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Reactive oxygen species (ROS) generated under oxidative stress (OS) cause oxidative
damage to RNA. Recent studies have suggested a role for oxidized RNA in several human
disorders. Under the conditions of oxidative stress, mRNAs released from polysome
dissociation accumulate and initiate stress granule (SG) assembly. SGs are highly enriched
in mRNAs, containing inverted repeat (IR) Alus in 3′ UTRs, AU-rich elements, and RNA-
binding proteins. SGs and processing bodies (P-bodies) transiently interact through a
docking mechanism to allow the exchange of RNA species. However, the types of RNA
species exchanged, and the mechanisms and outcomes of exchange are still unknown.
Specialized RNA-binding proteins, including adenosine deaminase acting on RNA
(ADAR1-p150), with an affinity toward inverted repeat Alus, and Tudor staphylococcal
nuclease (Tudor-SN) are specifically recruited to SGs under OS along with an RNA
transport protein, Staufen1 (STAU1), but their precise biochemical roles in SGs and
SG/P-body docking are uncertain. Here, we critically review relevant literature and propose
a hypothetical mechanism for the processing and decay of oxidized-RNA in SGs/
P-bodies, as well as the role of ADAR1-p150, Tudor-SN, and STAU1.
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INTRODUCTION

Cells constantly generate reactive oxygen species as byproducts of oxidative phosphorylation. The
endogenous ROS generation can be regulated under many conditions (Droge, 2002; Martindale and
Holbrook, 2002; Brand, 2010; Bae et al., 2011; Lee et al., 2011). In addition, exogenous oxidants may
increase cellular ROS levels. The cellular antioxidant systems effectively reduce ROS and maintain a
balance. Oxidative stress is a condition in which steady-state ROS levels are enhanced either
transiently or chronically due to an imbalance of oxidants and antioxidants. While moderately
elevated ROS under OS may lead to activation of cellular signaling pathways and disturbances in
cellular metabolism, more severe or destructive stress causes the damage of cellular constituents and
often cell death under acute or destructive stress conditions (Poli et al., 2004; Ryter et al., 2007;
Lushchak, 2014). The extensive molecular and cellular damage caused by ROS may accumulate over
time. Thus, OS is strongly implicated in many age-related and neurodegenerative disorders such as
Parkinson’s disease, Alzheimer’s, atherosclerosis, and cancer, among others (Nunomura et al., 2001;
Sayre et al., 2001; Hussain et al., 2003; Singh and Jialal, 2006; Vogiatzi et al., 2009; Nunomura and
Perry 2020). Oxidative damage to DNA is a well-established consequence of oxidative stress and is
strongly implicated in many diseases; however, less attention has been given to RNA oxidation.
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Previous studies in human lung epithelial cells revealed that in
comparison with DNA, RNA has 14–25-fold more oxidative
guanosine adducts when cells are challenged with hydrogen
peroxide to induce OS (Hofer et al. (2005)), demonstrating the
high sensitivity of RNA to oxidative damage. Moreover,
mounting evidence has associated elevated levels of oxidized
RNA with many age-related diseases (Zhang et al., 1999;
Martinet et al., 2004; Chang et al., 2008; Kong et al., 2008).
Some reports also indicate that RNA oxidation is an early event
that precedes cell death (Shan et al., 2007), suggesting that cell
lethality through this mechanism may directly promote human
disease.

Excessive reactive oxygen species cause both physical and
chemical damage to RNA, including strand breaks (Singh
et al., 2004), induction of RNA cross-links (Jezowska-Bojczuk
et al., 2002), and nucleoside base removal (abasic sites) (Tanaka
et al., 2011), as well as numerous types of chemical base
modifications. More than 20 oxidized base lesions have been
identified in RNA secondary to the chemical action of ROS
(Barciszewski et al., 1999) of which 8-hydroxyguanosine (8-
OHG) is the most prevalent and of considerable importance
in many human diseases (Kong and Lin, 2010; Guo et al., 2020; Li
et al., 2020) due to its high affinity to pair with all bases (Li et al.,
2006).

These chemically modified and oxidized adducts in mRNA
lead to the generation of short polypeptides due to premature
translation termination (Tanaka et al., 2007) and stalling of
ribosomes (Shan et al., 2007). Structural RNAs such as tRNA
also undergo cleavage and promote cell death during OS
(Thompson et al., 2008; Thompson and Parker, 2009). Most
importantly, angiogenin, a protein involved in blood vessel
formation, directly cleaves tRNAs under stress into 5′ and 3′
halves called tiRNAs (tRNA-derived stress-induced RNAs), of
which 5’ tiRNAs cause translational repression (Yamasaki et al.,
2009; Ivanov et al., 2011). Moreover, it has been shown that
oxidation of rRNA causes ribosome inactivation during protein
synthesis (Ding et al., 2005; Honda et al., 2005). These findings
suggest a link between RNA damage, dysfunction, and cell death,
which may eventually lead to various diseases.

