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The COVID-19 pandemic, caused by SARS-CoV-2 infection, remains a dramatic threat to
human life and economic well-being worldwide. Significant heterogeneity in the severity of
disease was observed for patients infected with SARS-CoV-2 ranging from asymptomatic
to severe cases. Moreover, male patients had a higher probability of suffering from high
mortality and severe symptoms linked to cytokine storm and excessive inflammation. The
NLRP3 inflammasome is presumably critical to this process. Sex differences may directly
affect the activation of NLRP3 inflammasome, impacting the severity of observed COVID-
19 symptoms. To elucidate the potential mechanisms underlying sex based differences in
NLRP3 activation during SARS-CoV-2 infection, this review summarizes the reported
mechanisms and identifies potential therapeutic targets.
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INTRODUCTION

Coronaviridae are plus-sense single strand RNA viruses subdivided into Coronavirinae and
Torovirinae. Some members of the Coronavirinae including severe acute respiratory syndrome
coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have
drawn much attention in the past decades due to their threat to human life. At present, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting coronavirus disease 2019
(COVID-19) is still impacting human life around the world. Significant sex and age heterogeneity is
observed between asymptomatic COVID-19 patients, compared to those with mild or severe disease.
Studies have repeatedly shown that severe and fatal COVID-19 cases are most prevalent among the
elderly compared to young and middle-aged patients. Most young and middle-aged patients with
severe illness are male (Chen et al., 2020; Gebhard et al., 2020; Klein et al., 2020; Li et al., 2020; Meng
et al., 2020). Since severe cases result in higher mortality, preventing the transition from mild to
severe disease could significantly reduce mortality. In particular, identifying mechanisms linking
young male COVID-19 patients to severe disease would be highly relevant.

A sudden increase of inflammation is typical for the transition of COVID-19 from mild to severe
or critical disease brought about by a cytokine storm (Caricchio et al., 2021). Plasma levels of IL-1β,
-7, -8, -9, -10, FGF, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1A, MIP1-B, PDGF, TNF-α and
VEGF are significantly elevated in severe patients, and the levels are related to the prognosis of
patients (Huang C. et al., 2020). Preventing excessive cytokine production could thus help prevent
progression from mild to severe disease.

IL-1β and its downstream effectors IL-6 and TNF-α are linked to the exacerbation of COVID-19.
Clinically, targeting IL-1β, IL-6, and TNF-α have gained some success in severe COVID-19 patients
(Xu X. et al., 2020; Dimopoulos et al., 2020; Rizk et al., 2020). These cytokines are produced in the
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earlier phase of infection by the innate immune system and are
largely responsible for later induction of excessive inflammation.
Preventing the secretion of these cytokines may thus help to
prevent cytokine storm.

The NLRP3 inflammasome is a multiprotein complex
consisting of NLRP3, ASC and procaspase-1. It recognizes
both damage-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs). After
activation of the NLRP3 inflammasome, procaspase-1 is
cleaved to active caspase-1, which in turn promotes the
maturation and secretion of pro-inflammatory cytokines IL-1β
and IL-18, triggering an inflammatory response (Schroder and
Tschopp, 2010; Yang et al., 2019). NLRP3 inflammasome
overactivation produces excessive IL-1β and downstream
cytokines such as IL-6 and TNF-α, are also observed in acute
respiratory distress syndrome (ARDS), ventilator induced lung
injury (VILI), and disseminated intravascular coagulation (DIC).
In addition, inflammatory damage of the heart, kidney, digestive
and nervous systems result in COVID-19 patients (de Rivero
Vaccari et al., 2020). Thus NLRP3 inflammasome overactivation
may be responsible for SARS-CoV-2 induced cytokine storm in
COVID-19 patients. Physiological and biochemical
characteristics different between males and females may
activate the NLRP3 inflammasome to varying degrees resulting
in different inflammatory symptoms and prognosis. To further
analyze the mechanisms underlying the cytokine storm after
SARS-CoV-2 infection and the heterogeneity observed between
males and females, this review summarizes the reported
mechanisms of sex impact on NLRP3 inflammasome
activation and proposes the potential therapeutic targets for
COVID-19 treatment.

