
these and other non-canonical species have been studied in more
detail by a broader aging research community.

Canonical species did not become the workhorses of biological
research by accident; their rapid maturity and reproduction make
them economical to breed and rear in captivity. However, their
rapid maturity and short lives are the result of millions of years
of adaptation to a very different evolutionary landscape than that
of the long-lived species we have reviewed above. So, although
it made sense to first explore the cellular and molecular basis of
aging in the already well studied, short-lived canonical species, it
is time for us to move on if we are to progress.

Without doubt, non-canonical model organisms offer the
possibility to study mechanisms relevant for an extended lifespan
that do not occur in canonical ones. These include the species-
specific causes of cancer resistance, e.g., in bathyergid mole-
rats, blind mole-rats and elephants, the capacity of Hydra and
Planaria stem cells to not exhaust over time, the physiological
and molecular mechanisms linking longevity and neoteny in
amphibians, and likely a wealth of further ones yet to be explored.
Like humans, many of our non-canonical model species are
adapted to relative safety from predators, either based on their
subterranean environment, their special defenses, or their size.
Unlike mice, rats, fruit flies and roundworms, with type II
survivorship (sensu Pearl and Miner, 1935), many of our non-
canonical species have evolved a type I or type III survivorship
curve. Type I species typically include top predators or otherwise
safe large individuals. We are long-lived because we are relatively
safe from predation for our entire lives. Type III species on
the other hand suffer much early mortality, but once they grow
to a safe size, they can live very long lives. Type II species
however are typically what we think of as “prey species” and
suffer from predation at a relatively constant pace throughout
their relatively short lives. Given that humans evolved under
a type I survivorship curve, we might expect to find that we
are better suited to exploit the longevity adaptations discovered
in whales (such as DNA repair), but less with type III species
such as giant clams (resistance to oxidative stress). On the

other hand, perhaps we may be able to exploit a wide array
of strategies to promote longevity as, e.g., bats apparently can
(Figure 3B). One thing is certain, we will not discover the details
of those strategies by restricting our work to the short-lived
canonical species.

CONCLUSION

We summarized the specific characteristics of a broad taxonomic
range of alternative animal models suitable for elucidating
processes involved in delayed and accelerated senescence in
terms of life expectancy, pre-existing discoveries, and available
data and resources. The species presented have exceptional
lifespans, an enormous regeneration potential or a remarkable
resistance to aging-related diseases. Previous findings on the
possible molecular causes confirm the mechanisms known from
classical model organisms, but with a different weighting of the
various known aging-related signaling pathways. In addition,
there are some intriguing, life-prolonging mechanisms to which
no equivalent in classical model organisms exists. Including this
wealth of evolutionary adaptations into future research will most
likely broaden our understanding of the aging process and may
eventually contribute to the development of interventions for
granting humans a longer and healthier lifespan.
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