
fmolb-08-665199 December 3, 2024 Time: 12:7 # 1

REVIEW
published: 26 March 2021

doi: 10.3389/fmolb.2021.665199

Edited by:
Yu Xiao,

Wuhan University, China

Reviewed by:
Ali Zarrabi,

Sabancı University, Turkey
Tian Hong,

The University of Tennessee,
Knoxville, United States

*Correspondence:
Mohammad Taheri

mohammad_823@yahoo.com
Soudeh Ghafouri-Fard

S.ghafourifard@sbmu.ac.ir

Specialty section:
This article was submitted to
Protein and RNA Networks,

a section of the journal
Frontiers in Molecular Biosciences

Received: 07 February 2021
Accepted: 01 March 2021
Published: 26 March 2021

Citation:
Hussen BM, Shoorei H,

Mohaqiq M, Dinger ME, Hidayat HJ,
Taheri M and Ghafouri-Fard S (2021)

The Impact of Non-coding RNAs
in the Epithelial to Mesenchymal

Transition.
Front. Mol. Biosci. 8:665199.

doi: 10.3389/fmolb.2021.665199

The Impact of Non-coding RNAs in
the Epithelial to Mesenchymal
Transition
Bashdar Mahmud Hussen1, Hamed Shoorei2, Mahdi Mohaqiq3, Marcel E. Dinger4,
Hazha Jamal Hidayat5, Mohammad Taheri6* and Soudeh Ghafouri-Fard7*

1 Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq, 2 Department of Anatomical
Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran, 3 Wake Forest Institute for Regenerative
Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States, 4 School of Biotechnology
and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia, 5 Department of Biology, College
of Education, Salahaddin University-Erbil, Erbil, Iraq, 6 Urology and Nephrology Research Center, Shahid Beheshti University
of Medical Sciences, Tehran, Iran, 7 Department of Medical Genetics, Shahid Beheshti University of Medical Sciences,
Tehran, Iran

Epithelial to mesenchymal transition (EMT) is a course of action that enables a polarized
epithelial cell to undertake numerous biochemical alterations that allow it to adopt
features of mesenchymal cells such as high migratory ability, invasive properties,
resistance to apoptosis, and importantly higher-order formation of extracellular
matrix elements. EMT has important roles in implantation and gastrulation of the
embryo, inflammatory reactions and fibrosis, and transformation of cancer cells, their
invasiveness and metastatic ability. Regarding the importance of EMT in the invasive
progression of cancer, this process has been well studies in in this context. Non-
coding RNAs (ncRNAs) have been shown to exert critical function in the regulation
of cellular processes that are involved in the EMT. These processes include regulation
of some transcription factors namely SNAI1 and SNAI2, ZEB1 and ZEB2, Twist, and
E12/E47, modulation of chromatin configuration, alternative splicing, and protein stability
and subcellular location of proteins. In the present paper, we describe the influence of
ncRNAs including microRNAs and long non-coding RNAs in the EMT process and their
application as biomarkers for this process and cancer progression and their potential as
therapeutic targets.

Keywords: lncRNA, miRNA, epithelial to mesenchymal transition, expression, biomarker

INTRODUCTION

Epithelial to mesenchymal transition (EMT) is a course of action that permits polarized epithelial
cells, that typically interrelate with basement membrane through their basal facet, to undertake
numerous biochemical alterations that allow them to adopt features of mesenchymal cells such
as high migratory ability, invasive properties, resistance to apoptosis, and importantly the higher-
order formation of extracellular matrix elements (Kalluri and Neilson, 2003). The EMT process
is completed by the destruction of the basement membranes and development of mesenchymal
cells that are able to roam from their original epithelial layer (Roche, 2018). Induction and
establishment of the EMT program is associated with activation of several transcription factors

Frontiers in Molecular Biosciences | www.frontiersin.org 1 March 2021 | Volume 8 | Article 665199

