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Small-angle X-ray scattering (SAXS) experiments are important in structural biology
because they are solution methods, and do not require crystallization of protein
complexes. Structure determination from SAXS data, however, poses some difficulties.
Computation of a SAXS profile from a protein model is expensive in CPU time. Hence,
rather than directly refining against the data, most computational methods generate a
large number of conformers and then filter the structures based on how well they satisfy
the SAXS data. To address this issue in an efficient manner, we propose here a Bayesian
model for SAXS data and use it to directly drive a Monte Carlo simulation. We show that
the automatic weighting of SAXS data is the key to finding optimal structures efficiently.
Another key problem with obtaining structures from SAXS data is that proteins are
often flexible and the data represents an average over a structural ensemble. To
address this issue, we first characterize the stability of the best model with extensive
molecular dynamics simulations. We analyse the resulting trajectories further to
characterize a dynamic structural ensemble satisfying the SAXS data. The combination
of methods is applied to a tandem of domains from the protein PTPN4, which
are connected by an unstructured linker. We show that the SAXS data contain
information that supports and extends other experimental findings. We also show that
the conformation obtained by the Bayesian analysis is stable, but that a minor
conformation is present. We propose a mechanism in which the linker may maintain
PTPN4 in an inhibited enzymatic state.

Keywords: SAXS, bayesian scoring, automatic weighting, inferential structure determination, PTPN4, allosteric
regulation, conformational dynamics

1 INTRODUCTION

Integrative structural biology uses multiple techniques to determine three-dimensional structures of
large, potentially flexible complexes of biological macromolecules. Typically, structures of the
individual components (e.g., individual domains or proteins) are known but the overall
arrangement of the components is to be determined. Despite their relatively low information
content, Small Angle Scattering [Small Angle X-ray Scattering (SAXS), or Small Angle Neutron
Scattering (SANS)] experiments play an important role, since they are performed in solution, and can
provide crucial conformational information on the arrangement of individual components.
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In order to incorporate SAXS data, many approaches generate
poses of the components and then use the experimental data to
filter solutions by means of a y criterion [e.g., Mareuil et al.
(2007); Yang et al. (2010); Rozycki et al. (2011)]. For a larger
number of degrees of freedom, or when a large conformational
space needs to be covered, this becomes computationally
intensive, and one might miss structures that satisfy the data.
Preferentially, one would like to employ methods that can use the
data directly as restraints to drive the structure calculation, since
they should converge faster to conformations satisfying the data.
In methods that refine directly against the data, definite choices
on unmeasurable model parameters must be made before the
minimization. Examples for such parameters are the scale factor
between the experimental and the back-calculated data, and the
quality or consistency of the data, which has a relationship to the
weight on the data employed during the calculation (data with
lower quality should get a lower weight). Yet, the optimal weight
one should put on the data is never known beforehand. These
parameter choices have important consequences, and even more
so if SAXS data are to be used together with other data, for which
similar problems exist.

When modeling structures from experimental data, appropriate
relative weighting is of particular importance. In crystallography,
for example, the free R-value Briinger (1992) is often used to find
suitable values for unknown parameters such as the weight on the
experimental data. This becomes rapidly cumbersome if more than
one value needs to be optimized, and it is hardly an option for data
with low information content such as SAXS or SANS.

A more powerful and statistically more accurate solution to
this problem can be obtained in the context of a Bayesian treatment
of the structure determination problem. We previously developed
the Bayesian framework we called “Inferential Structure
Determination” (ISD) and applied it to Nuclear Magnetic
Resonance (NMR) data Rieping et al. (2005). We showed that
the Bayesian formalism converges better than standard
minimization strategies Rieping et al. (2005). We also showed
that an optimal weight on a y? type experimental term can be
obtained from a 3D structure and the data Habeck et al. (2006), and
that this weight can be optimized simultaneously with the structure
Nilges et al. (2008), Bernard et al. (2011). More recently, we
extended the concept of ISD and Bayesian weight optimization
to the treatment of cross-linking mass spectrometry data Ferber
et al. (2016) and electron microscopy Bonomi et al. (2019).

In this paper, we develop a Bayesian framework for the
analysis of SAXS data. This model allows us to automatically
weight the SAXS data based on its agreement with other
structural modeling terms. The modeling is performed in
several stages, adding additional detail at each stage, starting
with rigid body motions of protein domains, and subsequently
adding and sampling conformations of the linker and the termini.
This is followed by extensive unbiased molecular dynamics (MD)
simulation starting from the optimal structure. We apply the new
formalism and modelling strategy to the determination of the
structure of the tandem domain of the protein PTPN4. This is a
good test case since, due to its flexible linker, several
conformations may be simultaneously present and influence
the measured SAXS data, which hampered previous attempts
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to obtain useful insights with more standard approaches to
interpret SAXS data obtained for this protein.

The protein PTPN4 belongs to the non-receptor protein
tyrosine phosphatase (PTP) family. It is involved in various
biological processes such as T-cell signalling, learning, spatial
memory and cerebellar synaptic plasticity Kina et al. (2007),
Kohda etal. (2013), Young et al. (2008). PTPN4 also regulates cell
proliferation and presents an anti-apoptotic function Gu et al.
(1996), Préhaud et al. (2010), Zhou et al. (2013), Zhang et al.
(2019). PTPN4 is a large modular protein containing a
N-terminal FERM (Band 4.1, Ezrin, radixin, and Moesin)
domain, a PDZ (PSD-95/Dlg/ZO-1) domain and a C-terminal
catalytic tyrosine phosphatase domain. The phosphatase is
cleaved in the cell, leading to enzyme activation and its active
form consists of the PDZ and PTP domains connected by a linker
Gu and Majerus (1996). We previously demonstrated that the
catalytic activity of the PTP domain is inhibited by the PDZ
domain, while the binding of a ligand to the PDZ releases this
auto-inhibition and activates the phosphatase Maisonneuve et al.
(2014). A biochemical study suggests that this mechanism of
regulation of PTPN4 allows for the specific dephosphorylation of
cellular partners such as the mitogen-activated protein kinase
(MAPK) p38y recruited through the PDZ domain of the
phosphatase Maisonneuve et al. (2016). The importance of the
PDZ domain for PTPN4 is further supported by the fact that the
G protein of an attenuated rabies virus strain target this domain
to deregulates PTPN4 phosphatase function and ultimately
causes neuronal cell death Préhaud et al. (2010), Babault et al.
(2011), Caillet-Saguy et al. (2015).

However, the structural mechanism by which the PDZ domain
modulates the activity of the phosphatase domain remains
elusive. We showed that a conserved hydrophobic patch in the
linker connecting the PDZ and the PTP domains is involved in
the communication between the two domains and participates in
the phosphatase’s regulation Caillet-Saguy et al. (2017). NMR and
SAXS characterization of the PDZ-PTP domains of PTPN4
showed that the tandem adopts a compact conformation
compatible with inter-domain interactions. However, no
interaction was detected by NMR between the phosphatase
domain and either the PDZ domain or the unstructured and
flexible linker Maisonneuve et al. (2014). This suggests that the
compact conformation of the PDZ-PTP domains is stabilized by
fuzzy intramolecular interactions. Interestingly, ligand binding to
the PDZ domain disrupts the transient interactions of the PDZ
domain and the linker with the phosphatase domain. Ligand
binding to the PDZ induces dynamic rearrangements of the two
domains, resulting in the activation of the phosphatase domain
Maisonneuve et al. (2014).

