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This article is dedicated to the memory of Cyrus Chothia, who was a leading light in the
world of protein structure evolution. His elegant analyses of protein families and their
mechanisms of structural and functional evolution provided important evolutionary and
biological insights and firmly established the value of structural perspectives. He was a
mentor and supervisor to many other leading scientists who continued his quest to
characterise structure and function space. He was also a generous and supportive
colleague to those applying different approaches. In this article we review some of his
accomplishments and the history of protein structure classifications, particularly SCOP
and CATH. We also highlight some of the evolutionary insights these two classifications
have brought. Finally, we discuss how the expansion and integration of protein sequence
data into these structural families helps reveal the dark matter of function space and can
inform the emergence of novel functions in Metazoa. Since we cover 25 years of structural
classification, it has not been feasible to review all structure based evolutionary studies and
hence we focus mainly on those undertaken by the SCOP and CATH groups and their
collaborators.
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THE EARLY DAYS–CHOTHIA THE PIONEER

Protein structures have helped us see more clearly into the evolutionary past. Cyrus Chothia, to whom
this special issue is dedicated, was an early pioneer on these journeys and remained a leading figure
throughout his life. As structures accumulated in the Protein Data Bank (PDB) from the early 1970s
onwards, he was one of the first to realise the value of comparing them to capture their differences and
thereby understand themechanisms by which proteins evolve. In a similar timeframe i.e. the late 70s and
early 80s, another early pioneer in the protein world, Margaret Dayhoff, was also cataloging evolutionary
changes by considering the substitutions, insertions and deletions in the amino acid residues that can
occur in the protein’s polypeptide chain. By linking these data, we can see how genetic variations
translate to structural and ultimately functional impacts. Over the last two decades the explosion in
sequence data arising from increasingly sophisticated sequencing technologies, including sequences
from thousands of completed genomes, have sharpened these insights. In parallel, structure prediction
has seen some quantum leaps over the last decade including from exploitation of AI and deep learning
strategies that may bring structural annotations to many mysterious regions of sequence space currently
uncharacterised. In this review we highlight some of the major shifts in technology and data that have
enabled better exploration of protein structure space and brought functional insights.
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Early Identification of Protein Families
The technical challenges of determining 3D structures of proteins
has meant that the sequence data has always outstripped
structural data–currently more than 300-fold. There are
approximately 170,000 protein structures in the PDB
(Armstrong et al., 2019) but more than 200 million sequences
in UniProt (The UniProt Consortium, 2019), and metagenomic
data adds billions more sequences (Mitchell et al., 2019). In the
late 70s and early 80s, Dayhoff pioneered the comparison of
protein sequences, designing residue substitution matrices which
enabled the alignment of even relatively distant relatives diverged
from a common ancestor. Many other approaches have been
explored since then (e.g. BLOSUM (Henikoff and Henikoff,
1992)), see review for others (Jones et al., 1992)). These
approaches and the dynamic programming algorithms (e.g.
developed by Needleman and Wunsch (Needleman and
Wunsch, 1970), Smith and Waterman (Smith and Waterman,
1981)) developed to align protein sequences started the
identification of protein evolutionary families by Dayhoff and
others.

How Constrained Are Protein Structures?
Adding structural data can help probe functional mechanisms
more deeply and as the Protein Databank grew from the 1970s
onwards (see Figure 1), algorithms for comparing structures
emerged e.g. the still widely used rigid body approaches
developed by Rossman and Argos (Rossmann and Argos,
1976) amongst others 9). As the PDB data grew it became
clear that in some evolutionary superfamilies considerable
divergence outside the structural core could occur.

One of the earliest and most important insights into structural
divergence was captured by Cyrus Chothia and Arthur Lesk in
their comparison of more than 32 pairs of protein homologues
(Chothia and Lesk, 1986). This analysis showed the exponential
relationship between sequence change and structural change and
many of the characteristics captured in that study still hold when
much larger datasets are examined. Figure 2 shows the
relationship detected for current data using the SSAP structure

comparison algorithm (see below and (Orengo and Taylor,
1996)). For relatives having similar functional properties, the
structure is highly conserved even at low sequence similarity.
Extreme divergence occurs for relatives with different functional
properties, likely to be paralogues, having different structural
constraints imposed by these functions.

To expand on these insights, Chothia and Lesk published some
detailed and beautifully described expositions of the sequence
structure relationships for two important protein families the
globins (Lesk and Chothia, 1980) and the immunoglobulins
(Chothia and Lesk, 1982; Lesk and Chothia, 1982).