Cells may compensate for such insults by eliminating or
repairing oxidatively damaged RNAs. There may be different
mechanisms for eliminating different types of damages or for
different RNA species. For example, human polynucleotide
phosphorylase (hPNPase) preferentially binds to oxidized RNA
and reduces the levels of 8-oxo-G containing RNA, thereby
increasing the viability of HeLa cells under OS (Wu and Li,
2008). TruD (tRNA pseudouridine synthase) has also been shown
to have high-affinity and preferential binding specificity to
oxidized RNA and to protect E. coli cells under OS (Alluri,
2013). This suggests that proteins having preferential and
high-affinity binding toward oxidized RNA may play
important roles in recognizing and sequestering oxidized RNA
for effective elimination. Other mechanisms of RNA quality
control under OS must also exist in cells to maintain lower
RNA oxidation levels. Such mechanisms may have essential
functions in maintaining RNA quality and in preventing
diseases related to RNA damage.

Several types of RNA granules have been observed in
mammalian cells. RNA granules are spherical and
nonmembranous subcellular compartments predominantly
composed of RNA, RNA-binding proteins, exonucleases,
helicases, ribosomal subunits, and translation factors
(Moujaber and Stochaj, 2017; Anderson and Kedersha, 2006).
They play an important role in the regulation of RNA
localization, stability, decay, and translation. RNA granules are
classified into various types based on their subcellular
localization, composition, cell origin, and function, such as
germinal granules (germ cells); stress granules and processing
bodies (cytosol of somatic cells), nuclear paraspeckles (nucleus),
and neuronal granules (neurons) (Anderson and Kedersha, 2009;
Buchan, 2014).

Stress granules contain primarily untranslating mRNPs
derived from mRNAs stalled in translation initiation. SGs are
induced upon stress, including oxidative stress, in somatic
cytosol. The formation of these SG is a survival mechanism to
protect cells from stress (Moujaber and Stochaj, 2017). Besides
mRNPs, numerous proteins were found in SGs, suggesting a role
for SG in the induction of the innate immune response or
modulation of signaling pathways (Protter and Parker, 2016).
However, it has been argued that it is unlikely that the RNA
components are pulled into SGs passively by the RNA-binding
proteins and SGs must play active roles in RNA metabolism
(Anderson and Kedersha, 2008; Wolozin and Ivanov, 2019;
Advani and Ivanov, 2020). SGs were initially thought to
provide protection of recruited RNAs from being damaged
under stress conditions (Nover et al., 1989; Anderson and
Kedersha, 2009; Lou et al., 2019; Hwang et al., 2019). More
recently, it has been proposed that SGs are transition sites for
inactivated mRNAs under stress, where the RNAs can be stored
and be sorted for degradation or for translation reinitiation
(Kedersha and Anderson, 2002; Kedersha et al., 2005;
Hofmann et al., 2021). SG transcriptome studies suggest that
only a subset of mRNAs are recruited into the granules without
sequence preference, but with enriched longer and less actively
translated mRNAs (Kedersha et al., 1999; Kedersha and
Anderson, 2002; Khong et al., 2017; Khong and Parker, 2018;
Protter and Parker, 2016).These findings indicate that SGs are not
sites for general RNA processing but for purposes involving
selected RNA molecules. It has been further suggested that
RNA plays an important role in the formation and function of
SGs during development and disease progression (Van Treeck
and Parker, 2019; Roden and Gladfelter, 2021). However, the
precise biochemical roles of SGs in RNA metabolism and
function are still elusive. In this article, we critically review
relevant literature and propose a hypothetical role of SG-
associated proteins ADAR1, Tudor-SN, and STAU1, in control
of oxidized RNA species that are potentially recruited into SGs.