The Bayesian SAXS treatment generates a model of the
conformations adopted by the PDZ, linker and phosphatase of
PTPN4. This model allows us to propose a mechanism by which
the linker can regulate the PTPN4 activity. The structure we
obtain is based on the implicit assumption that an ensemble
covering a small volume of conformational space can explain the
SAXS data. We therefore used the MD simulations to investigate
the conformational dynamics of PTPN4 and showed that the
proposed preferential relative orientation of the two domains and
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the linker is stable and corresponds best to the SAXS data.
However, the simulations sample other orientations of two
domains and the linker, albeit with a worse fit to the SAXS
data. By using machine learning and a genetic algorithm we test
combinations of structures from the MD trajectories and obtain a
dynamic model of PTPN4 that optimally fits the SAXS data.

2 RESULTS

2.1 Bayesian Small Angle X-ray Scattering

Restraint Term
In Bayesian modeling Rieping et al. (2005), one directly evaluates
Bayes’ equation

p(X,0,¢|B, D) < p(X|B)p (0)p (§)p (DIX, 0, §) 1

where X is the 3D structure, ¢ is a parameter quantifying the
deviation of the back-calculated data from the experimental data,
and £ stands for any other unknown parameters that one needs to
model the data from the structure. B is the background
information that we have on the structure, which allows us to
evaluate the probability of a structure in absence of experimental
data, for example, a molecular dynamics force field. To evaluate
the discrepancy of the calculated data from the experimental data,
we need a forward model m (X) to calculate the intensities Z =
m (X) from a structure X. We used the FoXS model Schneidman-
Duhovny et al. (2013), which has, in addition to a scale factor y,
two parameters ¢; and ¢, where ¢; is the scaling of the atomic
radius used to adjust the total excluded volume of the atoms, and
¢, is used to adjust the difference between the density of the
hydration layer and the bulk water.

As derived in detail in the Appendix, the negative log
likelihood is

M
—logp(I|X, Y,€1,6,0°) = 2—0_2)(2 + Mlog(o) (2)
L& (I(g) - ym(Xgncne)
= M;( s(q:) ®

where I is the experimental intensity, M is the number of points in
the SAXS profile, g; is the momentum transfer g = (47nsin (0))/A,
with scattering angle 6 and X-ray beam wavelength A. s(g;) is the
experimental uncertainty of the SAXS profile at g; estimated from
merging multiple experimental profiles.

2.2 Application to Protein Tyrosine
Phosphatase Non-Receptor 4

To illustrate the Bayesian SAXS score, we perform exhaustive
sampling of the conformational space of the PDZ and PTP
domains of PTPN4, which for simplicity we call PTPN4. The
PDZ (92 residues) and PTP (275 residues) domains are connected
by a linker of 34 residues, and flanked by N-terminal (13 residues)
and C-terminal (13 residues) sequences. The structures of
individual domains are known Babault et al. (2011), Barr et al.
(2009). However, the linker and the termini are highly flexible as
monitored by NMR Maisonneuve et al. (2014). They thus
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prevented the determination by X-ray crystallography of the
overall organization of the two domains of PTPN4 tethered by
the linker.

To efficiently characterize the structural conformation of
PTPN4 by a Bayesian SAXS score, we subdivided the problem
into three subsequent stages (Figure 1). First, the linker and
the termini were removed and the conformational space
was explored with rigid body movements of the folded
domains. Second, linker and termini were added, while
keeping the domains fixed. Third, the whole structure was
further refined with rigid body movements for the two
domains and flexible backbones for the linker and the termini.
In all three stages, we used Eqgs. 2,3 to incorporate the SAXS
profile of PTPN4. Volume exclusion was used to produce
physically realistic structures.

2.2.1 Rigid Body Docking

We started with 64 parallel simulations by placing the PDZ
domain randomly around the PTP domain (without the linker
and termini), avoiding physical contact between the two
proteins (Figures 2A,B). The simulations rapidly converged
to two distinct sets of conformations in which the PDZ domain
(Figure 2C) is located on either of the two most distant points of
the phosphatase domain, each subdivided in two further
conformations (Figures 2D,E). In these conformations, the
a2-helix of the PDZ domain is roughly aligned with the
main axis of the phosphatase domain. This indicates a
preferred orientation of the PDZ domain relative to the PTP
domain.

To analyse the trajectories, we trained a self-organizing map
(SOM) Bouvier et al. (2015). The subdivision of the two distinct
sets of conformations into two further sets is clearly visible in the
SOM, making it possible to define a total of four clusters
(Figure 3A). Each cluster corresponds to one of the four
possible combinations of position of the PDZ domain, and
orientation of the a2-helix of the PDZ domain, with respect to
the main axis of the phosphatase domain.

2.2.2 Linker Construction

We then extracted a clash-free conformation displaying the
lowest y? for each of the neurons of the SOM (Figure 3A). For
every selected structure, we generated an average of 1,224
conformations for the linker and the termini sequences (see
Methods). A Bayesian SAXS score was calculated for each of
these structures. Depending on the pose, the linker raised or
lowered the Bayesian SAXS score (Figure 3B). For each
neuron we retained the structure with linker and termini
displaying the lowest y*> (Figure 3B). Interestingly, the
models with the lowest Bayesian SAXS scores are located in
the two left clusters of the SOM corresponding to PDZ
domains exclusively located on the side of the PTP f-sheet
(Figure 2E). These clusters differ in a rotation of the PDZ by
180°. In these conformations, the attachment points of the
linker to the PTP domain are located on the opposite side
from where the PDZ domain is positioned. This implies that
the linker passes over the surface of the phosphatase to reach
the PDZ domain.
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FIGURE 1 | The workflow of the method. The main steps of the algorithm are depicted: rigid body docking, linker construction, Monte Carlo simulations, and
Molecular Dynamics (MD) simulations. The Small-angle X-ray scattering (SAXS) data is used to derive the first three steps.

FIGURE 2 | Starting and final conformations of the 64 rigid body simulations. PDZ in blue, PTP in red. (A) Starting conformations (full PDZ). (B) Starting
conformations (only a2-helix for PDZ). (C) PDZ, with a2-helix in blue. (D) Final conformations (full PDZ). (E) Final conformations (only a2-helix for PDZ).

2.2.3 Monte-Carlo Refinement

To further improve the sampling of the conformational space of
the linker and termini, we performed an exhaustive refinement of
the best structures of each neuron of the SOM map. We used a
Monte-Carlo algorithm to sample the linker conformations in the
dihedral angles of the linker and termini. As previously, we used
only the Bayesian SAXS scoring term and volume exclusion to
calculate the energy. This approach allowed the added residues
and the domains to adjust jointly to the SAXS profile. The y?
significantly improved compared to the previous step for all
clusters (Figure 3C), and values lowered by 36% on average to
a range between 3 and 18. However, the trend in the four clusters
remained the same. The structures with the lowest y? scores after
Monte-Carlo simulations belong to the cluster in the upper left
corner of the self-organizing map as previously observed in the
step of linker construction (Figure 3C). This indicates that the

linker passes over the surface of the phosphatase for the structures
which are in best agreement with the SAXS data.

The 10 conformations with the best final y* after Monte-Carlo
simulations, ranging from 2.5 to 2.9 are presented in Figure 4. In
these 10 conformations, the linker is wrapped around the
phosphatase domain and passes in close proximity to the
catalytic site of the phosphatase domain. Interestingly, a
conserved sequence in the linker (shown in green), involved in
the allosteric regulation of PTPN4 Caillet-Saguy et al. (2017), is
facing both the $5-loop-f36 region and the WPD loop, a conserved
catalytic motif. This observation suggests a possible effect of the
linker on these two regions.

2.2.4 Influence of the Weight Adjustment
During the calculations, the weight of the Bayesian SAXS score
adjusted substantially (Figure 5). From the initial rigid body
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C

Linker construction

FIGURE 3 | Self-organizing maps (SOMs) of the three calculation stages. (A) Final conformations of the rigid body docking stage, coloured by x. Only SOM
neurons with at least one structure are shown throughout. For each cluster, an example structure shows the relative orientation of the PDZ with respect to the
phosphatase domain. (B) Best 4° for each docking pose with linker added. (C) Average y? of minimized linker conformations.

