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Extracellular RNAs (exRNAs) including abundant full length tRNAs and tRNA fragments
(tRFs) have recently garnered attention as a promising source of biomarkers and a novel
mediator in cell-to-cell communication in eukaryotes. Depending on the physiological
state of cells, tRNAs/tRFs are released to the extracellular space either contained in
extracellular vesicles (EVs) or free, through a mechanism that is largely unknown. In this
perspective article, we propose that extracellular tRNAs (ex-tRNAs) and/or extracellular
tRFs (ex-tRFs) are relevant paracrine signaling molecules whose activity depends on the
mechanisms of release by source cells and capture by recipient cells. We speculate on
how ex-tRNA/ex-tRFs orchestrate the effects in target cells, depending on the type of
sequence and the mechanisms of uptake. We further propose that tRNA modifications
may be playing important roles in ex-tRNA biology.

Keywords: tRNA, tRNA fragments, extracellular vesicles, regulation of gene expression, cell-to-cell
communication, tRNA modifications

INTRODUCTION

Virtually all cells are able to release RNA to the extracellular space [extracellular RNAs (exRNA)]
either free, encapsulated in extracellular vesicles (EVs) (Fabbiano et al., 2020; Zietzer et al., 2020),
or forming part of complexes with proteins such as Argonaute 2 (Ago2) (Arroyo et al., 2011;
Turchinovich et al., 2011) and high-density lipoprotein (HDL) particles (Vickers et al., 2011).
ExRNAs can reach other cells, be internalized, and regulate gene expression, even in distant tissues
and are thus used for cell-to-cell communications (Valadi et al., 2007; Thomou et al., 2017).
Additionally, exRNA content within EVs has been proposed to reflect the active status of the cells
of origin (Sadik et al., 2018). Given that transcriptional perturbations, including altered levels of
expression, occur generally early in human disease, even before obvious clinical symptoms are
detected; exRNA profiling in biofluids is considered a promising strategy for disease diagnosis and
prognosis through minimally invasive liquid biopsy.

Studies on the biological significance of exRNA have largely focused on EVs content, which is
protected from extracellular RNases. Nevertheless, this concept should be re-examined since the
vast majority of exRNA is extra-vesicular and can also be protected from degradation through its
binding to proteins or the formation of secondary structures, resistant to nuclease activity (see
below). In this sense, the relevance of the most abundant extra-vesicular exRNA is starting to be
explored (Vickers et al., 2011; Tosar et al., 2020).

Extracellular RNA is strongly enriched in tRNA and tRNA fragments (tRFs) compared with
other species such as microRNAs (miRNAs) that have traditionally received more attention. This
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has been extensively documented in multiple biofluids such as
urine, blood serum, saliva, or cerebrospinal fluid. Thus, these
species offer an important source of biomarkers that can sense the
biogenesis of tRFs linked to stress and disease (Dhahbi et al., 2013;
Zhang et al., 2014; Godoy et al., 2018). The strong abundance
of vesicular and non-vesicular extracellular tRNAs and tRFs (ex-
tRNA/ex-tRF) has been also confirmed in cell culture media, in
diverse in vitro studies (Guzman et al., 2015; Tosar et al., 2015;
Wei et al., 2017). Several aspects of ex-tRNA/ex-tRF biology are
still to date controversial, primarily due to technical issues and
limitations that can compromise the interpretation of findings.
We refer the reader to a recent and thorough review by Tosar
and Cayota (2020) that compiles the current knowledge on the
ex-tRNA/ex-tRF field in light of this matter.

With the realization of non-canonical tRNA functions
mediated by either full length tRNAs or tRFs (Avcilar-Kucukgoze
and Kashina, 2020), there is a pressing need to further improve
our understanding on the generation, release, stability, and
uptake of ex-tRNAs and ex-tRFs (Figure 1). Here, we propose
that the activity of ex-tRNA and ex-tRFs depends upon the
mechanisms of release and capture of these molecules. We reason
that tRNA/tRF release is a complex phenomenon, involving
cell dependent passive and/or selective RNA sorting in different
extracellular compartments, and likewise, that the possible
mechanisms of capture and activity of these species in recipient
cells may be cell type-specific and depend on the nature of
the ex-tRNA/ex-tRF sequences. We further emphasize on the
potential roles of post-transcriptional tRNA modifications in
ex-tRNA/ex-tRF biology.