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.665199
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmolb.2021.665199
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.665199&domain=pdf&date_stamp=2021-03-26
https://www.frontiersin.org/articles/10.3389/fmolb.2021.665199/full
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-665199 December 3, 2024 Time: 12:7 # 2

Hussen et al. EMT and lncRNAs

and cell-surface markers, reformation and activation of
cytoskeletal proteins, synthesis of ECM-degenerating enzymes,
and alteration in the expressions of several non-coding RNAs
(ncRNAs) (Kalluri and Neilson, 2003; Roche, 2018). At least three
types of EMT are recognized. These distinct types are involved
in the processes of implantation and gastrulation of embryos,
inflammatory responses and fibrosis, and transformation of
cancer cells, their invasiveness and metastatic ability, respectively
(Kalluri and Neilson, 2003).

EMT IN PHYSIOLOGICAL PROCESSES

Epithelial to mesenchymal transition has critical roles in
generation of various tissues in the course of development of
organisms. Importantly, EMT has an indispensable role in the
gastrulation of metazoans and delamination of neural crest cells
in vertebrate embryos (Thiery et al., 2009). EMT also partakes
in wound healing (Kim et al., 2014). In addition, EMT regulates
function of embryonic stem cells through various routes (Kim
et al., 2014). Conversion of epithelial cells to mesenchymal cells
has been detected in the course of differentiation of embryonic
stem cells. In humans, differentiation of these cells is achieved
through up-regulation of N-cadherin instead of E-cadherin,
enhancement of vimentin levels, over-expression of E-cadherin-
suppressing molecules including Snail and Slug, and activation of
gelatinase and upsurge in motility of cells (Kim et al., 2014).

EMT IN CANCER

In the context of cancer, EMT is activated by several factors
such as hypoxia, cytokines, and growth factors. These molecules
are produced by numerous cells that are present in the tumor
milieu in response to metabolic alteration, innate and adaptive
immune reactions, and administration of antitumor drugs
(Roche, 2018). EMT is associated with comprehensive changes
in the expression profile of genes. This expression switch is
accomplished through an integrative regulatory network that
consists of a number of transcription factors namely SNAI1
and SNAI2, ZEB1 and ZEB2, Twist, and E12/E47, ncRNAs, and
other factors that modulate chromatin configuration, alternative
splicing, and protein stability and subcellular location (De Craene
and Berx, 2013). The most important feature of EMT is the over-
expression of N-cadherin and the subsequent downregulation
of E-cadherin (Loh et al., 2019). This process has important
implications in the design of anticancer therapeutic agents
(Marcucci et al., 2016) and, moreover, has fundamental roles in
the metastatic potential of cancer cells, a process whose reversion
is critical in cancer treatment (Roche, 2018). Thus, identification
of the molecular pathways that control EMT process is a
prerequisite for development of novel anticancer therapies. In
the current paper, we describe the role of ncRNAs including
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)
in the EMT process and their application as biomarkers for
this process and cancer progression and their potential as
therapeutic targets.

