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Background: Acute rejection (AR) remains a major issue that negatively impacts long-
term allograft survival in renal transplantation. The current study aims to apply machine
learning methods to develop a non-invasive diagnostic test for AR based on gene
signature in peripheral blood.

Methods: We collected blood gene expression profiles of 251 renal transplant patients
with biopsy-proven renal status from three independent cohorts in the Gene Expression
Omnibus database. After differential expression analysis and machine learning algorithms,
selected biomarkers were applied to the least absolute shrinkage and selection operator
(LASSO) logistic regression to construct a diagnostic model in the training cohort. The
diagnostic ability of themodel was further tested in validation cohorts. Gene set enrichment
analysis and immune cell assessment were also conducted for further investigation.

Results: A novel diagnostic model based on three genes (TSEN15, CAPRIN1 and
PRR34-AS1) was constructed in the training cohort (AUC � 0.968) and successfully
verified in the validation cohort (AUC � 0.925) with high accuracy. Moreover, the diagnostic
model also showed a promising value in discriminating T cell-mediated rejection (TCMR)
(AUC � 0.786). Functional enrichment analysis and immune cell evaluation demonstrated
that the AR model was significantly correlated with adaptive immunity, especially T cell
subsets and dendritic cells.

Conclusion: We identified and validated a novel three-gene diagnostic model with high
accuracy for AR in renal transplant patients, and the model also performed well in
distinguishing TCMR. The current study provided a promising tool to be used as a
precise and cost-effective non-invasive test in clinical practice.
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INTRODUCTION

Over the last decades, although advances in kidney
transplantation have resulted in remarkable improvements in
graft survival, acute renal allograft rejection (AR) remains
unavoidable with an incidence of approximately 7.8% among
adult recipients (Hart et al., 2019). Besides, early occurrence of
AR was found to be associated with increased risks of graft failure
and death, particularly death from cancer and cardiovascular
disease (Wu et al., 2015; Clayton et al., 2019). Therefore, AR is still
a critical factor leading to the sub-optimal long-term outcomes of
post-transplant patients (Meier-Kriesche et al., 2004; Lamb et al.,
2011). These results suggest the necessity of timely and accurate
diagnosis of AR in kidney transplant recipients, which may
contribute to preserving renal function and improving
consequences beyond the early period after transplantation.

Since many conditions other than AR may lead to renal
allograft dysfunction, the diagnosis of AR cannot be made by
monitoring insensitive functional indicators alone like serum
creatine or urine protein (Li et al., 2012). Besides,
approximately 10% of patients with clinically normal kidney
function are found to have evidence of AR based on
surveillance biopsy (Thierry et al., 2011). Currently, the gold
standard for AR diagnosis still relies on obtaining kidney biopsies.
It is one strategy to diagnose and treat AR before extensive injury
by performing routine protocol biopsies. However, it is limited by
procedural cost, assessment variability, the risk of infection and
other stresses (Li et al., 2012). Researchers have reported a 1%
incidence of major complications in large series and an increased
risk of chronic rejection for renal transplants followed protocol
biopsies (Schwarz et al., 2005; Moreso et al., 2012). Additionally,
AR is such a dynamic process that is required to predict rejection
and manage immunosuppression by minimally invasive
monitoring not possible using biopsies. Thus, there is a
pressing need to develop a less-invasive, convenient and
accurate test for the diagnosis of AR.

Machine learning techniques, a specialization in statistics and
computer science, focuses on how computers learn from data
(Walsh et al., 2019). It is widely used for biological knowledge
mining through analyzing large amounts of data on patient
history, laboratory results, diagnoses and outcomes (Deo,
2015). In this study, we applied two advanced and commonly
accepted algorithms, random forest (RF) and support vector
machine-recursive feature elimination (SVM-RFE), to choose
robust biomarkers for AR diagnosis in peripheral blood
microarray datasets of AR patients from Gene Expression
Omnibus (GEO) database. Moreover, the least absolute
shrinkage and selection operator (LASSO) logistic regression
was also applied to construct a streamlined diagnostic model
that can be capable of extensively implementing in clinical
practice. Although previous researches have reported several
gene-based signatures for AR diagnosis, many signatures
contain dozens or even hundreds of genes which limited their
clinical translation (Friedewald et al., 2019; Cao et al., 2020), and
their diagnostic ability was markedly reduced in other
independent cohorts (Zhang et al., 2019; Cao et al., 2020).
Therefore, based on machine learning methods, we aimed to

create a novel peripheral diagnostic model of AR with minimal
gene number, stable and satisfying performance.