20
15
10

Monte Carlo refinement

docking to the best structure after refinement, the weight was
multiplied by 17. This means that the SAXS data was given
17 times more importance at the end of the procedure compared
to the beginning. To see why this matters, we performed 20 linker
refinement simulations with a fixed weight for the SAXS restraint,
varying from 10*~10” and compared it to 10 simulations using
the Bayesian SAXS restraint. We then examined the y? along the
simulation step, for all replicates (Figure 6). All Bayesian SAXS
simulations consistently reach low y? values. In contrast, two
limiting cases emerge in the fixed-weight simulations. When the
weight is very large, agreement to the SAXS data is substantial,
and the simulation quickly finds a local SAXS restraint minimum.
Sometimes, conformers with can be obtained, but more often less

optimal basins are targeted, with y* ~ 10 in this example. The
Monte Carlo acceptance rate then drops to zero, and the
simulation stops exploring new conformations. In contrast,
when the weight is very small, the SAXS score has little
influence. The simulation can scan conformational space
easily, but it has no chance of finding structures in good
agreement with the SAXS data.

2.3 Stability of the Optimal Conformation
2.3.1 Molecular Dynamics Simulations and
Conformational Clustering

To further assess the stability of the optimal conformation
obtained from the Bayesian analysis, we performed three MD

Frontiers in Molecular Biosciences | www.frontiersin.org

5 June 2021 | Volume 8 | Article 671011


https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

Spill et al.

Automatic Bayesian Weighting

conformational variability of linker.

Linker view

FIGURE 4 | Last frame of the top 10 simulations, aligned on the PTP domain. PTP: red; PTP loop and catalytic cytosine [H (851)CSAGIGRT (859)]: yellow; WPD
loop [W (818)PDHGVP(824)]: purple; f5-loop-p6 region [T (754)QVERGRY (761)]: cyan; C-terminus, N-terminus and linker: grey; highly conserved linker region [E (617)
PDFQYIP(624)]: green; PDZ: blue. (A) Top view depicts catalytic site in vicinity to the linker. (B) Bottom view adopts same orientation as Figure 3. (C) Linker view shows

simulations of 200 ns starting from the model with lowest y* =
2.48 (Figure 7). Initially, the relative position of the two domains
fluctuates, but it converges in each case to a more compact
structure with direct and stable interactions between the two
domains after a maximum of 75 ns. This behaviour is reflected in
the analysis of the distances between the two domains (Figure 8),
showing an initial increase of the distances (~ 9-18 A) followed
by gradual reduction of distances (~ —10 A), with respect to the
initial conformation.

To better characterize the observed conformational transitions
along the MD simulations of PTPN4, we clustered the set of
conformations with the Self Organizing Maps (SOM) method

already used above Bouvier et al. (2015). A total of 60 clusters
were retrieved from a pool of 60,000 conformations (Figure 9).
We then projected the 2 values, the changes of distances between
the two domains and the simulation time on the SOM map
(Figures 9A-C). The analysis of the two maps suggested four
groups of clusters, where G2 had the highest y? and maximum
increase of distances, and G4 the lowest y? and minimum changes
of distances. Figures 9D-G shows one representative
conformation per cluster, clearly indicating four distinct
relative positions of the PDZ with respect to the PTP. These
four conformations satisfy the SAXS data to a very different
degree, indicated by the color in the SOM maps and in the
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FIGURE 5 | The adjustment of the Bayesian SAXS score. (A) x> and (B) SAXS restraint weight of a composite simulation, starting from rigid body steps (blue),
followed by linker modelling (yellow, pointed to by arrows), and ending with Monte Carlo flexible refinement (red).
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FIGURE 6 | 4 score as a function of simulation step, for the 64 rigid body simulations with Bayesian SAXS score (left), and for 20 simulations with a fixed weight
(different in each simulation) and the same, random, starting structure (right).

FIGURE 7 | The cartoon representation of starting conformation for the MD simulations. PDZ is colored in blue and PTP in red.
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FIGURE 8 | The distances along the MD simulations.(A) The changes of distances between the two domains and the average values over the final 125 ns of the
simulations are reported for each replicate. The distance between the center of mass of the conserved linker region [E (617)PDFQYIP(624)] and the center of mass of (B)
the PTP domain and (C) the catalytic site of the PTP domain are depicted for each replicate.

conformations shown (each group is colored according to their
average y* value from dark violet for the minimum values to dark
green for the maximum values). The analysis of the PTPN4
conformational changes revealed the existence of four distinct
conformational states for the PDZ with respect to the PTP, one of

which is close to the Bayesian SAXS restraint model and has a low
2

X

To investigate overall convergence of the simulations, we
analyzed the number of conformations from different
replicates in each group (Figure 9H). The three replicates
cover rather different conformational space. The groups Gl,
G2, and G3 contain conformations from only one replicate.
Interestingly, only G4, which is the closest one to the starting
conformation and has the lowest y* scores, contains

conformations from all the three replicates. The further
analysis of the clusters along the simulation time (Figure 9C)
showed that G4 contains trajectories appearing at the beginning
of the simulations, and the G1-G3 are visited subsequently.
Interestingly, the position of the linker with respect to the
PTP, remained unchanged in all the clusters as can be seen in
Figures 9D-G. In order to further investigate the conformational
changes of the linker, we measured the distances between the
center of mass of the conserved linker region (E617-P624) and i)
the PTP domain and ii) the catalytic site of the PTP domain (the
B5-loop-f6 region and the WPD loop) along the three replicates
of the MD simulations (Figures 8B,C). The variation of distances
are within the range of 1 A, therefore suggesting the rather stable
position of the linker with respect to the PTP domain.
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FIGURE 9 | Cluster analysis of PTPN4 from the MD simulations. The self-organizing map of the PTPN4 conformations colored by (A) x2, (B) changes of distances
between the center of mass of the PDZ and PTP domains, and (C) simulations time (ns) of the replicates. The clusters are numbered on the maps from 1 to 60, and
divided into four groups (G1-G4). One representative conformation is shown for the clusters that are forming the four groups G1, G2, G3 and G4 in (D-G), respectively.
The PTP is colored in red and the four identified groups of PDZ clusters in difference shades of green and purple, reflecting their average x? values. (H) The number

of conformations from different replicates (r1, r2, and r3) are reported for each group.
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2.3.2 Selection of Minimal Small Angle X-ray
Scattering Ensemble

The above analysis assumes that a single structure or an
ensemble covering a small part of conformational space
represents the SAXS data. The sampling of conformational
space by the free MD trajectories enabled us to try to
investigate if more disperse ensembles fit the SAXS data
better. For this, we used a method based on the genetic
algorithm (GA) that was developed for a similar problem
Delhommel et al. (2017). This method searches for the
minimal subset of conformations minimizing the error
between the experimental data and computed data from the
MD simulations. The x> values obtained after fitting were
reduced from 6.03 to 2.79 for an ensemble size of three.
Increasing the ensemble beyond three did not reduce the y?
further (Figure 10A). We clustered the weighted conformations

obtained in all the ensembles according to the four
conformational groups identified by the SOM analysis (G,
G2, G3, and G4). Figure 10B shows the ratio of
conformations that belong to each group for each ensemble
size, averaged over the 5GA runs. The ratios of the
conformations belonging to the four groups are similar for
different ensemble sizes, where G4 1is always most
represented with a weight of about 70%, while G1 has about
30% of the weight. The experimental and fitted profiles (for the
ensemble size of three) are compared (Figure 10C, shown in
black and cyan, respectively), and the conformations obtained
for the ensemble size three are shown in Figure 10D. We
conclude that the SAXS data are best represented by two
major conformations, an open and a closed states. The open
state has the highest weight (70%) and is similar to the initial
conformation obtained by the Bayesian method.
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FIGURE 10 | Extracting a minimum subset of conformations from the MD simulations, that describes best the SAXS data using a genetic algorithm. (A)
Improvement of the y? with respect to the ensemble size in the genetic algorithm selection. (B) The conformations are clustered in four categories according to the
clustering obtained using SOM; conformations in the groups G1, G2, G3, and G4 are colored in olive, green, yellow-green and purple bars, respectively. The proportion
of each group is represented for each ensemble size. (C) Back-calculated SAXS profile using the genetic algorithm derived from the ensemble size of three (in blue)

and the experimental profile (in black), with the y? = 2.79. (D) Representative ensemble of PTPN4 superimposed on PTP showing the PDZ in G1 conformation (olive and