miRNAs AND EMT

miRNAs are transcripts with sizes around 22 to 24 nucleotides.
They are principally bind with the 3′ UTR of selected transcripts
to suppress their translation or degrade them via slicer-dependent
route (Macfarlane and Murphy, 2010). Several miRNAs influence
the EMT process in different cancer types. In lung cancer,
miR-451a has a central role in blocking EMT and conferring
sensitivity to doxorubicin through this mechanism. miR-451a
decreases expressions of N-cadherin and Vimentin, whereas it
surges expression of E-cadherin. Functional studies show that
the direct interaction between miR-451a and c-Myc contributes
in blocking EMT and chemoresistance in lung cancer cells (Tao
et al., 2020). The well-known oncogenic miRNA miR-21 has a
noticeable role in induction of EMT through modulation of the
PTEN/Akt/GSK3 beta pathway and regulation of transcription
of E-cadherin, vimentin, snail, slug and β-catenin (Dai L. et al.,
2019). In prostate cancer patients, expression of miR-210-3p is
increased in bone metastatic specimens compared with non-
bone metastatic specimens. Up-regulation of this miRNA is
associated with PSA concentrations in serum, Gleason grade
and metastatic probability to bone in these patients. In vitro
experiments show the effect of miR-210-3p in augmentation of
EMT, invasion and migration of prostate cancer cells. Notably,
animal studies show that miR-210-3p knockdown decreases bone
metastasis of PC-3 cells. This miRNA preserves the constant
induction of NF-κB signaling through modulating expression of
SOCS1 and TNIP1 (Ren et al., 2017). Expression of miR-23a is
augmented in metastatic breast cancer cells and in patients with
lymph node involvement. Notably, expression of this miRNA
is increased after treatment of breast cancer cells with TGF-β1.
Importantly, both cell line assays and in vivo tests show that miR-
23a silencing suppressed TGF-β1-stimulated EMT, migration,
invasiveness and metastatic probability. The role of miR-23a
in EMT is exerted via its binding with CDH1, a critical gene
in EMT process. Remarkably, Wnt/β-catenin signaling is also
engaged in miR-23a facilitated progression of EMT (Ma et al.,
2017). In colorectal cancer, expression of miR-330 has been
down-regulated parallel with up-regulation of HMGA2 levels and
poor clinical outcome. Stable up-regulation of miR-330 in these
cell lines has decreased HMGA2 levels, enhanced apoptosis and
decreased migratory potential and viability of these cells. Notably,
this miRNA has also reduced expressions of EMT markers
including Snail-1, E-cadherin and VEGF as well as some other
oncogenic proteins namely SMAD3 and AKT (Mansoori et al.,
2020). In colorectal cancer, miR-145-5p, miR-3622a-3p, miR-205
and miR-200b inhibit EMT through targeting CDCA3, SALL4,
MDM4 and HIF-1α, respectively (Shang et al., 2017; Chang et al.,
2020; Chen et al., 2020; Fan and Wang, 2020).

Figure 1 depicts the impacts of miRNAs in the EMT process
in non-small cell lung cancer (NSCLC).

Supplementary Table 1 displays the role of individual
miRNAs in the EMT process in diverse human cancers.
As EMT has a central part in the progression of cancer, EMT-
associated miRNAs have prominent roles in the determination of
patients’ survival. For instance, over-expression of miR-200c-3p,
miR-99a and miR-92b is linked with prolonged survival in lung
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FIGURE 1 | miR-34a is decreased in non-small cell lung cancer (NSCLC). miR-34a blocks expression of PAI. PAI has a role in suppression of PIAS3 expression and
blocking its effects on STAT3. STAT3 enhances expression of EMT-related genes (Wang D.X. et al., 2017). In addition, miR-770 and miR-590-5p are decreased in
these patients. These miRNA suppress expression of JMJD6 and SOX2, respectively. Under-expression of these miRNAs leads to over-expression of EMT genes.

cancer, ovarian cancer and breast cancer patients (Li Y.Y. et al.,
2019; Zhang L. et al., 2019; Wang H.Y. et al., 2020). Conversely,
up-regulation of miR-199b-5p and miR-210-3p is linked with
poor survival in prostate cancer patients (Ren et al., 2017; Zhao
et al., 2019). Table 1 shows the result of studies that have
appraised the prognostic role of EMT-associated miRNAs in
diverse cancers.

miRNA ROLES IN EMT IN
NON-CANCEROUS CONDITIONS

Expression of miR-29b has been decreased by silica and has
affected the mesenchymal-epithelial transition (MET) in RLE-
6TN cells. Besides, up-regulation of miR-29b can suppress
silica-induced EMT in animals, precluding lung fibrosis, and
enhancing respiratory function. Therefore, miR-29b has been
suggested as a negative modulator of silicosis fibrosis, possibly
through enhancing MET and inhibiting EMT in the lung
(Sun et al., 2019). Moreover, miR-200b/c-3p have been shown
to modulate epithelial plasticity and suppress skin wound

healing through affecting TGF-β-mediated RAC1 signaling
(Tang et al., 2020).