MATERIALS AND METHODS

Data Collection and Preprocessing
As demonstrated in Figure 1, thirty-three studies were initially
included by using the search string “kidney transplantation”,
“Homo sapiens” and “acute rejection” in the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). Subsequently, studies that
met one of the following criteria were excluded: 1) number of
samples with genomic data less than 50; 2) lacking whole blood
samples with gene expression profiles; 3) focusing on other types
of rejection, such as subclinical acute rejection. Finally, two
independent studies with gene expression profiles of peripheral
blood cells arising from corresponding kidney transplant patients
with unequivocal biopsy-proven AR or non-AR were eligible for
further analysis. The GSE15296 (n � 75) microarray dataset
includes 51 AR and 24 non-AR samples, and the GSE14346
(n � 59) microarray dataset consists of 31 AR and 28 non-AR
samples (Li et al., 2012; Kurian et al., 2014). Additionally, the
GSE129166 (n � 117) was utilized for further detecting the ability
of the diagnostic model in distinguishing T-cell mediated
rejection (TCMR) and antibody-mediated rejection (ABMR)
with 26 TCMR and 91 non-TCMR, 30 ABMR and 87 non-
ABMR (Van Loon et al., 2019). The above three datasets were all
based on the GPL570 platform (Affymetrix Human Genome
U133 Plus 2). Microarray datasets were normalized and log2
transformed through “limma” R package, and then Z-score
scaling was performed (Ritchie et al., 2015).

Data collection and preprocessing were fully conducted under
GEO data access policies. All analyses were performed under
relevant guidelines and regulations.

Study Design
In the current research, we included four phases to identify and
validate the gene-based peripheral blood diagnostic model for AR
(Figure 2). In the discovery phase, GSE15296 was applied to
screen differentially expressed genes (DEGs), followed by two
machine learning approaches to select key biomarkers for AR. In
the training phase, LASSO logistic regression was used to identify
informative genes and construct a diagnostic model with low
variance and strong universality. In the validation phase, the
performance of the model was verified in GSE14346 which was
derived from multi-centers. In the process for further
investigation, the ability of the diagnostic model for
assessment of TCMR and ABMR was tested in GSE129166.
Besides, enrichment and immune-cell analysis were performed
in all three datasets mentioned above to obtain a robust
association between the model and overall immune status in
renal transplant patients.

DEGs Screening in AR
To filter out genes that specific to AR development, DEGs were
identified utilizing the GSE15296 dataset through “limma” R
package (Ritchie et al., 2015). The threshold was set as the

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6616612

Wang et al. Diagnosis Signature of Acute Rejection

https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


absolute value of log2-fold change >0.5 and the adjusted p-value
< 0.001.

Gene Selection by Applying Machine
Learning Methods
Two machine learning algorithms were implemented in our
research to perform a binary classification (AR vs. non-AR).

The RF algorithm is a supervised classification method based on
an ensemble of decision trees that estimate the importance of
features to distinguish samples with or without AR. Feature
importance corresponded to the Gini importance measure was
utilized to rank genes in the RF classifier by “randomForest” R
package (Liaw andWiener, 2002). SVM-RFE is a recursive feature
elimination strategy, which utilizes the weighted vector produced
by the classification model support vector machine. After being

FIGURE 1 | Flowchart of GEO datasets selection. After systematically screening the GEO database, two cohorts comprising gene expression profiles of more than
50 peripheral blood samples with biopsy-proven AR or non-AR were included for analysis. AR: acute rejection.

FIGURE 2 | The main structure of current study. Four phases are included in our research. The discovery phase chose candidate biomarkers for AR, and then
biomarkers were utilized to develop a three-gene based model in the training phase. Diagnostic ability of the model was deeply verified in the validation and further
investigation phases. Gene set enrichment analysis and immune cell analysis were also conducted to detect potential mechanisms of AR. AUC: area under the curve.
TCMR: T cell-mediated rejection. ABMR: antibody-mediated rejection. STA: stable. SVM-RFE: support vector machine - recursive feature elimination.
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trained to optimize the classification accuracy between AR and
non-AR samples, the SVM algorithm develops a weight vector for
the input genes. The generated weight vector will be used to rank
the genes, and the RFE strategy will recursively eliminate the least
ranked genes. The R package “e1071” was used for SVM-RFE in
this study (Guyon et al., 2002). Top-ranked genes selected
simultaneously by RF and SVM-RFE were included in further
analysis.