tRNAs AND tRFs ARE ABUNDANT
COMPONENTS OF THE
EXTRACELLULAR COMPARTMENT

The release of tRNAs and/or tRFs to extracellular compartments
has been documented in organisms across all kingdoms (Bayer-
Santos et al., 2014; Lambertz et al., 2015; Peres da Silva et al., 2015;
Tsatsaronis et al., 2018; Alves et al., 2019; Tosar and Cayota, 2020;
Wang et al., 2021). Full length tRNAs constitute a large part of the
RNAs found in EVs in many studies (Nolte-’t Hoen et al., 2012;
Zhang et al., 2020; Tosar et al., 2015; Shurtleff et al., 2017). For
instance, over-representation of tRNAs has been observed in EVs
released by breast cells, bone marrow and adipose-mesenchymal
stem cells, lung cells, and EVs from biofluids (Vojtech et al., 2014;
Baglio et al., 2015; Tosar et al., 2015). However, different types
of EVs may show distinctive, unique cargos. For example, tRNA
content differs in EVs shed by melanoma cells, being abundant
in microvesicles (EVs: 200–500 µm) and apoptotic bodies but are
little represented in exosomes (EVs < 150 µm) (Lunavat et al.,
2015). In addition to full length tRNAs, bioactive tRFs are also
highly concentrated in EVs (Nolte-’t Hoen et al., 2012; Tosar
et al., 2015; Chiou et al., 2018).

Although the major proportion of exRNA does not co-
purify with EVs (Arroyo et al., 2011; Tosar et al., 2015),
the extra-vesicular compartment of RNA species has just
started to receive attention. Studies performed in serum

(Dhahbi et al., 2013, 2014) and different types of adherent
cultured cells (Tosar et al., 2015) show that fragments derived
from ribosomal RNAs (rRNA) and tRNA halves dominate
the non-vesicular extracellular compartment, probably forming
part of nucleoprotein complexes. Notably, the composition of
ex-tRNAs is strongly biased to specific 5′tRFs derived from
tRNAGlu

CUC and tRNAGly
GCC (Tosar et al., 2020).

It has been recently shown that the composition of non-
vesicular exRNA is largely dependent on their protection from
degradation by extracellular nucleases (Nechooshtan et al., 2020;
Tosar et al., 2020). This has been demonstrated in a recent
study that profiled exRNA in the presence and absence of a
ribonuclease inhibitor (Tosar et al., 2020). The ribonuclease
inhibitor strongly increased the complexity of exRNA molecules
in the cell culture medium, showing highly abundant full length
tRNAs and rRNAs that were efficiently cleaved to tRNA- and
rRNA-fragments when RNases were not inhibited. Even in the
presence of RNases, the abovementioned Glu- and Gly-5′ tRFs
remain highly abundant, through the formation of homo- or
heterodimeric hybrids that render them resistant to single-
stranded RNases. Furthermore, certain tRFs can fold into highly
stable intermolecular tetramers stabilized by G-quadruplex
structures (Lyons et al., 2017). These data strongly suggest a direct
correlation between the abundance of particular exRNA species
and their stability.

THE RNA COMPLEXITY IN DIFFERENT
TYPES OF EXTRACELLULAR
COMPARTMENTS. IS THERE SPECIFIC
SORTING AND RELEASE?

Diverse data suggest a specific RNA sorting to different
extracellular compartments. For instance, EVs contain miRNAs,
full length tRNAs and tRFs, small nucleolar RNAs (snoRNAs),
PlWI-interacting RNAs (piRNAs), long non-coding RNAs
(lncRNAs), YRNAs, rRNAs, mitochondrial RNAs, and protein-
coding RNAs (Bellingham et al., 2012; Crescitelli et al., 2013;
Huang et al., 2013; Chakrabortty et al., 2015; van Balkom et al.,
2015; Lässer et al., 2017). The HDL cargo, however, contains
diverse classes of sRNAs but lacks protein-coding RNAs (Michell
et al., 2016), and miRNAs are the principal class binding to
extracellular Ago2 (Arroyo et al., 2011; Turchinovich et al.,
2011; Michell et al., 2016). It is thus possible that tRNAs
and tRFs may also be selectively sorted and released into the
extracellular environment to tune the exRNA population for
physiological needs.