LncRNAs AND EMT

LncRNAs are regulatory transcripts with diverse sizes ranging
from 200 nucleotides to more than thousands nucleotides.
These transcripts regulate expression of genes through altering
chromatin configuration, acting as enhances, sponging diverse
molecules particularly miRNAs and altering stability of
transcripts (Fang and Fullwood, 2016). Through modulation of
activity of several cancer-related signaling cascades, lncRNAs
modulate metastatic potential of tumor cells (Ghafouri-Fard
et al., 2021a,b). Several lncRNAs play a part in the modulation of
EMT processes. For instance, expression of NEAT1 is augmented
in cervical cancer tissues in correlation with poor survival of
patients. This lncRNA directly inhibits expression of miR-361, a
miRNA that suppresses HSP90 to impede the invasion and EMT
phenotype. Thus, NEAT1 is regarded as a pro-EMT lncRNA
in cervical cancer (Xu D. et al., 2020). MALAT1 enhances the
EMT features and cisplatin resistance of oral squamous cell
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TABLE 1 | Prognostic roles of EMT-associated miRNAs in cancer (ACT: adjacent control tissue).

Sample number Kaplan-Meier analysis References

70 pairs of LC and ACTs High miR-200c-3p expression was linked with longer survival. Wang H.Y. et al., 2020

179 pairs of LC and ACTs High expression of miR-616-5p was linked with poor overall survival. Shi et al., 2017

49 pairs of LC and ACTs Decreased miR-874 expression was linked with poor prognosis. Wang S. et al., 2020

47 pairs of OC and ACTs Decreased miR-99a expression in was linked with poor prognosis. Zhang L. et al., 2019

51 pairs of BC and ACTs Decreased miR-92b expression was linked with poor prognosis. Li Y.Y. et al., 2019

60 pairs of BC and ACTs Decreased miR−516a−3p expression was linked with poor prognosis. Chi et al., 2019

117 pairs of BLC and ACTs Decreased miR-221expression was linked with poor prognosis. Li F. et al., 2019

300 pairs of CRC and ACTs Decreased miR−330 expression was linked with poor prognosis. Mansoori et al., 2020

80 pairs of CRC and ACTs High expression of miR-3622a-3p was linked with better overall survival. Chang et al., 2020

4 pairs of CRC and ACTs Decreased miR−598 expression was linked with poor prognosis. Wang Y. et al., 2017

93 pairs of BC and ACTs Higher expression of miR-365-3p was linked with better overall survival. Gao and Tian, 2020

Breast cancer Higher expression of miR-335 was linked with poor overall survival. Chen et al., 2019

157 pairs of PaC and ACTs Decreased miR-3656 expression was linked with poor prognosis. Yang R.M. et al., 2017

36 OC tissues and 14 normal ovarian tissue Decreased miR-195-5p expression was linked with poor prognosis. Dong S. et al., 2019

35 pairs of GC and ACTs Decreased miR-125a-5p expression was linked with poor prognosis. Wang X. et al., 2019

52 pairs of CC and ACTs Decreased miR-31-3p expression was linked with poor prognosis. Jing et al., 2019

20 pairs of PCa and ACTs Decreased miR-33a-5p expression was linked with poor prognosis. Dai Y. et al., 2019

30 pairs of PCa and ACTs High expression of miR-199b-5p was linked with poor prognosis. Zhao et al., 2019

52 pairs of PCa and ACTs High expression of miR-210-3p was linked with poor prognosis. Ren et al., 2017

60 pairs of OC and ACTs High expression of miR-1228 was linked with poor prognosis. Du L. et al., 2020

36 pairs of tumor specimens and adjacent normal specimens High expression of miR-127 was linked with poor prognosis. Shi et al., 2017