Generation and Validation of the Diagnostic
Model
During the process of LASSO logistic regression, the penalty
regularization parameter lambda was chosen through 10-fold
cross-validation by performing “glmnet” R package (Friedman
et al., 2010). When minimal binomial deviance was set as the
cross-validated condition, the genes with non-zero coefficients
were picked out and formed the diagnostic model. The linear
combination of the regression coefficient derived from the
LASSO logistic regression model multiplied by gene expression
level generated the diagnostic risk score. Receiver operating
characteristic (ROC) curves were employed to measure the
diagnostic performance and the optimal ROC cutoff value
(Youden index) was computed through “pROC” R package,
corresponding to the point of ROC curve where the sum of
sensitivity and specificity for distinguishing AR and non-AR
patients reached highest. Additionally, GSE14346 was utilized
for external validation with fixed formula and the same cutoff
point. Patients in both cohorts were divided into high- and low-
risk groups with the same cutoff point.

Assessment of TCMR and ABMR
Another independent cohort GSE129166 from a multicenter and
prospective study was utilized to test the capability of the model
in discriminating TCMR and ABMR with fixed formula and the
same cutoff point. The ROC curves with AUC were displayed for
evaluating its sensitivity and specificity.

Functional Enrichment Analysis
Metascape (https://metascape.org/gp/index.html#/main/step1) is a
powerful annotation analysis tool for gene function by integrating
several authoritative data resources (Zhou et al., 2019). Based on
DEGs screened between AR and non-AR peripheral blood
samples, Metascape was applied to analyze the potential
signaling pathways occurring in the episodes of AR. The
threshold was set as an adjusted p-value < 0.05, a minimum
overlap of five genes, and a minimum enrichment score of two.
Besides, to further detect potential biological processes enriched in
the high-risk group, gene set enrichment analysis (GSEA) was
performed by applying “clusterProfiler” R package annotated by
reference gene set file (c5. bp.v7.0. entrez.gmt) (Yu et al., 2012).

Evaluation of Immune Cells
The amounts of immune cell subtypes were quantified by single
sample gene set enrichment analysis (ssGSEA) as implemented in
“GSVA” R package (Hänzelmann et al., 2013). ssGSEA applies
gene signatures expressed by immune cell populations to

individual high- and low-risk groups. In our study, we
enrolled 28 immune cells of both innate and adaptive
immunity. The correlations between levels of immune cells
and genes involved in the diagnostic model were also assessed.

Statistical Analysis
We performed D’Agostino and Pearson omnibus normality test
to determine if datasets follow a normal distribution in each
comparison. If the data passed the normality test, parametric tests
were conducted (two-tailed unpaired t-tests, one-way ANOVA
with Tukey’s correction for multiple comparisons, and Pearson
correlation). If the data was not normally distributed, non-
parametric tests were applied (Mann-Whitney-U test, one-way
ANOVA using Kruskal-Wallis with Dunn’s correction for
multiple comparisons, and Spearman correlation). The
reported results apart from DEG analysis were all considered
statistically significant at the 5% critical level (p < 0.05).

RESULTS

Data Series Screening and Study Design
To acquire qualified datasets, we systematically screened and
obtained the peripheral blood microarray datasets of AR from
GEO database (Figure 1). More detailed information can be
found above in the Methods section. As shown in Figure 2, there
are four parts in our research, including discovery, training,
validation and further investigation phases. Baseline
characteristics of recipients and donors involved in
transplantation cohorts of our study were collected and
illustrated in Table 1.

Identification of DEGs in AR
Following the screening, gene expression profiles of AR samples
and non-AR samples from GSE15296 were selected for
differential expression analysis. As a result, a total of 182
DEGs (78 upregulated and 104 downregulated) were identified
for subsequent analyses (Figure 3A, Supplementary Table S1).