To capture structural properties between very diverse
homologues, many new methods emerged to better cope with
the extensive residue mutations, insertions and deletions
occurring between them. These methods have continued to
evolve since the late 1980s. Many built on the dynamic
programming strategies successfully exploited in sequence
comparison. In some, dynamic programming was applied at
two levels to fully exploit the 3D data. First at a low level (i.e.
residue views) and then to an upper summary level to obtain the
final alignment (e.g. see SSAP (Orengo and Taylor, 1996)). Other
approaches combined rigid body superposition with dynamic
programming (see for example early approaches STAMP (Russell
and Barton, 1992), STRUCTAL (Subbiah et al., 1993), CE
(Shindyalov and Bourne, 1998)). One of the most popular
algorithms with crystallographers and other structural
biologists, DALI (Holm and Sander, 1993), effectively
“chopped” the structures into hexapeptide fragments and used
Monte Carlo optimization to determine the optimal order for
concatenating matched fragments between the structures. Other
approaches commonly used by structural biologists include
MAMMOTH (Ortiz et al., 2002) and GESAMT (Krissinel,
2012). Fast approaches (e.g. CATHedral (Redfern et al., 2007))
were also developed that explicitly compared secondary structure
elements between proteins giving up to 1000-fold speedups in the
alignments but at the cost of accurate residue alignments. These
approaches were driven by the exponential increase in the
number of structures in the PDB and the need for rapid scans

FIGURE 1 | Growth of domains, folds and chains deposited in the Protein Data Bank from 1972 onwards. Data sources: PDB, CATH.
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with newly solved structures to identify novel folds. More recent
approaches (e.g. FATCAT (Ye and Godzik, 2003)) have been
explicitly designed to optimize the alignments between loops,
typically the most diverse regions, but often containing key
functional residues.

Domain Based Structural Families
Chothia’s examination of the globins and immunoglobulins was the
first step toward a more comprehensive analysis of structure space
and analyses performed in the following decade culminated in the
establishment of one of the most widely used resources capturing
protein domain structure superfamilies–SCOP (Murzin et al., 1995)
in 1994. SCOP was co-founded by Alexey Murzin, who joined
Chothia’s team at the LMB and has remained a leading structure
based evolutionary resource. Its first release contained 366
superfamilies, 866 non-redundant domain structures and 1182
protein domains from different species. As well as classifying
domains by their superfamily, the superfamilies were also
organized by class (determined by secondary structure
composition) and fold group (determined by the order and
orientation of those secondary structure elements in 3D space)
in a hierarchical manner. Superfamilies in which relatives adopted
regular arrangements in 3D were also annotated with architecture
descriptions e.g. barrel, sandwich. Significant manual curation
ensured very high quality in the assignments and annotations.
SCOP has been expanded recently by inclusion of additional
resources in SCOPe, managed by Steven Brenner and co-
workers (Fox et al., 2014).

Continued expansion of the PDB has led to nearly a 10-fold
increase in the number of superfamilies but the growth in new
folds has been much slower (see Figure 1 for numbers from a
related resource). In parallel, Janet Thornton’s group used a
more automated approach by applying the SSAP structure
comparison method (Orengo and Taylor, 1996), developed
by Orengo and Taylor, to recognise homologues, including
very distant homologues, and structures with similar folds.
For extremely distant relatives, manual curation was also
required but overall was not applied to the same extent as in
SCOP. The CATH resource, set up by Orengo and Thornton,
included a more formal architecture level within the hierarchy
(see Figure 3).

As a result of the comparative ease of acquiring experimental
data, the sequence databases (e.g. UniProt) expanded even more
rapidly than the structure databank (PDB) and the increase in this
information and more powerful profile based sequence
comparison strategies to harness it e.g. PSI-BLAST (Altschul
et al., 1997), HMMer (Eddy, 1998), HHsearch (Söding, 2005)
aided in the confirmation of homologues in which structures
had diverged considerably (see Figure 4). By capturing these
extremely remote homologies, it became clear that sometimes
only the structural core was conserved (see also Figure 5)
(Dessailly et al., 2010). The variation in size across some
superfamilies suggested a structural continuum and was also
referred to as the “Russian Doll Effect” (Swindells et al., 1998).
Furthermore, it was clear that some folding arrangements consisted
of multiple repeat motifs e. g alpha-beta, beta-beta, alpha-alpha.
Andrei Lupas and other groups highlighted primitive motifs
appearing in early life that seeded the emergence of more
complex folds through duplication and gene fusion (Lupas
et al., 2001). In fact, a large scale application of the DALI
algorithm on all known structures in the PDB, by Liisa Holm,
identified a small set of very highly populated so-called “attractor”
motifs (e.g. αβ, β−β, αβ) that link structural superfamilies (Holm
and Sander, 1996).