Stress Granules and Their Role in Cellular
Functions and Human Diseases
SGs are membrane-less transient cytoplasmic bodies induced by
various cellular stresses such as hypoxia, arsenite treatment, heat
shock, oxidative stress, endoplasmic reticulum (ER)-mediated
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stress, and viral infections (Kedersha et al., 2000; Arimoto et al.,
2008; White and Lloyd, 2012; Takahashi et al., 2013; Khong et al.,
2017; Mahboubi and Stochaj, 2017; Adivarahan et al., 2018; Si
et al., 2019; Tian et al., 2020). They recruit poly(A)+ mRNAs
released from polysomes (Kedersha et al., 1999; Ivanov et al.,
2019) and largely (∼50%) composed of RNA-binding proteins
(Jain et al., 2016). Several important proteins/enzymes involved
in RNA metabolism and translation are found in SGs, including
poly(A)-binding protein (PABP) and cytotoxic granule–associated
RNA-binding protein (TIA1); TIA-1-related protein (TIAR); and
G3BP stress granule assembly factor 1 (G3BP1); Ago2;
tristetraprolin (TTP) and HuR (Kedersha et al., 1999; Kedersha
et al., 2002; Tourriere et al., 2003; Van Treeck and Parker, 2019;
Tian et al., 2020; Hofmann et al., 2021). However, little is known
whether and how any of these proteins or enzymes act on RNA
within SGs. SGs also contain stalled preinitiation complexes, 40S
ribosomal subunits, and eukaryotic initiation factors (eIF2, eIF3,
eIF4A, and eIF4G) (Kimball et al., 2003; Kedersha and Anderson,
2007) along with enzymes responsible for RNA processing and
decay such as exoribonuclease 1, RNA helicases, tRNA/protein
ligases, tRNA/protein-methyltransferases, RNA-specific adenosine
deaminases, phosphatases, and kinases (Jain et al., 2016; Van
Treeck and Parker, 2019). Cell signaling factors such as
mTORC1 are found in SGs induced by oxidative stress,
suggesting a role for these SGs in modulating signal pathways
(Wippich et al., 2013). SGs induced by virus infection recruit and
activate many antiviral proteins, such as RIG-1, PKR, OAS, and
RNase L, enhancing innate immune response and viral resistance
(Onomoto et al., 2014; Protter and Parker, 2016; Yoneyama et al.,
2016; Gao et al., 2021). SGs are also induced by inosine-modified
RNA, overexpression of translational repressors, and angiogenin-
induced tiRNAs (tRNA-derived stress-induced RNA fragments)
(Scadden, 2007; Mollet et al., 2008; Emara et al., 2010), etc. These
SGs transiently repress translation by sequestration of mRNAs
(Mollet et al., 2008; Souquere et al., 2009).

Recent studies demonstrated that membrane-less organelles
may arise through a process called liquid–liquid phase separation
(LLPS). It is a reversible process of a homogeneous mixture into a
dilute and condensed phase (Dolgin, 2018; Li et al., 2020). There
is an increasing evidence, demonstrating that SGs are generated
from LLPS process (Brangwynne et al., 2009; Li et al., 2012;
Wippich et al., 2013; Hyman et al., 2014; Molliex et al., 2015; Patel
et al., 2015; Alberti et al., 2019; Hofmann et al., 2021). RNA and
RNA-binding proteins are essential for LLPS and condense into
liquid droplets during phase separation (Alberti et al. (2019)) and
these components become concentrated into discrete loci
(Hyman et al., 2014). RNA–RNA interactions also cause phase
separation in vitro and possibly contribute to SG formation (Van
Treeck and Parker, 2019). RNA not only actively contributes to
the formation of molecular condensates in LLPS, but may play
important roles in modulating the function of the condensates in
cells’ physiological and pathological processes (Roden and
Gladfelter, 2021).

It is well known that acute and destructive oxidative stress can
lead to cell death/apoptosis. Arsenite treatment, heat shock, and
hypoxia-induced OS and SGs formed under these conditions
were shown to inhibit apoptosis (Arimoto et al., 2008; Takahashi

et al., 2013; Si et al., 2019). Moreover, mutations in TDP-43 led to
a significant reduction in SG formation and increased apoptosis
in human fibroblasts (Orrù et al., 2016). SGs suppress ROS
generation (Takahashi et al., 2013) and attenuate RACK1
(Park et al., 2020), which may be part of the mechanism for
apoptosis inhibition. Another possible role of SGs under OS may
involve the elimination of damaged cellular macromolecules
including oxidized RNA, which will be discussed below.

Recent evidence suggests that SG-enriched ATF4 mRNA
translates efficiently within SGs (Mateju et al., 2020) and
U2OS cells deficient in making SGs exhibited stress-induced
translational repression (Kedersha et al., 2016), suggesting that
SGs are not only required for translational arrest but also for
many cellular functions yet unknown. These studies demonstrate
that SGs are generated as a defense mechanism to protect cells
against adverse effects of various stresses.