Functional Enrichment Analysis
Metascape analysis showed the top 20 clusters of enriched
biological processes (Figure 3B). Results manifested that the
DEGs between AR and non-AR samples were significantly
enriched in regulation of dendritic spine development,
negative regulation of cysteine-type endopeptidase activity,
leukocyte homeostasis and so on.

Selection of Candidate Biomarkers
To identify key biomarkers for classifying AR and non-AR
patients, machine learning methods including RF and SVM-
RFE were adopted. Top-ranked 20 DEGs by each of the two
algorithms with different phenotype-association measurements
were appropriate for further analysis (Supplementary Table S2).
After combining genes selected by the RF and SVM-RFE, seven
biomarkers, including TSEN15, CAPRIN1, PRR34-AS1, FLI1,
TTF1, ARL2BP and CHMP1B, were selected for the training
phase (Figure 3C).
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Construction of the Diagnostic Model
The seven candidate genes screened in the discovery phase were
applied to LASSO logistic regression to build the diagnostic model.
Consequently, three optimal genes (TSEN15, CAPRIN1 and PRR34-

AS1) were employed to establish a diagnostic model (Figures 4A,B).
The risk score formula was calculated as follows: risk score �
-0.25938 + (0.61328 * expression level of TSEN15) + (-0.49935 *
expression level of PRR34-AS1) + (1.18163 * expression level of

TABLE 1 | Characteristics of three transplantation cohorts included in the current study.

Characteristics GSE15296 GSE14346 GSE129166

Recipients Age (year) 47.09 ± 14.55 11.70 ± 5.59 49.2 ± 13.8
% Female 28.44 38.52 41
HLA match 1.74 ± 1.38 2.43 ± 1.38

Immunosuppression
% Steroid free 51.38 54.1 13.7
% Calcineurin inhibitors 91.74 92.3
% Mycophenolic acid derivatives 82.57 84.6

Donors Age (year) 38.97 ± 14.36 32.99 ± 12.05 49.8 ± 15.8
% Female 44.95 50.82 52.2
% Deceased donor 55.96 30.33 82

Values are demonstrated as means ± SD (Standard Deviation) or %. HLA, human leukocyte antigen.

FIGURE 3 | Screening of diagnostic biomarkers for AR (A) Volcano plot shows DEGs between AR and non-AR peripheral blood samples. Blue dots denote
downregulated genes, and red dots denote upregulated genes (B)Network of top 20 enriched clusters, where each node represents one statistically significant term and
terms with similarity of more than 0.3 are connected by edges (C) Lollipop chart shows top-ranked 20 genes ordered by Gini-importance through RF on the left side of
the figure, while the same number of genes ranked by SVM-RFE are shown on the right side of the figure. Venn diagram for seven simultaneously top-ranked
biomarkers is in the middle part, the green and blue circles represent DEGs selected by RF and SVM-RFE, respectively. DEGs: differentially expressed genes. FC: fold
change. RF: random forest.
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FIGURE 4 |Construction and validation of the three gene-based diagnostic model (A) Selection of the tuning parameter in LASSO logistic regression analysis. Ten-
fold cross-validation was utilized to calculate optimal lambda which leads to minimum mean cross-validation error (B) LASSO coefficient profiles, where each curve
represents a DEG. Three DEGs were finally selected under the optimal lambda to construct a diagnostic model (C) The bar plot shows coefficients of three genes in the
diagnostic model (D and F) Heatmaps for expression levels of three genes in the training and validation cohorts, patient annotations including disease status and
risk score are also depicted (E and G) ROC curves for AR diagnosis prediction in the training and validation cohorts (H and I) Confusion matrices of binary results of the
diagnostic model for training and validation cohorts. ROC curves: receiver operating characteristic curves. PPV: positive predictive value. NPV: negative predictive value.
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FIGURE 5 | Gene set enrichment analysis (GSEA) and assessment of immune cells (A and B) GSEA plots show significantly enriched immune-related biological
processes associated with the diagnostic model in the training (GSE15296) and validation (GSE14346) cohorts (C and D) Violin and box plots for comparisons of
immune cell levels between high- and low-risk patients in the training and validation cohorts. Cells with statistically significant changes in both cohorts are labeled in
green. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not statistically significant (E and F) Correlation heatmaps between the expression levels of three
genes and immune cell levels in the training and validation cohorts. The pie graphs are filled in proportion to the Spearman’s coefficient values, anti-clockwize for positive
correlations (in red) and clockwise for negative correlations (in blue), the red crosses represent no statistically significant correlations (p > 0.05). NES: normalized
enrichment score. MDSC: myeloid-derived suppressor cells.
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CAPRIN1) (Figure 4C). The ROC curves indicated a high diagnostic
power of the model (AUC � 0.968) with a specificity of 95.8% and a
sensitivity of 86.3% (Figures 4E,H). Patients were classified into
high- and low-risk groups based on a score of 0.3 as the optimal
cutoff point (Figure 4D).