More detailed SCOP and CATH-based analyses have suggested
the need for a less rigid hierarchy and recent structural
classifications, such as the ECOD resource developed by Nick
Grishin (Cheng et al., 2014), have adopted this approach. In
ECOD, domain structures are grouped into superfamilies
annotated by class and architecture information but relatives
within the superfamilies can be described as adopting different folds.

Both SCOP and CATH have also changed since their
inception to reflect these phenomena. In 2014, SCOP2 was
released (Andreeva et al., 2014, 2) providing many valuable
links between superfamilies sharing common structural motifs.
Rare structural motifs are also identified, and biochemical
features highlighted. CATH now describes the topology
annotations (fold or T-level) for each superfamily as reflecting
“core structural motifs” since large scale comparisons of relatives
show that for the majority of homologous pairs at least 50% of the
structure is conserved and the core topological motif is a helpful
structural fossil revealing even the most distant relationships.

FIGURE 2 | Structural similarity measured by SSAP score (left) or normalised RMSD (right) vs % of sequence identity.
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FIGURE 3 | Overview of the CATH classification scheme for protein domains.

FIGURE 4 | Highly divergent structural homologues within the HUPs SuperFamily (CATH ID 3.40.50.620). Six diverse structural clusters (also called structurally
similar groups, SSGs) are identified using SSAP to compare structures all against all (see tree top left and figures on the right). However, representatives from each SSG
can be superposed to reveal the highly conserved structural core common to all (see central black region in the bottom left figure).
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Unique Fold and Superfolds
Although structural classifications were clearly a valuable means of
organising proteins and capturing evolutionary changes, a key
question was the extent to which they reflected Nature or
reflected bias in the Protein Data Bank. By using the more
powerful profile-based sequence search strategies (e.g. PSI-
BLAST) to map proteins with 3D-structures to all sequence
relatives in UniProt, Chothia was able to show that even with
the sparse structural data available at that time, a large proportion of
sequences could be mapped to the SCOP families suggesting that
these families were reasonably representative, though clearly they
lacked many membrane associated proteins and disordered
proteins (Chothia, 1992). That deficit still holds to some extent,

although the PSI structural genomics initiatives which focused on
membrane proteins helped to increase their representation in the
structural classifications (Chandonia and Brenner, 2006). Current
mapping done for some selected model organisms annotated in the
integrated Genome3D resource ((Sillitoe et al., 2020) described
below), shows that structural predictions based on SCOP or CATH
superfamilies can be made for nearly 80% of proteins in many of
these organisms, suggesting that a significant proportion of protein
superfamilies in Nature are now represented in the protein structure
classifications. In 1994, Cyrus Chothia made a prediction of fewer
than 1000 folds in Nature (Chothia, 1992), an amazingly prescient
estimation as 25 years later we possibly have as few as
1300–although there is still some controversy around the

FIGURE 5 | Conservation of the structural core (highlighted in green) within the HUPs superfamily.

FIGURE 6 | Top 9 “super-folds” in CATH v4.3. The inner wheel shows the proportion of structures that fall into each class, architecture, fold group and superfamily
respectively.
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definition of fold! Furthermore, the dominance of some folding
arrangements in Nature is still clear, with the top nine “superfolds”
still accounting for more than 30% of all classified domain
structures (see Figure 6). Of the current superfolds, five were
detected in 1994 using CATH data (Orengo et al., 1994) and the
remaining four superfolds (1.20.120, 1.10.490, 2.80.10, 3.10.20) were
superseded by others (3.60.20, 2.40.10, 3.30.200, 1.10.510) that were
less well populated in the original CATH release.