3 DISCUSSION
3.1 Automatic Weight Adjustment

In general, and also in the Bayesian formalism, the SAXS scoring
term is based on y? (Eq. 3), here multiplied by a weight M/20?.
Commonly, the weight on the scoring term is based on some
heuristics, for example the number of independent data points
Shevchuk and Hub (2017). Experience shows that this weight is
not easy to set and can require adjustment during the
simulation, in particular when y? is expressed with SAXS
intensities (as opposed to their logarithms) Chen and Hub
(2015). In the context of the Bayesian formalism, the weight
is set by changing o. This parameter does not only depend on the
quality and consistency of the experimental data but also on the
forward model used. The nuisance parameter o evidently scales
the experimental errors with a constant factor, and it is
unknown before the calculation. It is the hallmark of the
Bayesian formalism that this parameter is treated as an
unknown, at the same level as the coordinates. o, and in
consequence the weight, is adjusted during the calculation,
without making any additional assumptions on the values it
can take. To do this, we use the second term on the right hand
side of Eq. 2, Mlog(o). In absence of this term proportional to
the logarithm of o, the trivial minimum of the score would be
reached when o diverges and the weight becomes zero. This
automatic weighting modulates the effect of y*> on the final
scoring term. This treatment is analogous to what we introduced

for NMR data, electron microscopy data Habeck et al. (2006),
Nilges et al. (2008), Bernard et al. (2011) and cross-linking mass
spectrometry data Ferber et al. (2016).

3.2 Influence of the Weight Adjustment
As an illustration, suppose structure determination is performed
with a bad guess for the initial structure. In this case, x> will be
large. Adjustment of the weight will drive ¢ towards larger
values, and the weight becomes smaller. o acts to reset the scale
of the restraint. Notice however that its update is less frequent
than that of y2. That way, structures are sampled with y* values
around o2, which is then slowly lowered to increase stringency
on the restraint. 0% acts as an annealing parameter. As long as
the structure is in strong disagreement with SAXS data, the
weight of the Bayesian SAXS score will be small. This behaviour
allows other terms of the force field to dominate, and
conformational exploration can happen unhindered by an
irrelevant SAXS term. If exploration leads to a structure with
a smaller y?, the weight will increase. The SAXS term therefore
becomes more discriminant, guiding the calculation to propose
structures which match the SAXS profile more closely. Bayesian
formulation of SAXS structure determination therefore
transforms a rugged energy landscape into a funnel-shaped
landscape Dill and Chan, 1997.

Note that, the o is being adjusted on the fly, and the maximum
likelihood estimate of ¢ is approximately y*> (Supplementary
Equation S4). Therefore, the proper quantity to look at is M/24>
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(see Figure. 5B), which is a function of the degrees of freedom in
the curve (Spill, 2013) (Section 2.4.8.3, pp 171). In case of
multiple datasets, it is therefore crucial that each has their
own 0.

3.3 Fixed Weight vs. Bayesian Automatic
Weighting

The optimal weight, at which the simulation has reasonable
acceptance rates and makes good use of SAXS information, is a
priori unknown. It is the purpose of the Bayesian SAXS restraint to
determine this optimal weight. As shown in Supplementary
Equation $4 (see Supplementary Material), the number of SAXS
data points and the overall agreement of data and structures will
greatly influence the optimal weight. Therefore, it is expected that it
will be different for each SAXS dataset, but also for each simulation
setting, for example depending on which force field is used.

3.4 Log Score vs. Linear Score

An equivalent form for the Bayesian score without any additional
parameter ¢ can be derived by an operation called
marginalization (Supplementary Equation S5, Supplementary
Material). As shown for NMR data Habeck et al. (2006), this form
is equivalent to the weighted y? term, but does not need automatic
weight adjustment, because it incorporates the behavior described
above. Its form is simply the logarithm of the traditional y. Using
the logarithm of the y* lowers the score penalty for large values of
x*, while keeping its effect similar to the standard y* formulation
when it is close to one. Interestingly, it has been observed by Chen
and Hub (2015) that a ¥ formulation using the logarithm of the
intensities does not require much adjustments of the weight.
While they apply the logarithm on the individual intensities and
not the y* as a whole, the effect of lowering the impact of large
discrepancies remains. When using a y*> on linear scale (as
proposed here), the authors observe the need to adjust this
weight specifically in the beginning of the simulation. That is,
when discrepancies in the low-q and high diffusion intensity
region of the SAXS curve are likely to occur, and contribute most
to the scoring. Applying a logarithm on the first part of the SAXS
curve is therefore what probably alleviates the need to adjust the
weight. In contrast, we have employed a y* on a linear scale
(including error bars, Eq. 3) because the SAXS measurements and
noise scale linearly. The logarithm is applied afterwards, for
scoring purposes.

3.5 A Point on Exhaustivity

The calculations presented here attempted to sample a large part
of the conformational space of this two-domain system, since the
energy landscape can be expected to be rugged. We showed that
the energy surface is less rugged when using automatically
adapted weights. The strength of this Bayesian restraint is that,
regardless of the initial conformation, the calculations converge
to low y? structures. This is particularly beneficial when computer
resources are limited. In our PTPN4 example, one in every four
simulations ends up in the basin with the lowest y* conformers.

Automatic Bayesian Weighting

3.6 Protein Tyrosine Phosphatase

Non-Receptor 4

Using the novel Bayesian SAXS restraint, we have shown a
conserved sequence in the linker of PTPN4, involved in the
allosteric regulation of PTPN4 Caillet-Saguy et al. (2017), is
facing both the f35-loop-f6 region and the WPD loop. The f35-
loop-p6 region is thought to participate in defining substrate
specificity Andersen et al. (2001). The WPD loop is well-known
to be important for the phosphatase catalysis. The WPD loop
switches from an open to close position upon substrate binding
and adopts a catalytically active close conformation Barr et al.
(2009). Previous experimental evidence showed that the linker
participates in the control of the catalytic activity of the
phosphatase domain Maisonneuve et al. (2014).

Mutations of a conserved hydrophobic patch in the linker
suggested that the linker modulates the WPD loop open/closed
conformations Caillet-Saguy et al. (2017). The close proximity of
the linker with the 85-loop-f36 region and the WPD loop observed
in our simulations further supports and reinforces the current
model in which the linker of PTPN4 could regulate the
phosphatase activity of PTPN4 by modulating the WPD loop
closure.