Abnormality and deficiency of SGs are implicated in various
human diseases such as promoting cancer cell survival and tumor
progression (Anderson et al., 2015; Somasekharan et al., 2015;
Grabocka and Bar-Sagi, 2016; Van Treeck and Parker, 2019) and
in the pathogenesis of degenerative diseases such as amyotrophic
lateral sclerosis (ALS), Alzheimer’s disease (AD), and
frontotemporal dementia (FTD) (Li et al., 2013; Ramaswami
et al., 2013; Molliex et al., 2015). Recent studies also showed
that SGs are involved in vascular injury and atherosclerosis
(Herman et al., 2019). Additionally, SGs create an antiviral
state by regulating viral replication and immune response
(Valiente-Echeverria et al., 2012; Poblete-Durán et al., 2016;
McCormick and Khaperskyy, 2017; Van Treeck and Parker,
2019; Tian et al., 2020). Recent evidence suggested that
endoribonuclease nsp15 from SARS-CoV-2 interfered with SG
formation and evaded sequestration of viral components in SGs
(Gao et al., 2021).

Stress Granules Are Enriched with mRNAs
Containing Long 39 UTRs with an Inverted
Repeat Alus
SGs and RNA granules induced by OS and other stresses are
highly and specifically enriched with mRNA transcripts
containing long 3′ UTRs and poly(A) tails from human cells
(Kato et al., 2012; Weissbach and Scadden, 2012). The average
length of 3′ UTR in mRNA found in SGs is 2.18 ± 0.81 Kb (Han
et al., 2012). Poly(A)-binding protein 1 (PABP1) binds to poly(A)
tails in mRNA and brings other RNA-binding proteins into SGs.
Indeed, it has been reported that reporter mRNAs with long 3′
UTRs harboring IR Alus accumulate in SGs, whereas mRNAs
with either a single senseAlu, antisenseAlu, or without anyAlu in
their 3′ UTR diffuse throughout the cytoplasm (Fitzpatrick and
Huang, 2012; Weissbach and Scadden, 2012). Other studies also
demonstrated RNA granules are enriched with RNA with long 3′
UTRs (Han et al., 2012; Kato et al., 2012). Analysis of length and
translatability features of RNA species revealed that longer
mRNA and ncRNA transcripts (an average length of 7.1 and
1.9 kb, respectively) and mRNAs with poor translatability are
enriched in SGs generated by arsenite-induced oxidative stress in
human cells (Khong et al., 2017). Results of deep sequencing
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studies in human cells and mouse brain tissue demonstrated that
RNA species containing long 3′UTRs are highly enriched in RNA
granule fractions compared to granule-depleted cytoplasmic
fractions (Han et al., 2012). Additionally, recent studies
revealed that endoplasmic reticulum stress-induced RNA
granules are enriched with a subset of translationally
suppressed mRNAs characterized by extended transcript
length and AU-rich motifs (Namkoong et al., 2018). However,
the precise reason for specific recruitment and accumulation of
long 3′ UTR-containing mRNAs into SGs is still unknown.

Interestingly, the heat-shock proteins Hsp70 and Hsp90 and
their respective mRNAs that are preferentially expressed under
cellular stress are excluded from SGs (Stohr et al., 2006; Anderson
andKedersha, 2009). Themechanism bywhich thesemolecules are
excluded from SGs is still elusive (Anderson and Kedersha, 2009).
It is striking to note that heat shock-induced alternative
polyadenylation in hsp70 transcripts leads to a shortened 3′
UTR and loss of the miR-378* binding site (Tranter et al.,
2011). It appears that in order for the hsp70 transcript to be
translated and available during stress conditions, it should neither
be recruited to SGs, nor be a target for miRNA. For this very
reason, the hsp70 transcript undergoes alternative polyadenylation
leading to shortening of the 3′UTR and loss of the miR-378*
binding site. This is an example of controlled SG recruitment by
regulating the length of 3′ UTR. Interestingly, ischemia, a stressful
condition in the murine heart, is accompanied by decreased levels
of miR-378* (Tranter et al., 2011; Knezevic et al., 2012).

In addition to the RNA species described above, SGs are also
enriched in poly(A)+ mRNA (Kedersha et al., 1999; Kedersha
et al., 2002; Souquere et al., 2009). However, only 50% of the
cytoplasmic poly(A)-containing transcripts are recruited to SGs
in mammalian cells, indicating selective mRNA recruitment
(Kedersha et al., 1999; Kedersha and Anderson, 2002).