20 pairs of RCC and ACTs High expression of miR-452-5p was linked with poor prognosis. Zhai et al., 2018

36 pairs of GBC and ACTs Decreased miR-143-5p expression was linked with poor prognosis. Taheri et al., 2017

carcinoma cells through regulation of the PI3K/AKT/mTOR
signaling (Wang R. et al., 2020). In lung and esophageal cancers,
MALAT1 exerts similar functions through modulating miR-124
expression and Ezh2/Notch1 axis, respectively (Chen et al.,
2018; Wu et al., 2018). On the other hand, MEG3 enhances level
of epithelial marker E-cadherin and suppresses mesenchymal
markers vimentin and fibronectin in gastric carcinoma cells,
indicating an anti-EMT function for this lncRNA (Jiao and
Zhang, 2019). In ovarian cancer, TC0101441, CCAT1 and PTAR
promote EMT through modulation of KiSS1, miR-490-3p and
miR-101-3p, respectively (Liang et al., 2018; Mu et al., 2018; Qiu
et al., 2020). Supplementary Table 2 summarizes the functions
of EMT-associated lncRNAs in human cancers.

Epithelial to mesenchymal transition-associated lncRNAs
have both diagnostic and prognostic values in cancer patients.
For example, expression levels of GHET1 could differentiate
cancer and normal esophageal tissues with high accuracy (Liu H.
et al., 2017). Over-expression of FLVCR1-AS1 and LINC00261
has been associated with poor overall survival rate of patients with
neoplasm (Yan et al., 2019; Gao et al., 2020). Table 2 summarizes
the results of studies that report diagnostic and prognostic roles
of EMT-associated lncRNAs in cancer.

DISCUSSION

Numerous miRNAs and lncRNAs have been shown to regulate
EMT process. These ncRNAs participate in this process through

influencing activity of several signaling pathways such as NF-
κB, TGF-β, Wnt/β-catenin, Akt/mTOR, PIK3R3 and EGFR. The
Wnt/β-catenin pathway is the target of several miRNAs such
as miR-6838-5p, miR-770, miR-23a, miR-27a, miR-125b, miR-
375, miR−516a−3p, miR-630, miR-330-3p, miR-147, miR-138
and miR-3622a-3p. Moreover, lncRNAs UCA1, SNHG7, GATA6-
AS1, CRNDE and FEZF1-AS1 exert their regulatory roles on
EMT through modulation of this signaling pathway. Thus,
the Wnt/β-catenin pathway can be regarded as a focal point
for organization of EMT-associated ncRNAs. This important
position potentiates this pathway as a therapeutic target in
reversing the EMT process. As the Wnt/β-catenin pathway
has been implicated in the progression of EMT during tumor
evolution (Basu et al., 2018), it is predicted that ncRNAs
contribute to the fine-tuning of activity of this pathway to confer
different degrees of EMT.

Circular RNAs are another group of ncRNAs that participate
in carcinogenesis (Su et al., 2019). However, their role in
the EMT process has been less studied. High−throughput
transcript sequencing as a new method can be applied
to identify EMT-associated circRNAs. This strategy has
led to identification of 7 up-regulated circRNAs and 16
down-regulated circRNAs in breast cancer cells with EMT
phenotype. CircSCYL2 has been among under-expressed
circRNAs in breast cancer tissues and cell lines. Up-
regulation of circSCYL2 has suppressed migration and invasion
(Yuan et al., 2020).

Several therapeutic modalities such as short hairpin RNAs
and engineered antibodies have been designed to reverse the
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TABLE 2 | Diagnostic and prognostic role of EMT-associated lncRNAs in cancer (ACTs: adjacent control tissues, OS: overall survival).

Sample number Area under
curve

Sensitivity Specificity Kaplan-Meier analysis Multivariate cox regression References

50 pairs of SOC
and ACTs

- - - High expression of
FLVCR1-AS1 was linked with
poor OS.

High expression of FLVCR1-AS1 was
associated with lymphatic metastasis
and distant metastasis.