ROLE OF NLRP3 INFLAMMASOME
ACTIVATION IN PATIENTS WITH COVID-19

Studies have repeatedly shown that coronavirus infection can
trigger the activation of NLRP3 inflammasome through different
ways. Notably, the coronavirus genome-encoded proteins
contribute significantly to this activation. For example, SARS-
CoV genome encodes a variety of proteins (Kim et al., 2020),
including viroporin that forms ion channels in the membrane and
promotes an ionic flux to activate NLRP3 inflammasome. ORF8a,
ORF3a and E proteins are all viroporins (Xu et al., 2020a). E protein
forms ion channels on the ERGIC/Golgi membrane and mediates
the influx of calcium ions to activate NLRP3 inflammasome (Nieto-
Torres et al., 2015). ORF3 induces NLRP3 inflammasome
activation not only in an ion channel-dependent manner (Chen
et al., 2019), but also via TNF receptor-associated factor 3 (TRAF3)-
mediatedASC ubiquitination (Siu et al., 2019). Other proteins, such
as SUD and ORF8b, can also activate NLRP3 inflammasome (Shi
et al., 2019; Chang et al., 2020). Since SARS-CoV-2 shares 79.6%
sequence identity with SARS-CoV (Zhou et al., 2020), it is
reasonable to infer that the molecular mechanisms of NLRP3
inflammasome activation in SARS-CoV are also applicable in
the case of SARS-CoV-2. Indeed, recent studies have shown that
SARS-CoV-2 genome-encoded proteins, such as spike

glycoprotein, can trigger the activation of NLRP3 inflammasome
(Pan et al., 2020; Theobald et al., 2020).

In addition to the direct activation induced by genome-
encoded proteins, SARS-CoV-2 can also activate NLRP3
inflammasome in an indirect way. For instance, it has been
reported that MERS-CoV could activate NLRP3
inflammasome in a complement receptor-dependent manner
(Jiang et al., 2019). The binding of SARS-CoV-2 spike
glycoprotein with angiotensin-converting enzyme 2 (ACE2)
triggers a series of complex molecular events, and ultimately
leads to a hyper-inflammatory state. Both renin-angiotensin-
aldosterone system (RAAS) and complement cascade are
involved in SARS-CoV-2-induced overproduction of
inflammatory cytokines (Mahmudpour et al., 2020), and this
overproduction is caused by NLRP3 inflammasome (Ratajczak
and Kucia, 2020). Besides, the ATP released by pyroptosis-related
inflammatory cells also influences the activation of NLRP3
inflammasome via ATP-P2X7R pathway.

NLRP3 inflammasome plays a major role in mediating the
immune response against SRAS-CoV-2. The inflammatory
factors produced by NLRP3 inflammasome could promote
antigen-presenting cells to upregulate co-stimulatory
molecules (such as CD40, CD80 and CD86), thus
strengthening the adaptive immune responses and enhancing
viral clearance. In general, moderate inflammatory response is
beneficial to eliminate the virus and repair the damaged tissue.
However, if NLRP3 inflammasome has a low or impaired
response to the virus, it will lead to a low-level of
inflammatory response, which in turn weakens the immune
system and protects the virus from clearance. For example, it has
been reported that the leucine-rich repeat (LRR) domain
mutation of bat NLRP3 inhibits the activation of NLRP3
inflammasome during MERS-CoV infection, leading to an
impairment of the immune system (Ahn et al., 2019).
Therefore, it is speculated that bats may carry MERS-CoV
and other coronavirus without symptoms. On the other
hand, overactivation of NLRP3 inflammasome produces
excessive DAMPs, causing pyroptosis, neutrophil infiltration,
macrophage activation, Th17 differentiation and excessive
production of inflammatory cytokines, which ultimately leads
to tissue damage and fibrosis (Lin et al., 2019; van den Berg and
Te Velde, 2020). For example, IL-1β, which is induced by
NLRP3 inflammasome activation to protect the host in the
early phase of a viral infection, can also have serious negative
consequences if the excessive production persists throughout
the infection (Tate et al., 2016). Thus, it is necessary to control
the activation of NLRP3 inflammasome.