Mounting evidence suggests that long UTRs in mRNAs are
indispensable for the mRNAs to be recruited into SGs via LLPS.
Recent studies demonstrated that tandem binding of 3′ UTR of p53
mRNA by TIA-1 (an abundant SG protein) efficiently enhanced
phase separation and formed a potential site for SG assembly
(Loughlin et al., 2021). Deb1p is an RNA helicase that promotes
translation of longmRNAs with highly structured 5′UTRs (Sen et al.
(2015); Guenther et al., 2018); Iserman et al. (2020) reported that the
budding yeast Deb1p was condensed into SGs upon heat shock via
the LLPS process and the protein’s activity was inhibited. Deb1p
condensation led to translational repression of mRNAs with
structurally complex 5′ UTRs (Iserman et al., 2020). Interestingly,
the mRNAs encoding heat-shock proteins (hsps) have short and
unstructured 5′ UTRs and evade translational repression by Deb1p
condensation (Iserman et al., 2020). These studies demonstrate that
SGs are enriched with long mRNAs having complex structured 5′
and 3′UTRs and aremostly devoid of RNA species with short UTRs.

Interaction of Stress Granule and
Processing Body
Processing bodies are cytoplasmic granules composed of mRNA
binding decapping enzymes along with exonucleases and are
enriched with mRNA species similar to SGs, but without poly(A)

tails (Zheng et al., 2008; Aizer et al., 2014; Ivanov et al., 2019).
P-bodies play an important role in the regulation of RNA
translation, storage, and degradation (Sheth and Parker, 2003;
Sheth and Parker, 2006; Buchan et al., 2008; Hubstenberger et al.,
2017; Matheny et al., 2019). Findings from several laboratories
have revealed a physical interaction between SGs and PBs upon
stress induction, a phenomenon called docking. Interestingly,
SGs and PBs are formed simultaneously in response to oxidative
stress, and nearly all PBs were found together and in physical
association with SGs in vivo (Kedersha et al., 2005). Importantly,
both SGs and PBs were found to contain similar mRNA species
(Kedersha et al., 2005), suggesting the exchange of mRNA
between these organelles. It is intriguing that most of the
mRNAs in SGs are poly(A) enriched (Kedersha and Anderson,
2002; Souquere et al., 2009), but the majority of mRNAs present
in PBs are either devoid of or have only a short oligo(A) tail
(Zheng et al., 2008; Aizer et al., 2014; Ivanov et al., 2019),
indicating that poly(A)+ mRNAs in SGs were processed before
transferring to PBs. This finding supports the hypothesis of
Kedersha et al. that “mRNAs destined for decay are sorted in
stress granules and subsequently transported into processing (P)
bodies.”

Role of RNA Editing Enzymes in Stress
Granules
Recent findings demonstrate that the p150 isoform of adenosine
deaminase acting on RNA (ADAR1) and the dsRNA-binding
protein Tudor staphylococcal nuclease (Tudor-SN) are
specifically recruited and colocalized in SGs upon OS
induction (Weissbach and Scadden, 2012). A specific role of
Tudor-SN is discussed in the section below. Under normal
physiological conditions, ADAR1 deaminates and converts
adenosine to inosine (A– I) in dsRNA regions of 3′ UTRs. In
addition to its presence in OS-induced SGs, ADAR1 is also
localized in measles virus-induced SGs (Okonski and Samuel,
2013). IR Alus accumulated in SGs form double-stranded
structures in the mRNA 3’ UTR regions which may provide
higher stability and become targets for ADARs (Kim et al., 2004).
Weissbach and Scadden (2012) speculated that ADAR1-p150
may edit a subset of mRNAs within SGs, resulting in the
generation of specific I-U-dsRNA. In support of this
assumption, previous studies have shown that inosine-
containing dsRNAs are specifically bound to SG-like
complexes (Scadden, 2007), suggesting a role for ADAR1-
dependent editing in SGs.