Yan et al., 2019

50 pairs of CCA
and ACTs

- - - High expression of LINC00261
was linked with poor OS.

High expression of LINC00261 was
associated with large tumor size,
positive lymph node metastasis,
advanced TNM stages, and higher
post-operative recurrence.

Gao et al.,
2020

76 pairs of GC and
ACTs

- - - High expression of TP73-AS1
was linked with poor OS.

High expression of TP73-AS1 was
associated with depth of invasion and
TNM stages.

Zhang et al.,
2018c

18 pairs of GC and
ACTs

- - - Low expression of HRCEG was
linked with poor OS.

- Wu Q. et al.,
2020

162 pairs of GC
and ACTs

- - - High expression of SNHG7 was
linked with poor OS.

High expression of SNHG7 was
associated with TNM stage, depth of
invasion, lymph-node metastasis, and
distant metastasis.

Wu S. et al.,
2020

84 pairs of GC and
ACTs

- - - High expression of HCP5 was
linked with poor OS.

High expression of HCP5 was
associated with the size of the tumor,
lymph nodes metastasize, and the
severity of the disease

Zhang et al.,
2020

78 pairs of GC and
ACTs

- - - High expression of SNHG6 was
linked with poor OS.

High expression of SNHG6 was
associated with invasion depth, lymph
node metastasis, distant metastasis,
and TNM stage.

Yan et al., 2017

92 pairs of CRC
and ACTs

- - - High expression of HIF1A-AS2
was linked with poor OS.

High expression of HIF1A-AS2 was
associated with TNM stages.

Lin et al., 2018

338 pairs of CRC
and ACTs

- - - High expression of SNHG1 was
linked with poor OS.

- Bai et al., 2020

124 pairs of CRC
and ACTs

- - - High expression of PANDAR
was linked with poor OS.

High expression of PANDAR was
associated with tumor diameter,
histological differentiation, TNM stage,
lymph node metastasis, depth of
invasion.

Lu et al., 2017

82 pairs of BC and
ACTs

- - - High expression of TP73-AS1
was linked with poor OS.

- Ding et al.,
2019

TCGA database - - - High expression of PVT1 was
linked with poor OS.

- Chang et al.,
2018

40 pairs of HC and
ACTs

- - - High expression of SNHG7 was
linked with poor OS.

- Yao et al., 2019

134 pairs of HCC
and ACTs

- - - High expression of SBF2-AS1
was linked with poor OS.

High expression of SBF2-AS1was
associated with vein invasion and TNM
stage.

Zhang et al.,
2018e

54 pairs of HCC
and ACTs

- - - High expression of
LOC105372579 was linked
with poor OS.

High expression of LOC105372579
was associated with tumor size and
TNM stage.

Changyong
et al., 2019

HCC tissues
(n = 38), normal
liver tissues (n = 21)

- - - High expression of HULC was
linked with poor OS.

High expression of HULC was
associated with clinical stage and
intrahepatic metastases.

Li et al., 2016

76 pairs of HCC
and ACTs

- - - High expression of HOXA−AS3
was linked with poor OS.

- Tong et al.,
2019

76 pairs of OSCC
and ACTs

- - - High expression of
ADAMTS9-AS2 was linked with
poor OS.

High expression of ADAMTS9-AS2 was
associated with tumor size, clinical
stage, and lymph node metastasis.

Li Y. et al., 2019

123 OSCC tissues
and 50 adjacent
non-tumor tissues

- - - High expression of H19 was
linked with poor OS.

- Zhang et al.,
2017a

128 pairs of BLC
and ACTs

- - - High expression of TP73-AS1
was linked with poor OS and
PSF rates.

- Tuo et al., 2018

(Continued)
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TABLE 2 | Continued

Sample number Area under
curve

Sensitivity Specificity Kaplan-Meier analysis Multivariate cox regression References

48 pairs of NPC
and ACTs

- - - High expression of TUG1 was
linked with poor OS.