Previous studies have reported that NLRP3 inflammasome
and IL-1β are involved in lung injury and ARDS (Kolb et al., 2001;
Ganter et al., 2008). The higher levels of Caspase-1 p20 and IL-18
indicated more severe symptoms and worse prognosis in patients
with COVID-19 (Rodrigues et al., 2021), suggesting that NLRP3
inflammasome is not only activated but also plays a key role in
COVID-19 progression. Moreover, dysregulation of NLRP3
inflammasome activity was observed in patients with severe
COVID-19 (van den Berg and Te Velde, 2020). Hence,
targeting NLRP3 inflammasome may be an effective strategy
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for the treatment of severe COVID-19 patients (Freeman and
Swartz, 2020).

IMPACT OF SEX DIFFERENCES ON NLRP3
INFLAMMASOME ACTIVATION INDUCED
BY SARS-COV-2
Under disease conditions, NLRP3 inflammatory components are
differently expressed in a sex-dependent manner and closely
associated with the development of hyper-inflammation. For
example, the expression levels of NLRP3, ASC, CASP1 and
IL1B in male patients with abdominal aortic aneurysm were
remarkably increased compared to those in female patients,
and were closed related to disease progression (Wu et al.,
2016). Moreover, the activity of NLRP3 inflammasome can be
regulated by biological sex. A recent study demonstrated that
male COVID-19 patients had higher plasma levels of innate
immune cytokines, such as IL-8 and IL-18, along with more
robust induction of non-classical monocytes (Takahashi et al.,
2020), suggesting that sex difference is a major factor affecting the
activation of NLRP3 inflammasome. Indeed, biological sex exerts

a substantial impact on NLRP3 inflammasome activation. As
shown in Figure 1, different NLRP3 inflammasome activating
signals were respectively regulated by sex elements in varying
degrees, thus leading to different degrees of inflammation and
different types of symptoms in COVID-19 patients.

Sex Differences Directly Affect NLRP3
Inflammasome Activation
Androgens are hormones that contribute to growth and
reproduction in both men and women. Specifically, males
tend to have higher androgen levels than females. Many
studies have shown that androgen induces NLRP3
inflammasome activation in some disease conditions. For
example, testosterone can directly activate NLRP3 inflammasome
andmediate fibrosis in a CCl4-induced liver injury model (Ma et al.,
2020). Excess testosterone production, which exceeds its normal
range, can induce mitochondrial ROS to indirectly activate NLRP3
inflammasome (Alves et al., 2020). On the other hand, estrogen plays
a more complicated role in regulating NLRP3 inflammasome
activation. Specifically, estrogen induces NLRP3 inflammasome
activation in tumor microenvironment (Wei et al., 2015; Liu