Additional evidence supports the recruitment of ADAR1-p150
specifically in SGs under hypoxia- or arsenite-induced OS. Upon
introduction of hypoxia, ADAR1-p150 isoform levels were
elevated 3.4-fold (Nevo-Caspi et al., 2011). In contrast, the
level of ADAR1-p110 isoform was unaffected. Interestingly,
when cells were treated with arsenite to induce OS, only the
ADAR1-p150 isoform, but not ADAR1-p110, was recruited to
SGs (Weissbach and Scadden, 2012). The p110 isoform is a
truncated form of p150 lacking a Z-DNA/RNA binding
domain (ZαADAR1) at the N-terminus. The p110 isoform
contains a nuclear export signal (NES) and is exclusively
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found in the nucleus, whereas p150 is present in the cytoplasm
where it edits double-stranded regions of 3′ UTRs (George and
Samuel, 1999; Poulsen et al., 2001; Christofi and Zaravinos 2019;
Lamers et al., 2019). Subsequent studies demonstrated that
ZαADAR1 is essential and is the sole determinant for p150’s
localization to SGs (Ng et al., 2013; Chiang et al., 2021).
Consistent with elevated ADAR1-p150 under hypoxia,
MED13, STAT3, and F11R transcripts which contain IR Alus
were found to have mostly elevated A–I editing levels (Nevo-
Caspi et al., 2011), although this study did not report the
localization of these transcripts in hypoxia-induced SGs. More
recent transcriptome studies of arsenite-induced SGs revealed
thatMED13, STAT3, and F11R transcripts are indeed localized in
SGs, supporting the concept that IR Alu-containing transcripts
are recruited to SGs (Khong et al., 2017). These studies suggest
that ADAR1-p150 is induced upon stress followed by specific
recruitment to SGs and there it may possibly alter A–I editing of
mRNA transcripts having IR Alus (Weissbach and Scadden,
2012). It is worth noting that recently rapid progress in SG
studies has greatly expanded our knowledge about the various
aspects of SGs. However, little attention was paid to the role of
ADAR1-p150 in SGs since it was last reported almost 10 years
ago. The ability of ADAR1-p150 to edit mRNA transcripts in SGs
has not yet been demonstrated experimentally, and the
downstream effects of potential editing in these transcripts in
SGs remain unknown. It is important to explore the role of
ADAR1-p150 in SGs from new angles.

Although the role of ADAR1-edited dsRNAs has been
implicated in various cellular functions, their role in SGs is
still unknown. Several studies have demonstrated the
relationship between RNA editing and interferon stimulation.
Interferons (INFs) induce ADAR1 (Strehblow et al., 2002;
Herbert 2019). On the other hand, ADAR1-edited IU-dsRNAs
were found to inhibit poly(IC)-induced apoptosis, viral RNA
stimulation, and INF production (Vitali and Scadden, 2010; Yang
et al., 2014; Liddicoat et al., 2015; Yu et al., 2015; Wang et al.,
2017). These studies demonstrated that IU-dsRNAs are anti-
inflammatory and inhibit interferon responses to dsRNA (Mannion
et al., 2014). Interestingly, previous studies have shown that inosine-
containing dsRNAs (I-dsRNA) are specifically bound to SG-like
complexes (Scadden, 2007), suggesting a role for ADAR1-
dependent editing in SGs. It remains to be determined whether
SG-mediated RNA editing, if it happens, plays a role in interferon
response, or in some other processes.

Role of Tudor-Staphylococcal Nuclease in
Stress Granules
The Tudor-staphylococcal nuclease (Tudor-SN) is a
multifunctional protein with major implications in SG
assembly, gene regulation, and pre-mRNA splicing (Yang
et al., 2007; Gao et al., 2010; Gao et al., 2012). Additionally,
Tudor-SN also emerged as a novel poly(A) mRNA–binding
protein which colocalizes with PABP1, a marker of stress
granule (Gao et al., 2015), and modulates the kinetics of
angiotensin II receptor, type 1 mRNA-3′UTR aggregation in
SGs (Gao et al., 2014). In vitro studies revealed that Tudor-SN

specifically binds to and cleaves runs of I–U and U–I rich regions
in dsRNA (Scadden, 2005), demonstrating that ADAR1-edited
dsRNAs are ideal for Tudor-SN cleavage (Hundley and Bass,
2010). As discussed above, ADAR1-edited dsRNAs may be
enriched in 3′UTRs of mRNAs in SGs. Tudor-SN cleavages
may result in removal of the poly(A) tail and/or shortening of
3′ UTRs, initiating degradation of these mRNAs. In contrast,
Tudor-SN cleavage of endogenous transcripts under normal
physiological conditions has not been detected; however, the
nuclease can cleave inosine-containing dsRNA in response to
certain environmental stimuli (Hundley and Bass, 2010). While
an endogenous inosine-containing mRNA, CTN–RNA was
cleaved at its 3′ UTR in response to stress (Prasanth et al.,
2005), the involvement of Tudor-SN was not demonstrated.
Recent studies have shown that Tudor-SN functions as a
nucleocytoplasmic shuttling protein associated with poly(A)-
containing mRNAs that is involved in their trafficking in and
out of SGs and the nucleus (Gao et al., 2015). This suggests that
both ADAR1-p150 and Tudor-SN coordinate in SGs to process a
specific set of mRNAs. However, delineating the precise
biochemical functions and consequences of ADAR1-p150 and
Tudor-SN actions in SGs will require further study.