3.7 Ensemble Modelling

The focus of this study is to illustrate the power and utility of the
Bayesian SAXS score. The setup was deliberately simple, to
emphasize to what degree the final conformations were driven
by the data. Emphasis was also on calculation efficiency, and the
molecule was deliberately described in the simplest terms by
excluding volume, rigid bodies for the two domains, and rigid
covalent geometry. The experimental data was limited to SAXS
data up to q<0.37A-!. The SAXS data do not contain any
information on specific interactions between the linker and the
surface of the PTP domain. In our models the linker wraps
around the PTP domain but does not directly contact the
domain. This is consistent with the fact that there is no
experimental NMR data that indicates a specific contact, but
does not explain the sequence conservation in the linker and on
the surface of the PTP domain. The tandem of PDZ-PTP
domains in PTPN4 may be the location of continuous
conformational changes due to the fuzzy nature of the
intramolecular interactions that stabilize the spatial
organization of the two domains Maisonneuve et al. (2014,
2016), Caillet-Saguy et al. (2017). This is further confirmed by
the analysis of conformations generated by MD simulations
starting from the top model, where four distinct groups of
conformations are identified (Figure 9). The flexible and
unstructured linker is most likely in transient interactions
with the PTP domain as monitored by NMR (R2 relaxation
rate, Maisonneuve et al. (2014) Figure 5B). In our calculations,
the models with low-y* (the upper left cluster in Figure 3C)
present conformations of the linker that covers almost half of
the PTP domain. This conformation of the linker with respect to
the PTP domain remains rather stable along the MD
simulations.
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FIGURE 11 | The root mean square deviations and fluctuations of each MD simulation. The RMSD over backbone atoms (Ca, C, N, O) measured from the initial
structure are shown for the (A) PDZ and (B) PTP domains. The residue RMSF over backbone atoms (Ca, C, N, O) measured with respect to the average conformation are
depicted for the (C) PDZ and (D) PTP domains, over the last 150 ns of each replicate. The average and standard deviation values are reported for every replicate.

The conformations we obtain can serve as the basis of more
detailed simulations with state of the art ensemble methods
Potrzebowski et al. (2018), Shrestha et al. (2019), Paissoni

et al. (2020). For a system of rather moderate size as the
PTPN4 tandem (52 kDa), one could obviously directly refine
against the data in a complete force field Shevchuk and Hub
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(2017). This would not allow for as extensive searching of
conformational space as it was performed in this work. The
aim of the current calculation protocol is to sample large relevant
parts of conformational space efficiently, a task that is difficult to
perform for large fully solvated molecules. An adaptation of the
Bayesian SAXS restraint with automated weighting as described
here could be useful also in this context. We note that such
adaptation however, would not address the issue of multiple
conformations representing the SAXS data. In this study we
proposed a method to overcome this problem by first
concentrating on obtaining the dominate conformational
ensemble in a largely simplified force field without explicit
solvent, and then further exploring a larger ensemble by a
free, fully solvated simulation, and finally obtaining an
optimal, small ensemble by combining different conformations
from these simulations. While the best conformer obtained by
Bayesian SAXS restraint has y? = 2.48, our approach allowed us to
reveal an ensemble of three structures capturing two different
states of PTPN4 with a fitted y* of 2.79. Interestingly, while for
several of the proteins studied with the CHARMM36m force
field, the resulting structures are more compact than indicated by
experiment (unless protein-water interactions are increased)
Huang et al. (2017), our analysis highlights both compact and
open states for PTPN4.

4 MATERIALS AND METHODS

4.1 Protein Production and Data Collection
The PDZ-PTP“® construct, harboring the mutant C852S,
hereafter referred to as PTPN4, was expressed and purified as
previously described Maisonneuve et al. (2014). SAXS
experiments were carried out as previously described except
that the protein concentration used for SAXS experiments was
75 uM Maisonneuve et al. (2014).

4.2 Rigid Body Docking

In the first stage, we used IMP Russel et al. (2012) to perform rigid
body docking of the PDB structures of PTP (PDB code 2I75;
residues 638-913) and PDZ (PDB code 3NFK chain B; residues
512-604). 64 different simulations were performed with 500 steps
each. Initial orientations of PDZ with respect to PTP cover a wide
range of orientations both around the PTP and of the PDZ itself
(see Figure 2). Energy terms were the SAXS restraint
(Supplementary Equation S7) and a quadratic volume
exclusion term. The FoXS model was used on heavy atoms
Schneidman-Duhovny et al. (2013). Each step consisted in
alternating 100 Monte Carlo rotation/translation moves
(510~2rad/A) of PDZ with respect to PTP, and optimizing c;,
¢, 0 and y. 0 and y were optimized by setting them to their
maximum posterior (Supplementary Equation S4 and Spill et al.
(2014)). ¢ is constrained to be between 0.95 and 1.05, while ¢, is
constrained between -2 and 4. ¢; and ¢; are jointly optimized by a
two-dimensional grid search, as follows. First, a 11 x 11 grid of
values is tried on the admissible range of ¢; and c,. Then, the pair
with the lowest score is used as the center of a new 11 x 11 grid,
whose total size covers that of four cells of the previous grid. The
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same procedure yields a refined estimate of ¢; and c,. This pair is
in turn used in a second round of refinement, for which another
11 x 11 grid is generated with half the gridsize of the previous
round, yielding the final estimate of ¢; and ¢,. Importantly, before
each evaluation of the score at a given ¢; and c, pair, ¢ and y are
set to their maximum posterior estimates.

4.3 Rigid Body Self Organizing Map

A 50 x 50 SOM Bouvier et al. (2015), Spill et al. (2013) was trained
on the last 200 frames of each of the 64 simulations. Specifically,
we used descriptors with seven dimensions, extracted from the
structures as follows. The coordinates of all 12,800 structures
were recalculated in a reference frame in which the center of mass
of PTP is at the origin, and its orientation is constant across the
structures. The first three dimensions of the descriptors are the
center of mass of PDZ in this reference frame, while the last four
are the quaternions of the rotation of PDZ with respect to PTP.
The metric used to compare a neuron #n and a descriptor m is a
weighted sum between euclidean distance between the center of
masses and geodesic distance between the quaternions Huynh
(2009).

where dp,y is the length of the largest space diagonal of the
bounding box of the descriptor’s first three coordinates. Neurons
were updated by interpolation either in Cartesian space (first
three coordinates) or in quaternion space, e.g., on the unit 4-
sphere (last four coordinates).

4.4 Linker Modeling

In the second stage, we added linkers to our models. Due to the
particular choice of the format of the SOM descriptors, a 3D
structure can be reconstructed from the coordinates of the trained
neurons. 1,999 clash-free structures could be extracted from the
SOM neurons in such a way.

Missing residues were added with IMP Russel et al. (2012) so
that the modeled part of the protein spanned residues 496-926.
The termini were assigned random ¢/y dihedral angles in such a
way that no clash was caused.

The linker was generated in two steps. First, C, atoms were
placed on a path that connects the two endpoints without passing
through either PTP or PDZ. The C, linker was then minimized
with a harmonic distance restraint between consecutive C, atoms
(target distance D = 3.86A) and an excluded volume restraint to
avoid interpenetration. C, atoms within the linker had a normal
diameter D while other atoms had diameter 2D to push the linker
outside of the protein during initial minimization. 1,000 steps of
steepest descent were followed by 1,000 steps of conjugate
gradient.

Second, all atoms were placed around their corresponding C,
at random in a sphere of diameter D. CHARMM bonded
restraints were enforced MacKerell et al. (1998), and 250 steps
of steepest descent were performed, followed by 1,000 steps of
conjugate gradient. Then, volume exclusion was turned on, with
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standard CHARMM radii, and followed by the same 250 + 1,000
steps of minimization.

On average, this step resulted in 1,224 structures per pose, or a
total of 2,461,844 structures.

4.5 Monte Carlo Refinement

For each of the 1,999 rigid body poses, the structure with linkers
which had the best Bayesian SAXS score was used as starting
conformation for a Monte Carlo refinement simulation. Each
simulation consisted of 2,000 steps, each of which was an
alternation between 10 Monte Carlo moves and optimization
of ¢ and y. Each Monte Carlo move was made in internal
coordinates, and consisted in a Gaussian perturbation of the
backbone dihedrals of residues 496-511, 606-636, and 914-926.
The standard deviation of the Gaussian was 5 x 10~ 2rad for the
termini and 5 x 10~ %rad for the linker.