FIGURE 1 | Impact of sex differences on NLRP3 inflammasome activities during SARS-CoV-2 infection. (i) SARS-CoV-2 genome-encoded proteins directly
activate NLRP3 inflammasome. Estrogen and progestin directly inhibit NLRP3 inflammasome. However, the increased level of testosterone during SARS-CoV-2
infection promotes NLRP3 inflammasome activation in a ROS-dependent manner. (ii) SARS-CoV-2 hijacks ACE2 to mediate virus invasion and replication. ACE2 is then
downregulated, leading to a decrease in Ang (1–7) level, and ultimately weakens MASR-mediated inhibition of NLRP3 inflammasome; meanwhile, Ang II is
upregulated and interacts with AT1R to activate NLRP3 inflammasome. Both androgen and estrogen inhibit NLRP3 inflammasome by increasing ACE2 expression.
However, estrogen also inhibits ACE and ATR1, while upregulates MASR, thus leading to NLRP3 inflammasome inhibition. (iii) SARS-CoV-2 infection induces the
activation of complement cascade by increasing the levels of MBL, MASP-2, C3aR, C5aR and MAC, which in turn activates NLRP3 inflammasome. Estrogen inhibits the
activation of complement cascade to inhibit NLRP3 inflammasome. (iv) SARS-CoV-2 infection induces pyroptosis and releases extracellular ATP, which acts on P2X7R
and results in an ionic flux to activate NLRP3 inflammasome; meanwhile testosterone is induced to activate NLRP3 inflammasome. Estrogen inhibits P2X7R, thus
suppressing the activation of NLRP3 inflammasome. Triangle represents progesterone, square represents estrogen, hexagon represents androgen, and circle
represents testosterone.
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et al., 2019; Wei et al., 2019), while inhibits this pathway under
normal conditions. For instance, estrogen exhibits protective
effects on brain by inhibiting NLRP3 inflammasome (Thakkar
et al., 2016; Xu et al., 2016), and also demonstrates inhibitory
effects at both mRNA and protein levels (Cheng et al., 2019).
Besides, there are many factors that affect NLRP3 inflammasome
activation (Zhang et al., 2020b), including ubiquitination and
phosphorylation. The phosphokinases, such as JNK1, PKD and
PKA, phosphorylate NLRP3 and promote its activation; while
phosphatase, such as PP2A and PTPN22, mediate the
dephosphorylation and suppression of NLRP3 (Song and Li,
2018). Estrogen downregulates receptor activator of nuclear
factor-kappa B ligand (RANKL) to prevent RANKL-induced
JNK activation (Srivastava et al., 2001), and its receptor
directly binds to protein kinase D3 (PRKD3) gene promoter
to decrease PKD3 expression (Borges et al., 2015), thus inhibiting
phosphokinases-induced NLRP3 phosphorylation and
activation. In addition, estrogen promotes the activity of PP2A
(Ueda et al., 2013), thus leading to the dephosphorylation and
impaired activation of NLRP3 inflammasome. Apart from
estrogen, progesterone also inhibits NLRP3 inflammasome
activation (Espinosa-Garcia et al., 2020). Notably, the levels of
estrogen and progesterone decreased significantly after
pausimenia (Harman et al., 2001; Galea et al., 2020), which in
turn attenuated their protective effects. Furthermore, it has been
reported that postmenopausal female patients with COVID-19
tend to share similar symptoms with male COVID-19 patients
(Meng et al., 2020; Xie et al., 2020).

Sex Differences Influence the
Renin-Angiotensin-Aldosterone System to
Activate NLRP3 Inflammasome
In addition to the above-mentioned direct effects, sex hormones also
affect the activation of NLRP3 inflammasome via the RAAS,
especially during SARS-CoV-2 infection. ACE2 can act as a
receptor to mediate the invasion and replication of SARS-CoV-2
virus. In addition, ACE2 also plays a central role in maintaining the
homeostasis of RAAS. This system begins with angiotensin, which is
converted to angiotensin I by renin, angiotensin I is then converted
to angiotensin II by ACE, and finally angiotensin II is converted to
angiotensin (1–7) by ACE2. Angiotensin Ⅱ acts on AT1 and AT2
receptors, while angiotensin (1–7) acts onMas receptor to neutralize
angiotensin II/AT1R signal. The diminished level of ACE2 can break
RAAS balance in angiotensin II/AT1R axis, while the increased level
of ACE2 restores RAAS balance in angiotensin (1–7)/MASR axis to
exert protective function (Patel et al., 2016).

In animal studies, ACE2 and AT2R have been shown to
protect mice against ARDS caused by acid inhalation or sepsis,
while other components of RAAS, such as ACE, angiotensin II
and AT1R, can aggravate disease progression and lead to
pulmonary edema and lung damage (Imai et al., 2005). The
activation of ACE2/angiotensin (1–7)/MASR axis results in
NLRP3 inflammasome inhibition, thus protecting from
lipopolysaccharide-induced lung injury (Chen et al., 2019;
Huang H. et al., 2020; Xu et al., 2020b; Zhao and Zhao, 2020).
Furthermore, downregulation of ACE2 can lead to an imbalance

of the RAAS and release of inflammatory cytokines
(Mahmudpour et al., 2020).

During SARS virus infection, the level of ACE2 decreased
significantly, while the level of ACE was not affected (Kuba et al.,
2005), which made RAAS turn to angiotensin II/AT1R axis and
elevated angiotensin II level can activate NLRP3 inflammasome
(Zhang et al., 2016; Zhao et al., 2018; Wang et al., 2019), thus
leading to development of ARDS. As similar to SARS-CoV,
SARS-CoV-2 can also downregulate ACE2, and this
downregulation is associated with disease severity (Kuba
et al., 2005; Ahn et al., 2019; Zhang et al., 2020a). During
SARS-CoV-2 infection, ACE2 interacts with SARS-CoV-2
spike protein to activate NLRP3 inflammasome, which in
turn causes moderate inflammation (Ratajczak et al., 2020).
A decrease in ACE2 inhibits the production of angiotensin
(1–7), thereby exhibiting an inhibitory effect on NLRP3
inflammasome activation (Wen et al., 2016; Zhang et al.,
2016; You et al., 2019).