Role of Staufen 1 in Stress Granule
Staufen 1 (STAU1) is a double-stranded RNA-binding protein
associated with polysomes and recruited to SGs upon OS. It is
always present in SGs during their assembly and dissolution;
however, it is not required for SG formation (Thomas et al., 2005;
Thomas et al., 2009). In addition, STAU1 is involved in mRNA
transport in both somatic cells and oocytes of vertebrates and
invertebrates (Ferrandon et al., 1994; Broadus et al., 1998; Kiebler
et al., 1999; Micklem et al., 2000; Tang et al., 2001). STAU1 binds
and coprecipitates with mRNAs having inverted Alu repeats in
their 3′ UTRs and prevents nuclear retention and promotes
export of the mRNAs to the cytoplasm (Elbarbary et al.,
2013). Further studies found that STAU1-bound transcripts
have 3–4-fold longer 3′ UTRs compared to unbound
transcripts (Laver et al., 2013). Elbarbary et al. have
demonstrated that underedited reporter mRNAs with IR Alus
inhibit STAU1-mediated export, suggesting the requirement for
A–I hyperediting for STAU1-mediated export of such mRNAs. It
has been shown that the mammalian STAU1, when bound to
3′UTR, triggers mRNA decay mediated by UPF1, an important
factor involved in the degradation of nonsense mRNA (Kim et al.,
2005). Recent studies have also demonstrated that STAU1-
mediated mRNA decay (SMD) targets RNA–RNA duplexes
formed between the Alu repeat in the 3′-UTR of one mRNA
and another Alu repeat in long noncoding RNA (lncRNA) (Gong
andMaquat, 2011; Park andMaquat, 2013). These studies suggest
that STAU1 preferably binds to long 3′ UTRs having IR Alus and
selectively exports hyperedited transcripts.

A strong relationship has been established between SGs and
STAU1. Stabilization of polysomes by cycloheximide prevented
the formation of SGs (Thomas et al., 2009) due to retention of
RNA in polysomes, suggesting a requirement for polysome-free
mRNAs for SG assembly. Findings from the same laboratory also
revealed that knockdown of STAU1-enhanced SG formation and
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accumulation (Thomas et al., 2009), while the stability of SGs mostly
depends upon the amount of accumulated mRNP complex.
Hypothetically, this could be due to the fact that STAU1 being a
natural exporter of RNA molecules with a specific affinity toward a
subset of mRNAs with long 3’ UTRs, and IR Alus and STAU1
depletion prevents export of these RNAs to PBs, resulting in
stabilization and accumulation of SGs. In contrast, overexpression
of STAU1 resulted in inhibition of SG accumulation perhaps due to
STAU1-mediated rapid export of mRNA from SGs to PBs.
Endogenous STAU1 was barely detected in PBs under resting
conditions, though upon stress induction it was recruited to PBs
(Thomas et al., 2009). When overexpressed, STAU1 is sporadically
detected in PBs under resting conditions, but upon induction of OS,
the proportion of STAU1-containing PBs increases (Thomas et al.,
2009), suggesting that a portion of STAU1 is specifically recruited to
PBs underOS. These studies suggest that STAU1 facilitates the export
of mRNAs from SGs to PBs, thereby destabilizing SGs. However,
detailed studies must be performed in order to prove this concept.

Oxidized RNAs Accumulate in Stress
Granules
Several pieces of evidence support a notion that oxidized RNA is
recruited to SGs or similar RNA granules. First, 8-OHG-containing
RNAs were observed in “oxidized RNA bodies (ORBs)”within living
HeLa cells by staining with 8-OHG-specific antibody (Zhan et al.,
2015). It is likely that these ORBs are related to or can interact with
SGs. Recent evidence further demonstrates that severalmitochondrial
tRNAs and 5S rRNA, which are presumably highly oxidized in this

ROS-generating organelle, are localized in SGs (Khong et al., 2017).
Oxidative damage to RNA can also lead to abasic sites (apurinic/
apyrimidinic sites). Unpublished observations from Pourkalbassi, Lu,
and Li revealed that in HeLa cells, abasic RNA accumulates in H2O2-
induced SGs but not in P-bodies. Furthermore, the proteins that bind
specifically to oxidized RNA such as human PNPase and PCBP1 are
reported to localize in SGs (Jain et al., 2016; Ishii et al., 2018;
Markmiller et al., 2018). These findings suggest that SGs or
related RNA foci may recruit oxidized RNAs involving specific
protein factors and protect cells from adverse effects of oxidized RNA.

Presently, little is known about the identity of abasic RNAs in
H2O2-induced SGs or 8-OHG-containing RNAs in ORBs. It is
likely that highly structured RNA species are preferentially
oxidized. In vivo and in vitro studies have demonstrated that
noncoding structural RNAs such as tRNA and rRNA molecules
having complex double-stranded structures are oxidized to a
greater extent in their native conformation compared to their
denatured forms (Liu, 2012; Liu et al., 2012; Liu et al., 2020).
Moreover, double-stranded RNA:DNA duplexes are oxidized to a
greater extent than single-stranded RNA molecules (Liu et al.,
2020). Whether oxidized, highly structured RNAs are recruited to
SGs for elimination remains to be studied.