Extracellular RNA profiles in different extracellular
compartments are difficult to compare between studies due to the
lack of a consensus experimental approach (Tosar and Cayota,
2020). Methods in EVs isolation differ in the purity of EVs
(Monguió-Tortajada et al., 2019), and specific nucleotide species
originally assigned to EVs have been recently reassigned to other
extracellular compartments (Jeppesen et al., 2019). In addition,
separation of RNA in vesicles from RNAs associated with other
extracellular carriers, including lipoproteins (Vickers et al., 2011)
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FIGURE 1 | Extracellular tRNA and tRFs in cell-to-cell communication. tRNAs and tRFs are passively or selectively loaded into EVs and released to the extracellular
space. Additionally, cells release ex-tRNAs/ex-tRFs that are not associated with EVs, but these species may be protected from degradation by RNases through the
formation of secondary structures, G-quadruplexes, and/or ribonucleoprotein complexes. Red asterisks indicate modified nucleotides in tRNAs. Uptake by target
cells may occur through the direct fusion of EVs with the plasma membrane, non-specific endocytosis, or receptor-mediated endocytosis. Naked ex-tRNA/ex-tRFs
can also be passively or selectively captured by cells. Inside cells ex-tRNAs/ex-tRFs may influence gene expression and/or protein translation, modulating stress and
immune responses.

and ribonucleoproteins (Arroyo et al., 2011; Théry et al., 2018;
Mathieu et al., 2019; Murillo et al., 2019) remain challenging,
and are still under debate. These technical difficulties are further
hampered by the variations in the strategies for RNA purification
and library preparation for sequencing purposes, which result
in different relative proportions of the multiple classes of RNAs.
This is particularly true when attempting to detect and quantify
tRNAs and tRFs (Torres et al., 2019).

The comparison between the RNA composition of the source
cells and EVs has been used as a readout to demonstrate selective
release to the extracellular space. The widely documented
asymmetric distribution between these two compartments

(Ragusa et al., 2017) agrees with the idea that packaging
of exRNAs into EVs is a cell type-dependent, orchestrated
process. For instance, studies performed in exosomes released
by early passage adipose- and bone marrow-mesenchymal stem
cells show that a defined set of miRNAs are overrepresented
in exosomes compared to the cell of origin, while other
highly expressed miRNAs are precluded from exosomal sorting
(Baglio et al., 2015). However, the abundance for the majority of
miRNAs correlated in breast cell lines and released exosomes,
favoring the idea of a general passive sorting and release
(Tosar et al., 2015). In this study, only a few miRNAs
showed an asymmetric abundance between cells and exosomes.
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Some of the extracellular enriched miRNAs were reported as
contaminants derived from cell culture additives (Wei et al., 2016;
Tosar et al., 2017), which further favors the passive release, at
least in breast cell lines.

Just as for other exRNAs, mounting evidence points toward
a model where tRNA and tRFs sorting and release can be cell
dependent. For example, a selective loading of tRNAs in EVs
has been detected in mouse dendritic- and T cells-derived EVs,
showing a strong enrichment of the tRNALys

AAA, compared to
RNA recovered from the intracellular space (Nolte-’t Hoen et al.,
2012). Likewise, an uneven proportion of specific tRFs within
EVs has been recently reported in T-cells, consistent with a
selective export (Chiou et al., 2018). Other studies, however, show
a general strong correlation between the cellular and EV content
of tRNAs and tRFs in specific adherent cells (Tosar et al., 2015),
pointing to a passive sorting and release of these species.

Selective charging of exRNAs into EVs has also been found in
bacteria and parasitic eukaryotes. For example, tRFs but not full-
length tRNAs can be detected in EVs derived from Escherichia
coli (Ghosal et al., 2015), while EVs from other bacterial species
are enriched in intergenic regions, rRNAs, mRNAs, and other
non-coding RNAs (Sjöström et al., 2015; Malabirade et al., 2018).
An interest in bacterial exRNAs is emerging given their potential
role in bacterial–host interactions (Tosar and Cayota, 2020).
Likewise, exRNA biology in host–parasite interaction is gaining
attention with reports on protozoan parasites that can release
EVs containing, among other RNA species, ex-tRFs that can be
taken up by, and exert biological functions in mammalian cells
(Garcia-Silva et al., 2014). Finally, the ex-RNA composition of
EVs in helminths also seems to be species-specific. While ex-tRFs
are depleted in EVs from Heligmosomoides polygyrus (Buck et al.,
2014), EVs from Schistosoma mansoni contain a wide variety of
ex-tRFs (Hoy et al., 2014).