- Qian et al.,
2019

42 pairs of BLC
and ACTs

- - - High expression of NRON was
linked with poor OS.

High expression of NRON was
associated with tumor invasion depth.

Xiong et al.,
2020

30 pairs of OS and
ACTs

- - - High expression of PCAT1 was
linked with poor OS.

High expression of PCAT1 was
associated with advanced clinical-stage
and tumor metastasis.

Zhang et al.,
2018d

305 pairs of LUAD
and ACTs

- - - High expression of H19 was
linked with poor OS.

High expression of H19 was associated
with tumor diameter and TNM stage.

Liu et al., 2019

107 pairs of LUAD
and ACTs

- - - High expression of TTN-AS1
was linked with poor OS.

High expression of TTN-AS1 was
associated with TNM stage and lymph
node involvement.

Jia et al., 2019

50 pairs of NSCLC
and ACTs

- - - Low expression of NBR2 was
linked with poor OS rate.

- Gao et al.,
2019

86 pairs of NSCLC
and ACTs

- - - High expression of FEZF1-AS1
was linked with poor OS.

High expression of FEZF1-AS1 was
associated with lymph node
metastasis, poor differentiation grade,
and advanced TNM stage.

He et al., 2017

55 pairs of ESCC
and ACTs

0.858 69.7% 91.3% Low expression of GHET1 was
linked with poor OS.

High expression of GHET1 was
associated with lymph node
metastasis, differentiation, and TNM
stage.

Liu H. et al.,
2017

25 pairs of RCC
and ACTs

- - - High expression of PVT1 was
linked with poor OS.

High expression of PVT1 was
associated with TNM stage, fuhrman
grade, lymph node involvement, and
tumor dimension.

Ren et al., 2019

EMT process in cancer cells. Moreover, a number of natural
agents have been demonstrated to suppress EMT through
modulation of the important EMT-associated molecules or
pathways (Loh et al., 2019). NcRNAs have been involved in
the therapeutic efficiency of both conventional and natural
anticancer drugs (Dong Y. et al., 2019; Tao et al., 2020).
Thus, modulation of expression of EMT-associated ncRNAs is a
promising strategy for enhancement of the response of patients
to anti-cancer drugs.

Expression levels of EMT-associated miRNAs and lncRNAs
has been linked to the survival of cancer patients. Therefore,
it is possible that a panel of EMT-associated miRNAs and
lncRNAs predict disease progression and therapeutic response
with clinically relevant accuracy. However, there is no consensus
set of ncRNAs to facilitate the design of such diagnostic tools as
yet. Thus, future studies should focus on the integration of data
provided by single studies to propose a diagnostic/prognostic
panel consisting of EMT-associated lncRNAs and miRNAs.
As discussed above, lncRNAs and miRNAs have functional
interactions to modulate EMT. System biology methods are
useful in recognition of such interactions and depicting the
interaction network to identify the most important modules.
Identification of these modules not only facilitates design of
diagnostic panels, but also help in design of targeted therapies.
Systems biology methods have been successfully used to integrate
modeling and experimental data, leading to identification of
several intermediate states participating in the EMT process
(Hong et al., 2015). Moreover, construction of model of the
miRNA-based coupled chimeric modules has led to identification

of the role of miR-200/ZEB module in switching between
epithelial and mesenchymal features and in establishment of
a hybrid phenotype with assorted features of collective cell
migration, as documented in physiological processes (Lu et al.,
2013). Moreover, system biology methods have been used to
find the main regulatory network which controls TGF-β-induced
EMT (Tian et al., 2013).

Taken together, ncRNAs are associated with important
features in invasive and metastatic cancers, i.e., the EMT process.
Therapeutic interventions that modulate expression of these
transcripts can improve survival of cancer patients.

Although the role of ncRNAs in regulation of EMT in
cancer has been extensively appraised, less is known about
their contribution in the regulation of this process in non-
cancerous context.
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