MAPPING SEQUENCE SPACE TO THE
STRUCTURAL FAMILIES

While sequence to structure mapping has demonstrated that we
have fold representatives for a large proportion of protein
superfamilies in Nature, large parts of superfamily space are not
yet covered by detailed structural and functional characterisation.
This becomes even more apparent when metagenome sequence
data is added e.g. from MGnify (Mitchell et al., 2019). Most
structure classification resources make use of powerful tools like
HMMer, developed by Sean Eddy and co-workers (Eddy, 1998)
and HH-suite, developed by Johannes Soding to identify sequence
relatives (Söding, 2005).

MGnify is 10-fold bigger than UniProt, currently comprising
mostly prokaryotic data but the Earth Biome and Tree of Life
sequencing projects (Lewin et al., 2018) will expand the data for
eukaryotes too. The alpha-beta hydrolase superfamily, the 9th most
populated superfamily in CATH (by number of non-redundant
representatives at 90% sequence identity) is massively expanded

(10-fold) bymetagenome sequences extracted froma range of bacterial
environments. Some of these e.g. from wastewater environments and
oceans have changed in response to recent selection pressure leading to
divergence in the binding site to accommodate PET and other plastics,
which these enzymes can now degrade.

The second phase of the PSI structural genomics in the States
(2005–2010) explicitly targeted structurally uncharacterised protein
sequencesmapping to SCOP, CATHor Pfam superfamilies to extend
structural knowledge of these dark regions of sequence space (Norvell
and Berg, 2007). These analyses further confirmed early expositions
of the power law in structure-sequence space whereby some
superfamilies had been massively expanded through extensive
gene duplication throughout evolution. Many of these very highly
populated superfamilies (described as “Megafamilies” by the
structural genomic initiatives), are universal to all kingdoms of life
and contain domains performing essential generic functions, like the
many Rossman superfamilies which bind nucleotide cofactors e.g.
NAD or NADP, in a common cleft in the structure formed by a
crossover in the polypeptide chain. Figure 7 shows that currently the
top 100 superfamilies account for nearly 50% of all protein domain
sequences mapped to CATH structure superfamilies.

PROTEIN DOMAINS ARE COMBINED IN
MILLIONS OF DIFFERENT WAYS IN
NATURE
Analyses of the SCOP and CATH superfamilies confirmed the
generic functional role of many domain relatives (see further

FIGURE 7 | Top 100most populated CATH SuperFamilies (CATH v4.3) with additional details regarding sequence counts and unique EC and GO terms for the top
10 most populated SuperFamilies.
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discussion below) and the commonly used description of
domains as independently folding functional units in
evolution. The incredible enhancements in sequencing
technologies at the turn of the millenium, allowing sequencing
of whole genomes starting with human, meant that comparative
genomics studies became possible exploring the different
distribution of domain families and domain combinations
within and between different kingdoms of life. There are now
more than 300 complete and nearly complete genomes in
ENSEMBL (Yates et al., 2020). This genomic data showed the
extent of gene duplications, gene fusions and fissions occurring
during evolution, with the former being more common
(Björklund et al., 2005). Changes in these multidomain
combinations or multidomain architectures (MDAs) result in
expansions and divergence in the functional repertoires between
species in response to selective pressures imposed by novel
environmental contexts.

Studies inspired by Chothia’s vision of domain units taken
forward by various researchers he mentored, notably Sarah
Teichmann and Mark Gerstein, characterised the “mosaic”
nature of proteins and confirmed domains as the fundamental
building blocks of life (Teichmann et al., 1999; Teichmann et al.,
2001). Analyses of CATH-Gene3D which contains domain
sequences from UniProt mapped to CATH and Pfam
superfamilies using HMMer-based protocols currently reveal
311,575 different domain combinations. This is probably an
underestimate since many proteins have regions of sequence
that are still uncharacterized and may correspond to novel
families that are unlikely to be common to multiple species.
Unsurprisingly the more sequence sub-families found within a
superfamily the more multidomain architectures identified (see
Figure 8, below) and the power law is apparent again with the top
100 superfamilies occurring in the most MDA contexts occurring
in a very large number of different MDA contexts (51% of all).
Changes in domain context can modify the active site or binding
pockets (discussed more below) and inevitably alter the surface
features of the protein enabling diversity in protein interactions
for paralogs expressed in different tissues. In addition,

Teichmann and co-workers showed that some combinations of
domains, described as supradomains, are particularly prevalent,
probably corresponding to useful functional units (Vogel et al.,
2004).

Comparative genome studies enabled by this vast sequence
data could probe deep evolutionary relationships by using the
structural families identified for different species. For example,
CATH-based studies showed essential pathways populated by
universal superfamilies that can be traced back to the Last
universal Common Ancestor (LUCA) (Ranea et al., 2006).