The specific sorting into EVs or RBP needs to be distinguished
from how release is regulated. This constitutes an additional
layer of complexity in understanding the relationship between
intracellular RNA and exRNA dynamics. For instance, increased
release of EVs following stress or a physiological stimulus has
been reported (Basso et al., 2013; Yuana et al., 2013; Chiou et al.,
2018; O’Neill et al., 2019); however, the underlying mechanisms
are largely unknown. Likewise, the mechanisms by which non-
vesicular RNAs are released have not been explored. It has
recently been reported an autophagy-dependent mechanism of
secretion of cytoplasmic nucleic acids (Jeppesen et al., 2019).
However, the composition and abundance of cell RNAs are in
good correlation with exRNAs in diverse adherent cells, including
the DU145 cell line deficient in autophagy (Tosar et al., 2020),
which suggests that other mechanism(s) may be involved in the
release on non-EVs exRNA.

Although the exact molecular mechanisms of sorting remain
quite elusive, selective charging of exRNAs into EVs has been
shown to be mediated by Ago2 and regulated by KRAS-MEK
signaling pathway (Cha et al., 2015; McKenzie et al., 2016), and
association with other RNA binding proteins (RBP) (Fabbiano
et al., 2020) such as ALIX (Iavello et al., 2016) annexin A2
(Hagiwara et al., 2015), major vault protein (MVP) (Teng et al.,
2017; Statello et al., 2018), and HuR (Mukherjee et al., 2016).

It has also been shown that specific motifs in miRNAs (e.g.,
GGAG and GGCU) are recognized by the chaperone proteins
heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1),
heterogeneous nuclear ribonucleoprotein U (hnRNPU), and
RNA-interacting protein SYNCRIP, among others, and selectively
sorted into EVs (Villarroya-Beltri et al., 2013; Fabbiano et al.,
2020; Zietzer et al., 2020). Another mechanism involves the
recognition of the miRNA secondary structure by the RNA-
binding protein Y-box I (YBX-1), rather than the primary
RNA sequence (Shurtleff et al., 2016). While these studies have
been centered in miRNAs, specific motifs recognized by RBP
and secondary structures are also present in tRNAs and tRFs,
which may similarly facilitate their selective loading into EVs.
For example, the precursor tRNAIle

AUA can enter the miRNA
biogenesis pathway via interactions with Exportin-5, Dicer, and
Ago proteins (Hasler et al., 2016). Indeed, processing of tRNAs
into tRFs often results in the generation of other classes of small
RNAs such as miRNAs or piRNAs (Cole et al., 2009; Keam et al.,
2014), which can be released into the extracellular compartment.
For instance, the piRNA piR-61648 is a tRF derived from the 5′

arm of tRNAGly
GCC and is the most abundant piRNA in human

saliva (Ogawa et al., 2013).
Specific tRFs may be actively loaded into EVs and/or generated

within vesicles. For instance, angiogenin (ANG), the nuclease
responsible for the generation of specific tRFs under stress
conditions is present both inside cells and in EVs (Wei et al.,
2017). This opens a scenario where specific ANG generated tRFs
in EVs can have intra- and extracellular origins.

IS CAPTURE OF EX-tRNA/tRFs BY
RECIPIENT CELLS SELECTIVE?

Extracellular RNA in EVs can be transported into target
cells through multiple mechanisms, involving internalization
(exosomes) or direct fusion (microvesicles) with the plasma
membrane of the target cells. However, the full process involving
targeting, entry, and release of the contents into the recipient cell
is incompletely characterized (Svensson et al., 2013; Zhou et al.,
2016; Mathieu et al., 2019; Zhao et al., 2020).