Consistent with the above mentioned notion that a selected
set of RNAs are recruited in SGs, it was found that a subset
of mRNAs is subject to high oxidative damage.
Immunoprecipitation assays combined with sequence analysis
revealed enrichment of 8-OHG in a subset of mRNAs in
Alzheimer’s brains (Shan et al., 2003) or OS-treated yeast
cultures (McKinlay et al., 2012). This could provide a possible

FIGURE 1 |Hypothetical role of ADAR1, Tudor-SN, and STAU1 in stress granule-mediated oxidized RNA decay. (A) ROS-mediated oxidation of mRNAmolecules
and stress granule formation under oxidative stress in the cytosol. Polysome-dissociated mRNA molecules with long 3′ UTRs along with several protein factors
accumulate and form membrane-free stress granules. (B) Specific recruitment of protein factors ADAR1, Tudor-SN, and STAU1 to stress granules. Under oxidative
stress, ADAR1 and Tudor-SN translocate to stress granules specifically, along with STAU1. ADAR1 may preferentially hyperedit (A– I) in ds 3′ UTR regions, and
Tudor-SN cleaves mRNA at IU/oxidative lesion-rich regions to produce mRNA with short 3′ UTRs. These shortened mRNAs devoid of a poly-A tail are bound by STAU1
for subsequent processing. (C) Differential routing of oxidized and unoxidized mRNA from SG. Under oxidative stress, stress granules and P-bodies physically interact.
During this docking process, STAU1 in SG binds to Tudor-SN processed, oxidized mRNA and transports it to P-bodies for degradation. Additionally, upon removal of
oxidative stress, unoxidized and sequestered mRNA may be released from the stress granules for translational reinitiation.
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explanation for the accumulation of mRNA molecules with long
3’ UTRs, IR Alus, or AREs, with complex double-stranded
structures in SGs. It is likely that such mRNAs are more
subject to oxidative damages, especially under OS, and are
specifically enriched in SGs. From all the findings described
above, it appears that RNA molecules that are oxidized and
prone to oxidative damages are more likely to be recruited to SGs.

HYPOTHESIS

We have proposed a hypothetical model to describe how under
various physiological stress conditions (e.g. oxidative stress) a specific
set of RNA molecules are damaged by oxidative stress insults and
traffic to SGs for sequestration. From there, a subset of these RNAs is
shuttled to PBs for degradation. This process protects cells from
adverse consequences of RNA oxidation and enhances cell survival.
This hypothesis is captured in the following key points:

• Under oxidative stress conditions, cells generate excessive
ROS, which cause extensive chemical and physical
damage to RNA molecules and can lead to premature
termination of translation and cytotoxicity. Cells have
developed mechanisms to eliminate such damaged RNAs
presumably by rapid degradation (Figure 1A).

• Upon induction of OS, free mRNAs with long 3′ UTRs
resulting from polysome dissociation promote SG assembly,
and both oxidatively damaged and nonoxidized mRNAs are
routed to SGs. ADAR1-p150 is recruited to SGs along with
Tudor-SN, where ADAR1-p150 sorts oxidized and
unoxidized mRNAs and preferentially binds to
oxidatively damaged RNAs in their double-stranded 3′
UTR regions and converts A–I, which then forms the
substrate for Tudor-SN cleavage (Figure 1B).

• Tudor-SN cleaves inosine-containing dsRNA resulting in
shortening of 3′ UTR or loss of the poly(A) tail, and this
forms the basis for mRNA decay in PBs. Apart fromADAR1
and Tudor-SN, Staufen1 (STAU1) is also recruited to SG

upon OS induction. STAU1 is a natural transporter of
mRNA molecules, and it can bind to the 3′UTR of
Tudor-SN processed mRNA and transport it from SGs to
PBs where it is degraded (Figures 1B,C).

• We speculate that oxidized RNAs are recognized and
sequestered in the SG-mediated degradation process.
First, ADAR1-p150 may preferentially recognize and edit
oxidatively damaged mRNA and that these RNAs will be
sorted and routed specifically to PBs for degradation, while
normal mRNAsmay be released from SGs for reinitiation of
translation upon stress removal. Second (or alternatively),
oxidized RNAs may contain oxidatively damaged
nucleobases that behave like edited bases and trigger
selected cleavage by Tudor-SN-like activities
(Figures 1A–C).
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