STRUCTURE FAMILIES BRING DETAILED
INSIGHTS INTO PROTEIN FUNCTION
EVOLUTION
Chothia’s eloquent reviews of domain structure families and
evolutionary changes in protein structures were inspiring and
played a key role in framing the questions around protein
function evolution. In particular, he sought to elaborate on a
“domain grammar of function” that would allow translation of a
multi-domain “sentence” based on the functional roles of the
constituent domains.

Other complementary studies added to the emerging picture.
For example, Thornton’s group analysed 31 highly populated and
well structurally characterised superfamilies in CATH revealing
the extent to which functions could diverge in particular in the
megafamilies (Todd et al., 2001). A number of phenomena can
drive this. Clearly the existence of multiple relatives in a genome
means that extra copies (i.e. paralogues) will be more tolerant of
mutations and these can drive functional shifts if they occur on or
near key sites. In addition, as mentioned already, domain fusions
can reshape functional sites or surfaces. Furthermore, relatives
can oligomerise in different ways again driving structural
modifications in the active site or functional surfaces and the
creation of new surfaces capable of evolving functional roles.

However, dramatic changes in functional class or in the
chemistry performed by an enzyme, for example, appear to be
rare (Todd et al., 2001; Bashton and Chothia, 2007). It’s hard to
engineer the geometry and exquisite stereospecificity needed to
perform an enzyme reaction and perhaps not surprising that
these analyses revealed a significant tendency for chemical
intermediates to be conserved along the reaction pathways of
different relatives in the superfamily. More frequently,
evolutionary changes (particularly residue insertions) cause
changes in the geometry of the active site and binding pocket
enabling relatives to perform the same or similar chemistry on a
different substrate (Todd et al., 2001).

These evolutionary changes, which can sometimes be quite
subtle involving just a handful of residues, combined with the
expansion of paralogs through gene duplication give an effective
mechanism for expanding the functional repertoire of an
organism. For example, the kinase superfamily has been
significantly expanded in eukaryotes where relatives perform
essential functions in cell-cell communication and intracellular
signaling. Most paralogs are involved in phosphorylation of
protein targets, but these targets can vary and relatives may be

FIGURE 8 | Number of MDAs vs Number of sequence subfamilies
(FunFams) for each SuperFamily in CATH v4.3.
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expressed in different tissues having diverse interaction
opportunities.

Bashton and Chothia (Bashton and Chothia, 2007) undertook
a very detailed analysis of the extent to which key functional roles
were conserved across domain superfamilies allowing domains to
be used as “words” within a protein “functional sentence”. This is
a challenging task, and the challenges increasingly apparent as
more experimentally characterised sequence relatives are
classified within SCOP and CATH. In SCOP these predicted
structural relatives are classified in the sister resource,
SUPERFAMILY, managed by Julian Gough (Wilson et al.,
2009). In CATH, sequences are directly integrated in
superfamilies as well as being captured in the Gene3D sister
resource (Lewis et al., 2018). Currently, the sequence data from
UniProt expands the structural superfamilies 500-fold on average
(up to 49 thousand-fold), depending on the superfamily allowing
a deeper analysis of functional diversity. The correlation between
sequence diversity and the number of sequence subfamilies and
functional diversity can be seen for all types of superfamilies in
Figure 9.

Chothia’s analyses supported earlier hypotheses of
conservation of function within a broad functional class
(Bashton and Chothia, 2007). For example, the amino-acyl
tRNA synthase superfamily is amongst the top 2% largest
superfamiles and relatives perform multiple functions covering
at least 31 EC3 categories (i.e. having different EC classifications
at the third EC level associated with change in chemistry).
Nevertheless, many relatives exploit the same co-factor
pyridoxal 5-pyrophosphate binding to the same site and
substrates tend to share a similar chemical moiety.