It seems that capture and internalization of EVs can
occur through passive, non-specific endocytosis, or selective
receptor mediated endocytosis. Numerous examples in the
literature show that exosomes released from particular cells
are captured only by specific types of cells, depending on
the presence of membrane factors or receptors (Fitzner et al.,
2011; Chivet et al., 2014; Mulcahy et al., 2014). Therefore,
vesicular delivery of tRNA and tRF molecules could occur
through selective mechanisms involving particular membrane
receptors recognized by exosomal ligands. However, a recent
study shows that the expression levels of a highly stable Gly-
tRNA half in MCF-7 cells are strongly correlated with levels
in released EVs and in target cells exposed to EVs, thus
favoring a passive release and uptake, at least in this paradigm
(Gámbaro et al., 2020).

Non-vesicular exRNA transport into target cells has been
shown for miRNAs associated with HDL, depending on a specific
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receptor (scavenger receptor class B type 1) (Vickers et al., 2011).
This opens the likely possibility that tRNAs/tRFs complexed with
HDL, which are by far more abundant than miRNAs (Tosar
et al., 2020), analogously enter target cells. Uptake of extracellular,
vesicular free miRNAs complexed to Ago2 has been shown to
occur through binding to Neuropilin-1, which acts as a receptor
of this ribonucleoprotein complex (Prud’homme et al., 2016).
Selected tRNAs and tRFs have been shown to interact with Ago
proteins (Woolnough et al., 2015; Pong and Gullerova, 2018),
suggesting a comparable capture and internalization process.
A number of extracellular RBP exist that may provide analogous
scenarios for protection of tRNAs and tRFs, making them
potential signaling molecules.

Naked RNA is also captured by cells in vivo. For instance,
extracellular dsRNAs are internalized by cells via clathrin- (Itoh
et al., 2008) and raftlin-dependent endocytosis (Watanabe et al.,
2011). In addition, the receptor for advanced glycation end-
products (RAGE) that is expressed on the cell surface binds to
RNA in a sequence-independent manner and enhances uptake
into endosomes (Bertheloot et al., 2016). RAGE internalized
RNAs increases the sensitivity to single stranded RNA-sensing
Toll-like receptors (TLRs). TLRs localize to the cell surface
and/or to endosomes and different TLR types show preferential
recognition of ssRNA or dsRNAs, with sequence and/or
structural specificities (Liu and Gack, 2020). For instance,
TLR3 is expressed in the plasma membrane of fibroblasts and
epithelial cells, and is able to sense extracellular, naked RNA
species (Alexopoulou et al., 2001; Matsumoto et al., 2002).
Although the mechanism is uncertain, spontaneous uptake
of Ala- and Cys-5′ tRNA halves has been shown (Ivanov
et al., 2014). Recent studies have shown that the 3′ CCACCA
sequence of tRNAAla

UGC can be effectively recognized by
TLR3 in HEK293 cells and induce immune response (Wang
et al., 2006). Because naked double-stranded tRF heterodimers
are so abundant extracellular components, it is tempting to
speculate about the possibility that these species activate TLR
specifically sensing dsRNAs.

We hypothesize that specific, yet to be identified receptors may
exist for ex-tRNA/ex-tRFs free or bound to different RBP with the
capacity to internalize these species. Both the carrier (RBP) and
the receptor may provide layers of specificity in ex-tRNA/ex-tRFs
binding and uptake.

POSSIBLE FUNCTIONS OF
EX-tRNA/EX-tRFs: DO THEY REFLECT
TRNA METABOLISM IN PRODUCING
CELLS AND/OR EXERT A PARACRINE
ACTIVITY?

RNA release to the extracellular compartment does not
necessarily involve a functional role of all species as paracrine
mediators. However, the high abundance of ex-tRNA/ex-tRFs,
with independence on whether they are passively or actively
released, favors the idea of an active role of these species
in cell-to-cell communication. An extreme case in point is

shown for tRFs that can enter the maturing sperm through
epididymosomes that are secreted from somatic cells in the
epididymis (Conine et al., 2018), and have been shown to
contribute to intergenerational inheritance (Chen et al., 2016).

Within cells, captured tRFs may trigger a number of signaling
cascades that have been validated in cell cultures and/or
biochemical approaches, including regulation of gene expression,
protein translation, and response to stress (Magee and Rigoutsos,
2020). Beyond the studies on the effects of tRFs delivered
through transfection reagents, increasing evidence suggests a
physiological interaction of tRFs with RNA sensors that modulate
the innate immune response, as discussed above.