Sex hormones regulate ACE2 expression to affect NLRP3
inflammasome activation. Both estrogen and androgen
upregulate ACE2 expression (Bukowska et al., 2017; La
Vignera et al., 2020). Male kidney ACE2 possesses higher
activity than female (Liu et al., 2010), suggesting androgen
possesses greater impact on ACE2 expression. However, RAS
activation and angiotensin II upregulation are paralleled with
renal injury in male, but not in female (Sullivan, 2008), suggesting
that estrogen has a protective role in angiotensin II-induced
kidney damage. Estrogen affects ACE-angiotensin II-AT1 axis
by inhibiting ACE to reduce angiotensin II production
(Bachmann et al., 1991; Brosnihan et al., 1999; Reckelhoff
et al., 2000; Sullivan, 2008). In addition, estrogen decreases the
expression of AT1R (Kisley et al., 1999; Wu et al., 2003) and
increases the expression of ACE2, AT2R, MAS, angiotensin (1–7)
and MASR (Cheng et al., 2015; Erfinanda et al., 2021). Hence,
targeting SARS-CoV-2 infection-induced downregulation of
ACE2 and angiotensin (1–7) as well as upregulation of
angiotensin II can be an effective strategy to inhibit NLRP3
inflammasome activation.

Sex Differences Regulate the Complement
Cascade-induced NLRP3 Inflammasome
Activation
During SARS-CoV-2 infection, some secondary factors also affect
NLRP3 inflammasome activation. Specifically, NLRP3
inflammasome is required for the complement cascade-
mediated induction of caspase-1 and IL-1β in intracerebral
hemorrhage (Yao et al., 2017). The assembly of NLRP3
inflammasome requires the intracellular activation of C5 and
stimulation of its receptor C5aR1 (Arbore et al., 2016), while
C5aR2 promotes the expression of protein kinase R and
contributes to NLRP3 inflammasome activation (Yu et al.,
2019). Complement membrane attack complexes (MAC)
assembles NLRP3 inflammasome and trigger IL-1 activation in
IFN-γ-primed human endothelium (Xie et al., 2019). All these
findings suggest that the complement cascade is involved in the
activation of NLRP3 inflammasome.
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NLRP3 inflammasome is activated in a complement-cascade
dependent manner following MERS-CoV infection (Jiang et al.,
2019). The increased levels of complement cascade components
were found in COVID-19 patients, such as C5b-9, C4d and
MASP2 (Magro et al., 2020), indicating that NLRP3
inflammasome may be activated in COVID-19 patients in a
complement cascade-dependent manner.

Bacterial infection significantly upregulated the mRNA
levels of complement cascade genes (C3-1, C3-3, Factor B
and Factor H) in trout liver, while E2 treatment inhibited the
upregulation of these genes (Wenger et al., 2011), suggesting
that E2 could inhibit the activation of complement cascade.
Moreover, there are significant sex differences in the
abundance and function of complement cascade in healthy
individuals. For example, lower levels of C3 and properdin
were found in female subjects, which are responsible for
alternative complement cascade activation (Gaya da Costa
et al., 2018). In addition, the pro-inflammatory effect of
C5b-9 is inhibited during disease in female subjects
(Kotimaa et al., 2016), suggesting the involvement of sex
differences in complement cascade activation. Given that
the complement cascade is a source of sexual dimorphism
in vulnerability to diverse illnesses (Kamitaki et al., 2020), it is
speculated this system may play a key role in regulating sex
differences among COVID-19 patients.