Another functionally diverse superfamily, the HUP
superfamily, currently contains more than 640 thousand
sequences from UniProt and 39,505 sequence subfamilies (at
50% sequence identity). This threshold is used because various
studies have suggested 50% or 60% sequence identity for inferring
functional similarity between homologues, provided there is

reasonable overlap in sequence length (60% or more) (Rost,
2002; Rentzsch and Orengo, 2009). CATH identifies at least
55 EC terms and 594 diverse Gene Ontology (GO) terms for
experimentally characterized relatives within this superfamily
and like many other megafamilies less than 6% of relatives
have experimental characterization. In addition, it’s possible to
characterize the structural diversity across this superfamily by
clustering relatives according to structural similarity (e.g. < 5 A
RMSD). There are currently 31 such structural clusters. Despite
this structural and functional diversity the structural core is
highly conserved (see Figure 5 above), as also observed in
other megafamilies. However, as seen in Figure 4, there can
be considerable structural decorations or embellishments outside
this core.

Phylogenetic Insights
The vast sequence data available for many species has allowed
phylogenetic forays into protein superfamilies. For example, by
combining both structural and sequence data as in CATH-
Gene3D we can trace further back and explore the order of
functional shifts within these superfamilies. The FunTree
classification studies of Thornton and co-workers allowed
tracing of shifts in enzyme chemistry (changes in the third
number of the EC classification code) between homologues in
all highly populated superfamilies in CATH (Furnham et al.,
2012).

Similarly expansion in the structural data available for the
superfamilies, thanks partly to targeted activities of the PSI
structural genomics initiatives, provided insights into shifts in
catalytic residues within enzyme superfamilies (Todd et al.,
2005), confirming trends detected by early studies of
Thornton and co-workers using much sparser data. As in the
previous analysis interesting cases of convergence of catalytic
machinery within superfamilies or “residue hopping” were
detected (Todd et al., 2002). This was caused by divergence
of functionally distinct homologues which then converged to
the same chemistry via different mutational routes giving
catalytic residues in different places in the active site pocket,
but with the same chemical properties and necessary orientation
to perform the chemistry.

FUNCTIONAL SUB-CLASSIFICATION OF
PROTEIN REVEALS THE DARKMATTEROF
FUNCTION SPACE
With <1% of protein sequences in UniProt having experimental
characterisation, interest has grown in understanding the likely
functional divergence across superfamilies, especially those with
industrial value. Organising the sequence data to reveal highly
conserved residues between putative functional relatives can
give clues to possible changes in substrate specificity or enzyme
chemistry. Because the structural data is so sparse, our approach
to identifying functional families (FunFams) in CATH
superfamilies has been to use sequence data and cluster
relatives using an entropy-based method that segregates sets
of relatives with differentially conserved residues (Das et al.,

FIGURE 9 | Functional diversity (captured by number of functional
families - FunFams) vs. sequence diversity (number of Gene3D s90 clusters
i.e. in which relatives share 90% or more sequence identity) for CATH
superfamilies. Each dot represents an individual superfamily.
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2015b). Residues that are conserved across all relatives in a
superfamily are likely to be important for folding or stability but
residues that are conserved in different ways e.g. residues with
different chemical properties, between different sets of relatives,
are likely to be associated with the functional roles of the
proteins. Some endorsement of this functional clustering is
given by performance of CATH functional families in the
independent CAFA Critical Assessment of Functional
Annotations (Jiang et al., 2016; Zhou et al., 2019).
Furthermore, residue sites conserved in FunFams are
significantly enriched in known functional residues e.g.
catalytic residues, protein interface residues, ligand binding
residues etc (Das et al., 2015b).

Structural data, whether known or predicted, can then be
exploited to determine where these putative functional
determinants co-locate on the protein surface to glean further
insights into functional properties. This clustering into functional
families reveals the most promiscuous, highly diverse
superfamilies. Figure 10 shows that the top 65 most
functionally diverse enzyme superfamilies have more than 20
different chemistries exhibited by relatives.

FunFams are only identified for sets of sequences where at
least one relative has been experimentally characterized and has
a GO functional annotation. On that basis, only about 36% of
the 150 million domain sequences classified in CATH can be
assigned to a functional family suggesting that there is still a
large proportion of functional space to characterize. However,
some superfamilies, particularly those containing important
eukaryotic organisms (e.g. human, model organisms) tend to
have a higher proportion of functional characterization. It’s also
important to remember that this is a domain based functional
classification, but function is generally annotated at the protein
level. However, analyses of selected superfamilies, namely the
enolases, TPPs and HUPs suggest that by segregating on
functional discriminants domain relatives occurring in
different multidomain contexts are indeed clustered into
separate functional groups (Das et al., 2015a).