External Validation of the Diagnostic Model
To verify the robustness of the three-gene diagnostic model, we
employed an independent cohort GSE14346. Patients were divided
into high-and low-risk groups relying on fixed formula and the same
cutoff point obtained from training cohort (Figure 4F). Consistent
with above findings, the ROC curves demonstrated a reliable
diagnostic accuracy (AUC � 0.925) with a specificity of 96.4%
and a sensitivity of 71% (Figures 4G,I). Results indicated that the
diagnostic value of the model remained accurate and precise.
Notably, the model demonstrated consistently high specificity in
both training and validation cohorts.

Gene Set Enrichment Analysis
GSEA was conducted to elucidate the potential biological processes
occurring in high-risk patients compared to low-risk patients. As
shown in Figures 5A,B, we found a significant aberrant reduction in
the expression of genes associated with lymphocyte activation and
differentiation for high-risk patients in both training and validation
datasets. The above analyses may set the foundation for further
exploring the molecular mechanisms of AR.

Inference of ImmuneCells in Peripheral Blood
We quantified 28 types of immune cells including the B cells, T cells,
DCs, macrophages, natural killer cells and so on to investigate the
composition of the peripheral blood by applying ssGSEA. As a result,
the levels of activated CD4+ T cells, activated CD8+ T cells, effector
memory CD4+ T cells, γδT cells and Th1 cells in the high-risk group
were significantly lower than that in the low-risk group, while the
levels of activated dendritic cells in the high-risk group were
significantly higher than that in the low-risk group in both
training and validation datasets (Figures 5C,D). Subsequently, we
analyzed the correlation between these three genes involved in the
diagnostic model and immune cells. Results showed that PRR34-AS1
was negatively correlated with almost all immune cells, while
TSEN15 and CAPRIN1 exhibited a similar positive correlation
(Figures 5E,F). Briefly, these two genes were positively correlated
with T cell subpopulations stably, consisting of Th1 cells, activated
CD4+ and CD8+ T cells, etc. while negatively correlated with innate
immune cells such as neutrophils, macrophages and dendritic cells.
Also, the correlations of these three genes with immune cells showed
the same trend as their coefficients in the diagnostic model.

Assessment of TCMR and ABMR
The aforementioned results revealed a notable correlation
between the diagnostic model and adaptive immunity,
especially T cell subsets. So we were curious if the model has a
diagnostic power in classifying subtypes of immunologic
rejection. Applying fixed formula and the same cutoff point,
patients in GSE129166 were divided into high- and low-risk
groups. As demonstrated in Figures 6A,B, results illustrated
that the diagnostic model for AR showed a good ability in

discriminating TCMR (AUC � 0.786), while a relatively poor
ability in distinguishing ABMR (AUC � 0.604). Besides,
consistent with previous results, six immune-cell subtypes with
statistical significance in GSE15296 and GSE14346 showed the
same apparent differences between high- and low-risk patients in
GSE129166 (Figure 6C). Correlations between gene expression
levels and immune cells also corresponded with above findings
(Figure 6D). Those results further confirmed that our diagnostic
model was associated with the immune status of renal transplant
patients, especially with the effects of T cell subsets and DCs.