4.6 Fixed-Weight Small-angle X-ray

scattering Simulations

To compare fixed-weight and self-adjusting simulations, we used
a similar setup. 20 fixed-weight simulations were performed with
a SAXS restraint with a weight spaced logarithmically from 10~*
to 10%. 10 simulations using the Bayesian SAXS score described
here were performed for comparison. The starting structure was
always identical, and consisted of a random orientation of PDZ
with respect to PTP, with linkers and termini added. Each
simulation was performed for 5,000 steps.

4.7 Molecular Dynamics Simulations

We selected the top PTPN4 conformation determined using the
Bayesian SAXS score, i.e., the one with the lowest y* score (2.48).
This conformation was used as the starting structure for the
molecular dynamics simulations (7). MD simulations were
performed with NAMD2.13 Phillips et al. (2005) using
CHARMM36m force field parameter set Huang et al. (2017): 1)
hydrogen atoms were added, ii) the solute was hydrated with a
cuboid box of explicit TIP3P water molecules Jorgensen et al. (1983)
with a buffering distance up to 10 A, iii) 10 Na+counter-ions were
added to neutralise the system, leading to a total system size
of 150,730 atoms. The following minimization procedure was
applied: i) 10,000 steps of minimization of the water molecules
keeping protein atoms fixed, ii) 10,000 steps of minimization
keeping only protein backbone fixed to allow protein side chains
to relax, iii) 10,000 steps of minimization without any constraint
on the system. Heating of the system to the target temperature of
310K was performed at constant volume using the Berendsen
thermostat Berendsen et al. (1984). Thereafter, the system was
equilibrated for 100 ps at constant volume (NVT) and for further
100 ps using a Langevin piston (NPT) Loncharich et al. (1992) to
maintain the pressure. The production was realised in the NPT
ensemble. The time step was set to 2.0 fs. The temperature was
kept at 310K and pressure at 1bar using the Langevin piston
coupling algorithm. The SHAKE algorithm was used to freeze
bonds involving hydrogen atoms, allowing for an integration
time step of 2.0fs. The Particle Mesh Ewald method Darden
et al. (1993) was employed to treat long-range electrostatics. The
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coordinates of the system were written every 10 ps. We performed
three replicates of 200 ns, with different initial velocities. To assess
the stability of each replicate, the root mean square deviation
(RMSD) and fluctuation (RMSF) were recorded along each MD
simulation (Figure 11). We also measured the distances along the
simulations between the center of mass of the two domains in each
replicate (Figure 8).

4.8 Back Calculated Small-angle X-ray
scattering Profiles

For every conformation of the MD simulations, the theoretical
scattering profiles were calculated using CRYSOL from the
ATSAS 2.8.3 software suite Svergun et al. (1995), with the
default parameters. Their corresponding y?
measured using the following equation:

= Z( mlc(l)

Ly (z)>
Oexp (1)

where M is the number of points in SAXS profile, I, is the back
calculated intensity, I, and o,y, are the experimental intensity
and error, respectively.

values were

©)

4.9 Genetic Algorithm

We followed a similar procedure as in Delhommel et al. (2017), in
which 1,000 steps of GA were performed, the number of
generated ensemble was set to 1,000 with a cross over
frequency of 0.8 and a mutation frequency of one. We
performed the GA for different ensemble sizes: 1, 3, 5, 30, and
100. In addition, the GA was repeated five times for every
ensemble size and average values were reported.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: The SAXS data,
refined structures, and MD simulation trajectories generated
for the PTPN4 for this study are deposited in the Zenodo. org
database (accession doi: 10.5281/zen0d0.4739101). Direct link:
https://zenodo.org/record/4739101.

AUTHOR CONTRIBUTIONS

All authors wrote and reviewed the article.

FUNDING

This work was supported by The Fondation pour la Recherche
Medicale (Equipe FRM 2017M.DEQ20170839114) to YK
and MN. PM was supported by grants from the Ministere de
I’Enseignement Supérieur et de la Recherche and the Fondation
pour la Recherche Médicale (FDT20130927999).

Frontiers in Molecular Biosciences | www.frontiersin.org

June 2021 | Volume 8 | Article 671011


https://zenodo.org/record/4739101
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

Spill et al.

ACKNOWLEDGMENTS

The SAXS data, refined structure, and MD simulation trajectories
generated for the PTPN4 for this study are deposited in the
Zenodo.org database (accession doi: 10.5281/zenod0.4739101).

REFERENCES

Andersen, J. N., Mortensen, O. H., Peters, G. H., Drake, P. G., Iversen, L. F., Olsen,
O. H,, et al. (2001). Structural and Evolutionary Relationships Among Protein
Tyrosine Phosphatase Domains. Mol. Cel. Biol. 21, 7117-7136. doi:10.1128/
mcb.21.21.7117-7136.2001

Babault, N., Cordier, F., Lafage, M., Cockburn, J., Haouz, A., Prehaud, C,, et al.
(2011). Peptides Targeting the PDZ Domain of PTPN4 Are Efficient Inducers
of Glioblastoma Cell Death. Structure 19, 1518-1524. doi:10.1016/j.str.2011.
07.007

Barr, A. ], Ugochukwu, E., Lee, W. H., King, O. N. F., Filippakopoulos, P.,
Alfano, L, et al. (2009). Large-scale Structural Analysis of the Classical
Human Protein Tyrosine Phosphatome. Cell 136, 352-363. doi:10.1016/j.
cell.2008.11.038

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak,
J. R. (1984). Molecular Dynamics with Coupling to an External bath. J. Chem.
Phys. 81, 3684-3690. doi:10.1063/1.448118

Bernard, A., Vranken, W. F., Bardiaux, B., Nilges, M., and Malliavin, T. E. (2011).
Bayesian Estimation of NMR Restraint Potential and Weight: a Validation on a
Representative Set of Protein Structures. Proteins 79, 1525-1537. doi:10.1002/
prot.22980

Bonomi, M., Hanot, S., Greenberg, C. H., Sali, A., Nilges, M., Vendruscolo, M., et al.
(2019). Bayesian Weighing of Electron Cryo-Microscopy Data for Integrative
Structural Modeling. Structure 27, 175-188. doi:10.1016/j.5tr.2018.09.011

Bouvier, G., Desdouits, N., Ferber, M., Blondel, A., and Nilges, M. (2015). An
Automatic Tool to Analyze and Cluster Macromolecular Conformations Based
on Self-Organizing Maps. Bioinformatics 31, 1490-1492. doi:10.1093/
bioinformatics/btu849

Briinger, A. T. (1992). Free R Value: a Novel Statistical Quantity for Assessing the
Accuracy of crystal Structures. Nature 355, 472-475. d0i:10.1038/355472a0

Caillet-Saguy, C., Maisonneuve, P., Delhommel, F., Terrien, E., Babault, N., Lafon,
M., et al. (2015). Strategies to Interfere with PDZ-Mediated Interactions in
Neurons: What We Can Learn from the Rabies Virus. Prog. Biophys. Mol. Biol.
119, 53-59. doi:10.1016/j.pbiomolbio.2015.02.007

Caillet-Saguy, C., Toto, A., Guerois, R., Maisonneuve, P., Di Silvio, E., Sawyer, K.,
etal. (2017). Regulation of the Human Phosphatase PTPN4 by the Interdomain
Linker Connecting the PDZ and the Phosphatase Domains. Scientific Rep. 7,
2-10. doi:10.1038/s41598-017-08193-6

Chen, P.-c., and Hub, J. S. (2015). Interpretation of Solution X-ray Scattering by
Explicit-Solvent Molecular Dynamics. Biophysical ]. 108, 2573-2584. doi:10.
1016/j.bp;j.2015.03.062

Darden, T., York, D., and Pedersen, L. (1993). Particle Mesh Ewald: AnN-Log(N)
Method for Ewald Sums in Large Systems. J. Chem. Phys. 98, 10089-10092.
doi:10.1063/1.464397

Delhommel, F., Cordier, F., Bardiaux, B., Bouvier, G., Colcombet-Cazenave, B.,
Brier, S., et al. (2017). Structural Characterization of Whirlin Reveals an
Unexpected and Dynamic Supramodule Conformation of its PDZ Tandem.
Structure 25, 1645-1656. doi:10.1016/j.str.2017.08.013

Dill, K. A, and Chan, H. S. (1997). From Levinthal to Pathways to Funnels: The
"New View” of Protein Folding Kinetics. Nat. Struct. Biol. 4, 10.