Importantly, even upon efficient cellular uptake, not all
internalized exRNAs may be functionally relevant. A major
challenge will be to accurately assess the degree of productive
and non-productive cellular uptake within recipient cells. For
example, endosomal entrapment is a major issue in RNA
therapeutics (Crooke et al., 2017). It is possible that internalized
ex-tRNA/ex-tRF could face a similar fate, thus limiting their
functional potential. Because the mechanisms of cellular uptake
could influence their intracellular trafficking (Juliano et al., 2014),
we propose that ex-tRNA/ex-tRNA function should be evaluated
in the context of their mechanisms of delivery, uptake, and
intracellular trafficking.

A ROLE FOR tRNA MODIFICATIONS IN
EX-tRNA/EX-tRF BIOLOGY?

tRNAs are the most heavily post-transcriptionally modified
nucleic acids in the cell. To date, more than 150 different chemical
modifications have been found in tRNAs (Boccaletto et al., 2018),
where they play important roles in tRNA structure, stability, and
function (Pan, 2018). It is thus possible that tRNA modifications
may also be involved in regulating ex-tRNA/ex-tRF generation,
stability, uptake, and function.

tRNA modifications can protect tRNAs and tRFs from
cleavage or degradation. For instance, 5-methylcytosine (m5C)
that is present in several tRNAs can prevent tRNA cleavage
by ANG and modulate tRNA processing into tRFs (Tuorto
et al., 2012; Blanco et al., 2014). Likewise, 2′-O-methylated (2′-
OMe) nucleotides, which are abundant in tRNAs, are usually
not recognized by RNases and are frequently used in RNA
therapeutics to prevent oligonucleotide degradation (Khvorova
and Watts, 2017). In an analogous manner, these modified
residues could be protecting tRNAs and tRFs from nucleolytic
cleavage (Oberbauer and Schaefer, 2018). In addition, chemical
modifications such as 2′-OMe increase the melting temperature
of RNA:RNA duplexes (Majlessi et al., 1998). It is plausible that in
the context of ex-tRF stability, such modifications may not only
be maintaining ex-tRF integrity but also be promoting ex-tRF
duplex formation.

As discussed above, naked RNA can be recognized by cell
surface receptors and be internalized. We speculate that tRNA
modifications can also affect cellular uptake of ex-tRNA/ex-tRFs.
Interestingly, patterns of RNA modification can serve as the basis
for discrimination between self and non-self RNAs. Bacterial
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tRNAs were shown to stimulate the innate immune system via
TLR7, and a 2′-OMe modification at position 18 of bacterial
tRNAs was sufficient to abolish this immunostimulatory effect
(Jöckel et al., 2012). We note that TLR7 is not localized to the
cell surface, but the abovementioned example indicates that tRNA
modifications can alter receptor-mediated tRNA recognition.
Indeed, different modifications in other classes of RNAs have
also been shown to abolish signaling through TLRs (Karikó
et al., 2005). Furthermore, extracellular single-stranded inosine-
containing RNAs are internalized in epithelial cells by scavenger
receptor class-A-mediated endocytosis (Liao et al., 2011). Inosine
is commonly found at position 34 of tRNAs (Torres et al., 2014b,
Torres et al., 2015), and can induce cleavage of tRNAs mediated
by Endonuclease V (Morita et al., 2013; Vik et al., 2013). Thus,
inosine may represent an example of a tRNA modification that
could regulate both tRF formation and ex-tRF internalization.

Lastly, tRNA modifications can also serve as recognition
elements for RBPs. For example, several tRNA modifications
are important for their efficient recognition by aminoacyl tRNA
synthetases (that charge tRNAs with their appropriate amino
acid), while others such as 1-methyladenosine at position 58 of
tRNAs modulate tRNA affinity for the elongation factor 1A (that
delivers tRNAs to the ribosomal A-site for protein synthesis)
(Pan, 2018). In the context of extravesicular ex-tRNA/ex-tRFs,
one could imagine that tRNA modifications could modulate
ex-tRNA/ex-tRF binding to potential partners. Sera of patients
suffering from myositis contain autoantibodies of the anti-PL-12
type that interact with the anticodon loop of human tRNAAla

AGC.
Interestingly, two modifications present in this tRNA (inosine
at position 34 and N1-methylinosine at position 37 in the
anticodon loop) are major epitopes for these autoantibodies
(Becker et al., 1999). This suggests that tRNA modifications
within ex-tRNAs may play a role in the interaction of such ex-
tRNAs with the immune system. In addition, tRNA modifications
may at least be important for ex-tRNA/ex-tRF function within
recipient cells.