DISCUSSION

Acute rejection remains a major issue after kidney transplantation
(Cravedi and Mannon, 2009; Li et al., 2012). In distinction to current
clinical standards that depend on biopsy for AR diagnosis, early
minimally invasive biomarkers would be a significant advance
(Erpicum et al., 2017). In the present study, after systematically
screened the datasets, two cohorts specifically focused on AR,
which derived from multiple centers and combined more than 50
kidney transplantation patients were included for analysis. By
applying machine learning methods and LASSO logistic
regression, we identified and validated a three-gene model for AR
diagnosis utilizing publicly peripheral blood gene expression data.
Our diagnostic model showed a robust accuracy in both training
(AUC � 0.968) and validation (AUC � 0.925) cohorts. Notably, the
model demonstrated high sensitivity (0.958 in training cohort and
0.964 in validation cohort) which is more important for identifying
cases as seen in our results. Hence, once classified into the high-risk
group, the patient had a significantly high possibility to have ongoing
AR and therefore need immediate further tests and treatment.

Intriguingly, according to the results of gene set enrichment
analysis, lymphocyte activation and differentiation of high-risk
patients were suppressed in peripheral blood. In agreement with
this, we found a consistently lower amount of T cell subsets, such as
activated CD4+ T cells, activated CD8+ T cells, effectormemoryCD4+

T cells and Th1 cells in peripheral blood of high-risk patients by using
ssGSEA method. Those results indicated that our AR diagnostic
model was tightly associated with T cells. In kidney transplantation,
AR is predominantly T-cell mediated (Lee et al., 2014). Meanwhile,
TCMR is composedmostly of acute TCMR and few of chronic active
TCMR (Metter and Torrealba, 2020). Combined with our findings,
we supposed that our AR model may also perform well in
distinguishing TCMR. Therefore, another cohort derived from a
multicenter study consisting of gene expression profiles of
peripheral blood cells from kidney transplant patients with ABMR,
TCMR or stable renal function was employed to verify the conjecture.
Results illustrated a good performance for the assessment of TCMR
(AUC � 0.786) as expected, which may indicate that high-risk
patients assessed by the model can be diagnosed as TCMR and
the robustness of the model was deeply verified.

Unlike kidney biopsy which reveals the levels of local immune
cell infiltration (Sarwal et al., 2003), peripheral blood
transcriptome reflects the overall immune status of kidney
transplantation patients, which represents a more complex
environment (Viklicky et al., 2020). In a previous study,
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downregulated genes in subclinical acute rejection were related to
cytoskeleton organization, regulation of lymphocyte
differentiation or cell death (Zhang et al., 2019), which is
consistent with our results that genes involved in lymphocyte
activation and differentiation were low expressed in the blood of
high-risk patients with elevated tends to progress into AR. A
similar phenomenon occurred in the assessment of immune cells,
several subtypes of T cells were reduced in high-risk patients in all
three cohorts, and a recent review also demonstrated the same
decrease of T cell subtypes in peripheral blood of patients with

allograft rejection (Mirzakhani et al., 2019). Our results suggested
that the immune status in peripheral blood was so complicated,
and the absence of increased transcription of immune response-
related genes may support the speculation that immune cells
migrated from the periphery to kidney allograft (Viklicky et al.,
2020). These findings prompted us to pay more attention to
investigate the systemic immune status of AR patients and its
relationship with immune responses in renal allografts.

Among the three key genes involved in the current diagnostic
model, TSEN15 (tRNA splicing endonuclease subunit 15) is a