Sex Differences Regulate
ATP-P2X7R-Mediated NLRP3
Inflammasome Activation
During infection, ATP is released from the damaged cells to the
extracellular environment. This extracellular ATP subsequently
activates P2X7 receptor and generates an ionic flux that activates
NLRP3 inflammasome. This effect is generally mild and difficult
to observe. However, ionic flux is a common mechanism shared
by other PAMPs and DAMPs, which have no structural
similarity (Gong et al., 2018). This property made ATP-
P2X7R signaling pathway synergistically interact with other
NLRP3 inflammasome stimulus to initiate inflammatory
responses. For example, gout arthritis is characterized by
hyperuricemia-derived monosodium urate (MSU) deposition
followed by NLRP3 inflammasome activation (Martinon et al.,
2006), while MSU alone does not trigger gout flare. Further
research showed that MSU synergizes with ATP to promote
NLRP3 inflammasome activation and gout flare. Therefore, it is
speculated that the function of P2X7R may determine whether
hyperuricemia patients develop gout arthritis (Tao et al., 2013;
Tao et al., 2017). In addition, there are differences in P2X7R
functions among different individuals; thus, only hyperuricemia
patients who have strong P2X7R function are prone to develop
into gout. Based on this observation, COVID-19 patients who
have strong P2X7R function may experience NLRP3
inflammasome overactivation and subsequently a “cytokine
storm”, which represents a major mechanism underlying the
disease exacerbation in some but not all male patients.
Therefore, P2X7R can serve as a potential target for COVID-
19 treatment.

During SARS-CoV-2 infection, testosterone level may be
elevated because ACE-2 is expressed by Leydig cell and can be
hijacked by the virus (Nashiry et al., 2021), which in turn leads to
inflammatory pyroptosis in Leydig cells and increased
extracellular ATP levels (Zhang et al., 2017). These
extracellular ATPs activate P2X receptors expressed in Leydig
cells (Antonio et al., 2009) and promote testosterone secretion
(Foresta et al., 1996). Since testosterone exerts a promoting role in
NLRP3 inflammasome activation, the elevated level of
testosterone will further trigger NLRP3 inflammasome
activation or even overactivation. In female subjects, estrogen
impairs the function of P2X7R (Gorodeski, 2004), and inhibits
the synergistic interaction between P2X7R and other NLRP3
inflammasome activating signals, thereby preventing NLRP3
inflammasome from overactivation. This may be an important
reason why female COVID-19 patients are not likely to develop
into severe disease.

In summary, sex hormones both directly and indirectly
affect the activation of NLRP3 inflammasome through
different mechanisms (Table 1). Besides, other mechanisms
may also be involved. For example, heat shock protein 27
(HSP27) is a member of the small heat shock protein family
that exerts extracellular anti-inflammatory effects (Batulan
et al., 2016). A previous study has shown that HSP27 can
alleviate SARS-CoV-2-induced cytokine storm by inhibiting
NLRP3 inflammasome and other pathways (O’Brien and
Sandhu, 2020). Since the extracellular release of HSP27 is
largely dependent on estrogen levels (Rayner et al., 2008;
Rayner et al., 2009), we speculate that estrogen can inhibit
the activation of NLRP3 inflammasome by promoting HSP27
secretion.

DISCUSSION

Since NLRP3 inflammasome activation is regulated by many
factors, the above-mentioned mechanisms may not be able to
explain all of the details. However, it is sufficient to say that the
sex-related overactivation of NLRP3 inflammasome increases
overall mortality in male COVID-19 patients, and NLRP3
inflammasome is activated during coronavirus infection.
Compared with other coronavirus infections, the mortality of
COVID-19 caused by SARS-CoV-2 is relatively lower, indicating
a moderate activation of NLRP3 inflammasome in COVID-19
patients. Under this condition, sex influence is amplified that
leads to different mortality between male and female COVID-19
patients, while SARS andMERS patients are not influenced by sex
differences.

Since NLRP3 inflammasome is well controlled in most
patients with COVID-19, cytokine storm is not common. In
light with this, molecular factors that affect the overactivation
of NLRP3 inflammasome are vital for predicting the outcome
of COVID-19 patients. For example, in addition to biological
sex, obesity-associated NLRP3 inflammasome activating
factors also increase the risk of cytokine storms (López-
Reyes et al., 2020). Moreover, older adults possess higher
levels of NLRP3 inflammasome (Stout-Delgado et al., 2016;
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Lara et al., 2020) and are prone to develop cytokine storms,
thus elderly patient with COVID-19 have worse prognosis.
Hence, for male, elderly, obese and high-risk COVID-19
patients with NLRP3 inflammasome overactivation, drugs
that target NLRP3 inflammasome may be used to prevent
disease progression from mild to severe. Growing evidence
has shown that colchicine inhibits NLRP3 inflammasome
activation (Demidowich et al., 2016) and effectively
reduces the overall mortality of COVID-19 patients (Reyes
et al., 2020).