Ferber, M., Kosinski, J., Ori, A., Rashid, U. J., Moreno-Morcillo, M., Simon, B., et al.
(2016). Automated Structure Modeling of Large Protein Assemblies Using
Crosslinks as Distance Restraints. Nat. Methods 13, 515-520. doi:10.1038/
nmeth.3838

Gu, M., and Majerus, P. W. (1996). The Properties of the Protein Tyrosine
Phosphatase PTPMEG. J. Biol. Chem. 271, 27751-27759. doi:10.1074/jbc.
271.44.27751

Gu, M., Meng, K., and Majerus, P. W. (1996). The Effect of Overexpression of the
Protein Tyrosine Phosphatase PTPMEG on Cell Growth and on colony

Automatic Bayesian Weighting

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2021.671011/
full#supplementary-material

Formation in Soft agar in COS-7 Cells. Proc. Natl. Acad. Sci. 93,
12980-12985. doi:10.1073/pnas.93.23.12980

Habeck, M., Rieping, W., and Nilges, M. (2006). Weighting of Experimental
Evidence in Macromolecular Structure Determination. Proc. Natl. Acad. Sci.
103, 1756-1761. doi:10.1073/pnas.0506412103

Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., et al. (2017).
CHARMM36m: an Improved Force Field for Folded and Intrinsically
Disordered Proteins. Nat. Methods 14, 71-73. doi:10.1038/nmeth.4067

Huynh, D. Q. (2009). Metrics for 3d Rotations: Comparison and Analysis. J. Math.
Imaging Vis. 35, 155-164. doi:10.1007/s10851-009-0161-2

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L.
(1983). Comparison of Simple Potential Functions for Simulating Liquid
Water. J. Chem. Phys. 79, 926-935. doi:10.1063/1.445869

Kina, S.-i., Tezuka, T., Kusakawa, S., Kishimoto, Y., Kakizawa, S., Hashimoto, K.,
et al. (2007). Involvement of Protein-Tyrosine Phosphatase PTPMEG in Motor
Learning and Cerebellar Long-Term Depression. Eur. J. Neurosci. 26,
2269-2278. doi:10.1111/j.1460-9568.2007.05829.x

Kohda, K., Kakegawa, W., Matsuda, S., Yamamoto, T., Hirano, H., and Yuzaki, M.
(2013). The 2 Glutamate Receptor gates Long-Term Depression by
Coordinating Interactions between Two AMPA Receptor Phosphorylation
Sites. Proc. Natl. Acad. Sci. 110, E948-E957. d0i:10.1073/pnas.1218380110

Loncharich, R. J., Brooks, B. R., and Pastor, R. W. (1992). Langevin Dynamics of
Peptides: The Frictional Dependence of Isomerization Rates ofN-Acetylalanyl-
N?-Methylamide. Biopolymers 32, 523-535. doi:10.1002/bip.360320508

MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field,
M. ], et al. (1998). All-Atom Empirical Potential for Molecular Modeling and
Dynamics Studies of Proteinst. J. Phys. Chem. B 102, 3586-3616. d0i:10.1021/
p973084f

Maisonneuve, P., Caillet-Saguy, C., Raynal, B., Gilquin, B., Chaffotte, A., Pérez, J.,
et al. (2014). Regulation of the Catalytic Activity of the Human Phosphatase
Ptpn4 by its Pdz Domain. Febs J. 281, 4852-4865. doi:10.1111/febs.13024

Maisonneuve, P., Caillet-Saguy, C., Vaney, M.-C., Bibi-Zainab, E., Sawyer, K.,
Raynal, B., et al. (2016). Molecular Basis of the Interaction of the Human
Protein Tyrosine Phosphatase Non-receptor Type 4 (PTPN4) with the
Mitogen-Activated Protein Kinase P38y. J. Biol. Chem. 291, 16699-16708.
doi:10.1074/jbc.m115.707208

Mareuil, F., Sizun, C., Perez, J., Schoenauer, M., Lallemand, J.-Y., and Bontems, F.
(2007). A Simple Genetic Algorithm for the Optimization of Multidomain
Protein Homology Models Driven by NMR Residual Dipolar Coupling and
Small Angle X-ray Scattering Data. Eur. Biophys. J. 37, 95-104. doi:10.1007/
$00249-007-0170-2

Nilges, M., Bernard, A., Bardiaux, B., Malliavin, T., Habeck, M., and Rieping, W.
(2008). Accurate NMR Structures through Minimization of an Extended
Hybrid Energy. Structure 16, 1305-1312. doi:10.1016/j.str.2008.07.008

Paissoni, C., Jussupow, A., and Camilloni, C. (2020). Determination of Protein
Structural Ensembles by Hybrid-Resolution SAXS Restrained Molecular
Dynamics. J. Chem. Theor. Comput. 16, 2825-2834. doi:10.1021/acs.jctc.9b01181

Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., et al.
(2005). Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 26,
1781-1802. doi:10.1002/jcc.20289

Potrzebowski, W., Trewhella, J., and Andre, I. (2018). Bayesian Inference of Protein
Conformational Ensembles from Limited Structural Data. Plos Comput. Biol.
14, €1006641. doi:10.1371/journal.pcbi.1006641

Préhaud, C., Wolff, N., Terrien, E., Lafage, M., Mégret, F., Babault, N, et al. (2010).
Attenuation of Rabies Virulence: Takeover by the Cytoplasmic Domain of its
Envelope Protein. Sci. Signaling 3, ra5. doi:10.1126/scisignal.2000510

Rieping, W., Habeck, M., and Nilges, M. (2005). Inferential Structure
Determination. Science 309, 303-306. doi:10.1126/science.1110428

Rozycki, B., Kim, Y. C., and Hummer, G. (2011). SAXS Ensemble Refinement of
ESCRT-III CHMP3 Conformational Transitions. Structure 19, 109-116.