FIGURE 6 | Performance of the diagnostic model in distinguishing TCMR and ABMR (A and B)ROC curves for TCMR and ABMR diagnosis in GSE129166 (C) Violin and
box plots show the differences in immune cells between high- and low-risk patients in GSE129166. Common cells with different levels between two risk classes in all three cohorts
(GSE15296, GSE14346 andGSE129166) are labeled in blue. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not statistically significant (D)Correlation heatmaps between
the immune cell levels and expression levels of three genes in GSE129166. Red and blue circles represent positive and negative correlations, respectively. Larger to smaller
pie fill area indicates high to low correlation, no statistically significant correlations (p > 0.05) are represented by red crosses.
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protein-coding gene, catalyzing the removal of introns from
tRNA precursors (Paushkin et al., 2004). tRNA splicing is
highly conserved among vertebrates and is a fundamental
process for cell growth and division. Researchers have
reported that mutations in TSEN15 cause neurogenetic
disorders, including progressive microcephaly and
pontocerebellar hypoplasia, which suggest its importance in
brain development (Alazami et al., 2015; Breuss et al., 2016).
Cytoplasmic activation/proliferation-associated protein-1
(CAPRIN1) belongs to a highly conserved protein family
throughout vertebrate evolution (Zhang et al., 2018; Shi et al.,
2019). CAPRIN1 is closely associated with cancer cell cycle and
cell proliferation, such as lymphocytes, human breast cancer cells,
cervical cancer Hela cells (Grill et al., 2004). It has been reported
that suppression of CAPRIN1 leads to a slower proliferation rate
and prolonged G1 phase of the cell cycle (Wang et al., 2005). In
brief, TSEN15 and CAPRIN1 play vital roles in cell cycle and
proliferation. However, their roles in the episodes of AR remain
unclear. By analyzing the correlation between expression levels of
these two genes and immune cells, we found that TSEN15 and
CAPRIN1were both negatively correlated with innate immune cells
such as neutrophils, macrophages, dendritic cells, while positively
correlated with T cell subpopulations, including Th1 cells, activated
T cells, etc. Therefore, high-risk patients had lower expression levels
of TSEN15 and CAPRIN1, which may suppress CD4+T,
CD8+T cells or enhance macrophages, neutrophils to participate
in the occurrence of AR. PRR34-AS1 (PRR34 antisense RNA 1) is
an RNA gene affiliated with the long noncoding RNA (lncRNA)
class (Zhao et al., 2017; Tao et al., 2019). It has been reported that
PRR34-AS1 is closely associated with the early tumor recurrence in
bile duct cancer (Fang et al., 2020), and it has been proved to
potentially relieve ischemic reperfusion injury after total knee
arthroplasty in mice by diminishing apoptosis and enhancing
cell proliferation of chondrocyte in vitro (Fang et al., 2020). In
our research, the expression level of PRR34-AS1 was negatively
correlated with nearly all immune cells and its overexpression
indicated a higher risk to be diagnosed as AR patients, which
may suggest a novel insight into the relationship between gene and
cells. Further research is urgently needed to verify those
assumptions and clarify the complex interactions between genes
and immune cells in peripheral blood.

Over the last decades, there has been a rapid increase in the
number of non-invasive biomarkers for predicting acute rejection
after kidney transplantation, including gene expression data (Li et al.,
2012; O’Callaghan and Knight, 2019). Many of these multiple-gene
panels have provided reasonable acute rejection response prediction,
with accuracy ranging from80% to 90%derived from specific cohorts
(Einecke et al., 2010; Kurian et al., 2014; Shaw et al., 2020). However,
the transferability and reproducibility of these biomarkers or
gene-based panels remain limited. Recently, a study reported that
a set of gene signature developed based on a single study does not
appear to provide adequate prediction in other independent cohorts
with reduced predictability of less than 50% (Cao et al., 2020). Besides,
diagnostic models developed in a few studies consisted of dozens or
hundreds of genes, which greatly limited their clinical applications
(Friedewald et al., 2019; Cao et al., 2020). In the current research, we
applied machine learning methods and LASSO logistic regression to

identify a novel gene-based diagnostic model consisting of only three
genes, results indicated consistently high accuracy and sensitivity of
the model with AUC values for AR higher than 0.9 in both training
and validation cohorts. Moreover, the diagnostic model was more
related to T cells and performed well in distinguishing TCMR.
However, there are still some limitations to this study. It was
serendipitous that all three datasets were of the same platform
and external validation of the gene signature is needed. Further
prospective studies with larger cohorts inmore centers are required to
validate the accuracy and reproducibility of this model. Besides, the
precise biological mechanisms underlying these three genes are still
unclear in AR progression and needed to be more emphasized in
functional experiments. Although an interesting phenomenon was
detected, relationships between overall immune status and kidney
allograft immune responsewere necessary to be clarified in the future.
Despite those limitations, our study proved that peripheral blood
biomarkers have the potential to alert physicians during the early
stages of rejection, and the three-gene diagnostic model could be
conveniently used as a non-invasive peripheral test for renal
transplant patients in clinical practice.

In summary, a novel diagnostic model for AR consisting of only
three genes was developed and validated for post-transplant
patients. Measuring the expression levels of these three genes
may provide a cost-effective and accurate individualized method
for clinical monitoring and diagnosis in AR. Besides, our model
was closely related to the immune status of renal transplant
patients in peripheral blood, which provides insights for further
investigating potential mechanisms and therapeutic targets for AR.
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