FUNCTIONAL FAMILIES GIVE FINER
INSIGHTS INTO THE EMERGENCE OF
NOVEL FUNCTIONS IN METAZOA
As mentioned already above, globular domains are one of the key
functional units of proteins, often with a specific functional role
and with the ability to fold independently. Some globular
domains have catalytic functions, facilitating enzymatic
reactions, providing much of the complex chemistry that cells
need to function. Other domains are responsible for detecting
signals, by interacting with other protein domains and ligands, as
part of signaling processes.

During the history of life on Earth there have been a number of
major evolutionary events each requiring their own unique
functional innovations. For example, early life-forms needed to
establish much of the initial basic chemistry, energy production,
metabolism etc. A number of domain superfamilies date back to
the last universal common ancestor (LUCA) of cellular life, and
these domain superfamilies provide much of the catalytic
processes required by cells, such as the TIM-barrel domain
superfamily, which provides the basic structural core for
hundreds of different catalytic functions. Another major
transition was the emergence of animals (Metazoans), which
appeared several hundred million years ago, from single-celled
ancestors (Figure 11). The emergence of Metazoans required
many different functional innovations relating to cell
communication, differentiation and migration. To support
cellular complexity, coordinated regulation of gene expression
was needed together with many other protein innovations such as
the establishment of various signal transduction pathways that
connect extracellular signals to transcriptional regulation.

As already mentioned, gene duplication and fusion can give
proteins with novel domain combinations leading to new
functions. For example, changing the multi-domain
architecture, can give a novel protein that operates in a new
cellular micro-environment. However, a change in multi-domain
architecture is not a prerequisite for domain-based innovations
and domains may gain novel functions with no change in domain
partners. We can use a change in CATH FunFams, as a proxy for
a change in domain function, allowing a preliminary exploration
of various aspects of Metazoan evolution from a FunFam domain
perspective.

For example, by examining the expansion in the number of
FunFams within a domain superfamily we can track the
expansion of functional diversity across that superfamily at
different stages in evolution. By counting the number of
FunFams for a given superfamily and clustering organisms
using TreeFam (Ruan et al., 2007) we can show the FunFam
expansions in CATH superfamilies at different evolutionary
stages.

A large number (of domain superfamilies) show strong
expansions (in the number of their FunFams) specifically at
the emergence of Metazoans. Many of these expanded
superfamilies are associated with signaling and regulatory
processes, such as the SH2 domain family which undergoes
significant expansion in Metazoans corresponding to its newly
acquired role of phosphotyrosine binding domain in cell

FIGURE 10 | Enzyme Commission terms distributions for each CATH
v4.3 SuperFamilies, showing that 65 superfamilies havemore than 20 different
chemistries (i.e. EC3s).
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signaling processes. Transcription factors are known to have a key
role in Metazoan evolution/development. Many Transcription
factor FunFams appear early in Metazoan evolution, prior to the
separation of extant metazoan phyla but after the divergence of
Choanoflagellates and Metazoans. There is also further lineage
specific expansions in transcription factors, for example along the
vertebrate lineage.

CONCLUSION

The pioneering work of Cyrus Chothia in characterising the
relationship between sequence and structure and his
subsequent analyses of specific families, namely the globins
and immunoglobulins, together with structural and functional
analyses by Janet Thornton amongst others, inspired algorithms
and analytic protocols for detecting evolutionary relationships
and the mechanisms by which genetic variations translate into
structural and functional changes during evolution. These
frameworks provided impetus for the establishment of
comprehensive structural classifications which have been
exploited in many analyses shedding light on divergence,
particularly for enzyme superfamilies, but which also
established general principles regarding functional shifts in all
protein classes. To some extent the SCOP and CATH
classifications have provided complementary perspectives as
the former involved detailed manual curation and explicitly
recognised domains found in diverse multi-domain contexts.
In contrast, CATH aimed to exploit computational strategies

that searched for globular domains and then classified them based
on structural similarities in the core. Unlike many fields of science
where competition often clouds judgment, Cyrus was a man of
huge intellect and integrity who valued competition and the
opportunities that diverse perspectives give in maximising the
exploration and understanding of complex phenomena. He was
one of the most supportive scientists in the Genome3D
consortium which established formal collaborations between
SCOP and CATH and which is currently enhancing the
structural coverage of genome sequences in human, model
organisms and Pfam families (Sillitoe et al., 2020). This
collaboration is being continued in the new 3D-SCAfold
initiative, being led by PDBe, which will ensure closer
integration and disseminate the family data more widely to
enable deeper studies of evolution.
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