Frontiers in Molecular Biosciences | www.frontiersin.org

June 2021 | Volume 8 | Article 671011


http://Zenodo.org
doi:%2010.5281/zenodo.4739101
https://www.frontiersin.org/articles/10.3389/fmolb.2021.671011/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2021.671011/full#supplementary-material
https://doi.org/10.1128/mcb.21.21.7117-7136.2001
https://doi.org/10.1128/mcb.21.21.7117-7136.2001
https://doi.org/10.1016/j.str.2011.07.007
https://doi.org/10.1016/j.str.2011.07.007
https://doi.org/10.1016/j.cell.2008.11.038
https://doi.org/10.1016/j.cell.2008.11.038
https://doi.org/10.1063/1.448118
https://doi.org/10.1002/prot.22980
https://doi.org/10.1002/prot.22980
https://doi.org/10.1016/j.str.2018.09.011
https://doi.org/10.1093/bioinformatics/btu849
https://doi.org/10.1093/bioinformatics/btu849
https://doi.org/10.1038/355472a0
https://doi.org/10.1016/j.pbiomolbio.2015.02.007
https://doi.org/10.1038/s41598-017-08193-6
https://doi.org/10.1016/j.bpj.2015.03.062
https://doi.org/10.1016/j.bpj.2015.03.062
https://doi.org/10.1063/1.464397
https://doi.org/10.1016/j.str.2017.08.013
https://doi.org/10.1038/nmeth.3838
https://doi.org/10.1038/nmeth.3838
https://doi.org/10.1074/jbc.271.44.27751
https://doi.org/10.1074/jbc.271.44.27751
https://doi.org/10.1073/pnas.93.23.12980
https://doi.org/10.1073/pnas.0506412103
https://doi.org/10.1038/nmeth.4067
https://doi.org/10.1007/s10851-009-0161-2
https://doi.org/10.1063/1.445869
https://doi.org/10.1111/j.1460-9568.2007.05829.x
https://doi.org/10.1073/pnas.1218380110
https://doi.org/10.1002/bip.360320508
https://doi.org/10.1021/jp973084f
https://doi.org/10.1021/jp973084f
https://doi.org/10.1111/febs.13024
https://doi.org/10.1074/jbc.m115.707208
https://doi.org/10.1007/s00249-007-0170-2
https://doi.org/10.1007/s00249-007-0170-2
https://doi.org/10.1016/j.str.2008.07.008
https://doi.org/10.1021/acs.jctc.9b01181
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1371/journal.pcbi.1006641
https://doi.org/10.1126/scisignal.2000510
https://doi.org/10.1126/science.1110428
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

Spill et al.

Russel, D., Lasker, K., Webb, B., Veldzquez-Muriel, J., Tjioe, E., Schneidman-
Duhovny, D., et al. (2012). Putting the Pieces Together: Integrative Modeling
Platform Software for Structure Determination of Macromolecular Assemblies.
Plos Biol. 10, €1001244. doi:10.1371/journal.pbio.1001244

Schneidman-Duhovny, D., Hammel, M., Tainer, J. A., and Sali, A. (2013). Accurate
SAXS Profile Computation and its Assessment by Contrast Variation
Experiments. Biophysical J. 105, 962-974. doi:10.1016/j.bpj.2013.07.020

Shevchuk, R., and Hub, J. S. (2017). Bayesian Refinement of Protein Structures and
Ensembles against SAXS Data Using Molecular Dynamics. Plos Comput. Biol.
13, €1005800. doi:10.1371/journal.pcbi. 1005800

Shrestha, U. R,, Juneja, P., Zhang, Q., Gurumoorthy, V., Borreguero, J. M., Urban,
V., etal. (2019). Generation of the Configurational Ensemble of an Intrinsically
Disordered Protein from Unbiased Molecular Dynamics Simulation. Proc. Natl.
Acad. Sci. USA 116, 20446-20452. doi:10.1073/pnas.1907251116

Spill, Y. (2013). Développement de méthodes d’échantillonnage et traitement
bayésien de données continues: nouvelle méthode d’échange de répliques et
modélisation de données SAXS. Ph.D. Thesis, Paris 7.

Spill, Y. G, Bouvier, G., and Nilges, M. (2013). A Convective Replica-Exchange
Method for Sampling New Energy Basins. J. Comput. Chem. 34, 132-140.
d0i:10.1002/jcc.23113

Spill, Y. G., Kim, S.]., Schneidman-Duhovny, D., Russel, D., Webb, B., Sali, A., et al.
(2014). Saxs Merge: an Automated Statistical Method to Merge Saxs Profiles
Using Gaussian Processes. J. Synchrotron Radiat. 21, 203-208. doi:10.1107/
51600577513030117

Svergun, D., Barberato, C., and Koch, M. H. J. (1995). CRYSOL- a Program to
Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic
Coordinates. J. Appl. Cryst. 28, 768-773. doi:10.1107/s0021889895007047

Automatic Bayesian Weighting

Yang, S., Blachowicz, L., Makowski, L., and Roux, B. (2010). Multidomain
Assembled States of Hck Tyrosine Kinase in Solution. Proc. Natl. Acad. Sci.
107, 15757-15762. doi:10.1073/pnas.1004569107

Young, J. A., Becker, A. M., Medeiros, J. J., Shapiro, V. S., Wang, A., Farrar,
J. D., et al. (2008). The Protein Tyrosine Phosphatase PTPN4/PTP-MEG1,
an Enzyme Capable of Dephosphorylating the TCR ITAMs and Regulating
NEF-Kb, Is Dispensable for T Cell Development And/or T Cell Effector
Functions. Mol. Immunol. 45, 3756-3766. do0i:10.1016/j.molimm.2008.
05.023

Zhang, B. D,, Li, Y. R, Ding, L. D., Wang, Y. Y,, Liu, H. Y., and Jia, B. Q. (2019).
Loss of PTPN4 Activates STAT3 to Promote the Tumor Growth in Rectal
Cancer. Cancer Sci. 110, 2258-2272. doi:10.1111/cas.14031

Zhou, J., Wan, B., Shan, J., Shi, H.,, Li, Y., and Huo, K. (2013). PTPN4 Negatively
Regulates CrkI in Human Cell Lines. Cell Mol Biol Lett 18, 297-314. doi:10.
2478/s11658-013-0090-3

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Spill, Karami, Maisonneuve, Wolff and Nilges. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org

16

June 2021 | Volume 8 | Article 671011


https://doi.org/10.1371/journal.pbio.1001244
https://doi.org/10.1016/j.bpj.2013.07.020
https://doi.org/10.1371/journal.pcbi.1005800
https://doi.org/10.1073/pnas.1907251116
https://doi.org/10.1002/jcc.23113
https://doi.org/10.1107/s1600577513030117
https://doi.org/10.1107/s1600577513030117
https://doi.org/10.1107/s0021889895007047
https://doi.org/10.1073/pnas.1004569107
https://doi.org/10.1016/j.molimm.2008.05.023
https://doi.org/10.1016/j.molimm.2008.05.023
https://doi.org/10.1111/cas.14031
https://doi.org/10.2478/s11658-013-0090-3
https://doi.org/10.2478/s11658-013-0090-3
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Automatic Bayesian Weighting for SAXS Data
	1 Introduction
	2 Results
	2.1 Bayesian Small Angle X-ray Scattering Restraint Term
	2.2 Application to Protein Tyrosine Phosphatase Non-Receptor 4
	2.2.1 Rigid Body Docking
	2.2.2 Linker Construction
	2.2.3 Monte-Carlo Refinement
	2.2.4 Influence of the Weight Adjustment

	2.3 Stability of the Optimal Conformation
	2.3.1 Molecular Dynamics Simulations and Conformational Clustering
	2.3.2 Selection of Minimal Small Angle X-ray Scattering Ensemble


	3 Discussion
	3.1 Automatic Weight Adjustment
	3.2 Influence of the Weight Adjustment
	3.3 Fixed Weight vs. Bayesian Automatic Weighting
	3.4 Log Score vs. Linear Score
	3.5 A Point on Exhaustivity
	3.6 Protein Tyrosine Phosphatase Non-Receptor 4
	3.7 Ensemble Modelling

	4 Materials and Methods
	4.1 Protein Production and Data Collection
	4.2 Rigid Body Docking
	4.3 Rigid Body Self Organizing Map
	4.4 Linker Modeling
	4.5 Monte Carlo Refinement
	4.6 Fixed-Weight Small-angle X-ray scattering Simulations
	4.7 Molecular Dynamics Simulations
	4.8 Back Calculated Small-angle X-ray scattering Profiles
	4.9 Genetic Algorithm

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