DISCUSSION

tRNAs have received strong attention in the recent years with
new assigned functions besides the canonical role as genetic code
decoders in protein translation. Their participation as modulators
of translation (Wilusz, 2015) and adaptation to stress (Kirchner
and Ignatova, 2015) is complemented with the finding that tRNAs
can be actively processed to smaller, bioactive fragments (Magee
and Rigoutsos, 2020). Specific types of tRFs cannot be envisioned
as by-products of tRNA turnover and mounting evidence reveal
them as a novel class of sRNAs that regulate gene expression
through multiple mechanisms.

The regulatory activities of tRNAs and tRFs modulate cell
signaling and are correlated with human disease. For instance,
increased levels of specific tRNAs promote metastatic progression
by inducing the expression of particular proteins (Goodarzi
et al., 2016). tRF expression dynamics also participate in disease
processes, through the regulation of apoptosis, protein synthesis,
and/or RNA interference (Soares and Santos, 2017). In addition,
tRNA/tRF activity is modulated by tRNA modifications, thus

defective tRNA modifications have also been associated to
complex diseases such as cancer, type 2 diabetes, and neurological
disorders (Torres et al., 2014a).

The complexity of tRNAs/tRFs biology, physiology, and
pathology is further magnified by their release to the extracellular
space, depending on the status of the cell of origin. Emerging
evidence suggests that tRNA and tRFs are among the most
abundant species in biofluids and in cell culture media, both
within EVs and especially outside EVs. Although many studies
point toward a regulated sorting and release of tRNA/tRFs, the
data presented here suggest that the complexity of the non-
vesicular ex-tRNAs/ex-tRFs does not necessarily correlate with a
differential release. Instead, it may reflect an interplay between
the intracellular RNA composition, its passive and non-passive
extrusion, and the abundance and types of extracellular RNases.

In thinking of a productive effect of particular types of
exRNAs in target cells, the number of internalized molecules
is an important factor. It has been suggested that the few
copies of miRNAs in biofluid exosomes make them unlikely
molecules activating signaling in target cells (Chevillet et al.,
2014). However, the strong abundance of tRNAs and tRFs in
the extracellular compartment points them as likely actors in
cell-to-cell communication. It has been recently shown that
the overexpression of tRNA halves resistant to degradation is
sufficient to trigger their encapsulation into EVs and delivery to
target cells (Gámbaro et al., 2020). Because stable tRNA halves
are highly produced in cells under stress conditions through the
activity of ANG (Yamasaki et al., 2009), it is easy to imagine that
upon release, recipient cells could sense these types of tRFs as a
sign of stress. For non-vesicular tRFs more exposed to RNases,
stability may be especially relevant for productive signaling in
target cells. While the less stable tRNAs/tRFs have opportunities
to target cells nearby, the more stable and abundant tRFs may
induce signaling at more distant places.

With independence on the mechanism of release, stability,
and possible biological activity, it is worth mentioning that the
high abundance of tRFs in biofluids has opened an active field of
research in biomarker discovery. The biogenesis of stress linked
tRFs is reflected in plasma, with altered profiles in diseases such as
cancer (Dhahbi et al., 2014; Wang et al., 2020) or epilepsy (Hogg
et al., 2019). This highlights the need to include these species in
the definition of prognostic and/or diagnostic biosignatures.

In summary, the significance of ex-tRNA/tRFs is an exciting
emerging field in functional biology and translational medicine.
Future research needs to expand on the mechanistic basis of (1)
tRNA and tRFs sorting into EVs and non-EVs compartments,
(2) the regulation of passive versus selective tRNA/tRFs release,
and (3) uptake by target cells. The complexity of these studies is
enhanced by cell type-specific processes, the influence of highly
abundant tRNA modifications, and the need to overcome a
number of technical issues to reliably characterize exRNAs.
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