In addition, the use of hydroxychloroquine in COVID-19
treatment is still controversial, as it failed to prevent SARS-
CoV-2 infection (Boulware et al., 2020). However, it do inhibit
the activation of NLRP3 inflammasome (Tang et al., 2018).
Considering the pivotal function of NLRP3 inflammasome in
COVID-19, hydroxychloroquine could possibly inhibit
NLRP3 inflammasome-induced cytokine storms and cause less
severe symptoms (Lucchesi et al., 2020). Apart from colchicine
and hydroxychloroquine, there are also other new or classic drugs
that inhibit NLRP3 inflammasome and potentially effective to
prevent the cytokine storms in COVID-19 patients (Zahid et al.,
2019), including Tranilast and Oridonin. Furthermore, drugs like
Anakinra that target the downstream effectors of NLRP3
inflammasome (such as IL-1β, IL-18 and their receptors) may
also exert protective effects against SARS-CoV-2 infection
(Jamilloux et al., 2020; Pontali et al., 2020; Soy et al., 2020).

Other than COVID-19, there are also NLRP3 inflammasome-
associated diseases in which sex elements play a central role.
For example, gout arthritis is characterized by MSU-
stimulated NLRP3 inflammasome activation. This disease
can also be influenced by biological sex, which is more
common in men than in women. Sex elements affect gout
flare by regulating NLRP3 inflammasome activation and ATP-
P2X7R-NLRP3 pathway (Tao et al., 2013; Tao et al., 2017).
Estrogen also inhibits the function of P2X7R (Gorodeski,
2004) to control gout flare, indicating the role of sex
differences in this disease. However, inhibition of NLRP3
inflammasome in females is not always protective; in some

cases, females are even more likely to develop infectious
diseases. For example, Zika virus can activate NLRP3
inflammasome (Wang et al., 2018), and young women are
more likely to be infected (Lozier et al., 2018). Given that the
suppression of NLRP3 inflammasome by estrogen impairs the
immune response against the virus and increases the risk of
infection, this somehow explains that the majority of
asymptomatic COVID-19 patients are females. Therefore, to
avoid the damage caused by excessive inflammation, accurate
detection of NLRP3 inflammasome is required to assess
whether it exerts protective or detrimental role in SARS-
CoV-2 infection. At the same time, appropriate
interventions should be developed for the treatment of this
disease.
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TABLE 1 | Regulatory effects of sex hormones on NLRP3 inflammasome activation.

Influence way Effect target Activate/Inhibit References

Estrogen ATP-P2X7R-NLRP3 P2X7R Inhibit Gorodeski (2004)
ACE-angiotensin II-AT1-NLRP3 ACE Inhibit Brosnihan et al. (1999), Kisley et al. (1999), Wu et al. (2003)

AT1
ACE2-angiotensin (1–7)-NLRP3 ACE2 Inhibit Bukowska et al. (2017)
RANKL-JNK- NLRP3 phosphorylation RANKL Inhibit Srivastava et al. (2001)
PKD3-NLRP3 phosphorylation PKD3 Inhibit Borges et al. (2015)
PP2A-NLRP3 dephosphorylation PP2A Inhibit Ueda et al. (2013)
HSP27-NLRP3 HSP27 Inhibit Rayner et al. (2008), Rayner et al. (2009)

Progesterone HMGB1-NLRP3 HMGB1 Inhibit Espinosa-Garcia et al. (2020)
Testosterone ROS-NLRP3 ROS Activate Chignalia et al. (2012)

ATP-P2X7R-testosterone-NLRP3 Testosterone Activate Foresta et al. (1996), Antonio et al. (2009), Zhang et al. (2017)
NLRP3 NLRP3 Activate Ma et al. (2020)
mROS-NLRP3 mROS Activate Alves et al. (2020)

Androgen ACE2-angiotensin (1–7)-NLRP3 ACE2 Inhibit La Vignera et al. (2020)
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