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The prevalence of pulmonary fibrosis is increasing with an aging population and its burden
is likely to increase following COVID-19, with large financial and medical implications. As
approved therapies in pulmonary fibrosis only slow disease progression, there is a
significant unmet medical need. Hyperbaric oxygen (HBO) is the inhaling of pure
oxygen, under the pressure of greater than one atmosphere absolute, and it has been
reported to improve pulmonary function in patients with pulmonary fibrosis. Our recent
study suggested that repetitive HBO exposure may affect biological processes in mice
lungs such as response to wounding and extracellular matrix. To extend these findings, a
bleomycin-induced pulmonary fibrosis mouse model was used to evaluate the effect of
repetitive HBO exposure on pulmonary fibrosis. Building on our previous findings, we
provide evidence that HBO exposure attenuates bleomycin-induced pulmonary fibrosis in
mice. In vitro, HBO exposure could reverse, at least partially, transforming growth factor
(TGF)-β–induced fibroblast activation, and this effect may be mediated by downregulating
TGF-β–induced expression of hypoxia inducible factor (HIF)-1α. These findings support
HBO as a potentially life-changing therapy for patients with pulmonary fibrosis, although
further research is needed to fully evaluate this.
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INTRODUCTION

Pulmonary fibrosis, an interstitial lung disease, is characterized by enhanced deposition and
remodeling of the extracellular matrix (ECM), leading to disrupted gas exchange, and ultimately
respiratory failure and death (Richeldi et al., 2017). The prevalence of pulmonary fibrosis is
increasing with an aging population (Richeldi et al., 2017) and its burden after COVID-19
recovery could be substantial (George et al., 2020). Idiopathic pulmonary fibrosis (IPF), the
most common type of progressive fibrotic interstitial lung disease, affects five million people
worldwide (Meltzer and Noble, 2008), with a median survival of 3 years (Goodwin and Jenkins,
2016; Richeldi et al., 2017). The current approved therapies for pulmonary fibrosis only slow the
disease progression, and as such there is a demand for new treatment options.

Current clinical management of IPF patients includes anti-fibrotic drugs and nonpharmacological
support (Richeldi et al., 2017). For patients with advanced disease, reducing symptoms and
improving quality of life are required (Zou et al., 2020). Long-term oxygen therapy, with high
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flow and high concentration of oxygen, is often used to decrease
dyspnea and improve exercise tolerance (Koyauchi et al., 2018;
Faverio et al., 2019). It is also reported that oxygen
supplementation increased exercise capacity for patients with
interstitial lung diseases including IPF (Bell et al., 2017; Dowman
et al., 2017). Moreover, the benefit of high flow oxygen
compared to placebo air was found to improve the quality of
life for patients with fibrotic lung disease in a clinical trial (Visca
et al., 2018).

Hyperbaric oxygen involves inhaling pure oxygen in a closed
chamber pressurized to greater than one atmosphere absolute
(ATA). The clinical applications of HBO in ischemic and
nonhealing wounds have been reported since the mid-20th
century (Lam et al., 2017). An updated list of its applications
can be found on the Undersea and Hyperbaric Medical Society
Web site (https://www.uhms.org/resources/hbo-indications.
html) and have also been reviewed elsewhere (Choudhury,
2018; Kirby, 2019). Interestingly, HBO therapy has been
reported to improve pulmonary function in IPF patients (Ma
and Du, 2003; Qiu et al., 2013). In another report, HBO exposure
reduced radiation-induced side effects including fibrosis in a rat
bladder irradiation model (Oscarsson et al., 2017).
Mechanistically, our recent study suggested that repetitive
HBO exposure may affect biological processes in mice lungs
such as response to wounding and ECM (Yuan et al., 2020). To
extend these findings, a bleomycin-induced pulmonary fibrosis
mouse model was used to evaluate the effect of repetitive HBO
exposure on pulmonary fibrosis. Building on our previous report
(Yuan et al., 2020), we provide evidence that HBO exposure
attenuates bleomycin-induced pulmonary fibrosis in mice. In
vitro, HBO exposure could reverse, at least partially,
transforming growth factor (TGF)-β–induced fibroblast
activation. These findings support HBO as a potentially life-
changing therapy for patients with pulmonary fibrosis, although
further research is needed to fully evaluate this.

MATERIALS AND METHODS

Pathway Enrichment Analysis
The RNA-seq data analyzed were based on our previous study
(Yuan et al., 2020) (GSE143348). Briefly, lungs were collected
from control mice or HBO-treated mice that were repetitively
exposed to 2.5 ATA HBO, 90 min/time, once a day for
11 consecutive days. Control mice were placed in the
chamber for the same duration without pure oxygen
pressurization. Lung samples were collected on the next day
of the last HBO exposure. Total RNA was isolated for library
construction, and it was sequenced with the paired-end
strategy (2 × 150) on the Illumina NovaSeq 6000 platform
following the standard protocols. Enrichment analyses of
down-regulated differentially expressed genes (DEGs) were
generated by Metascape with default parameters (https://
metascape.org/gp/index.html#/main/step1). All significantly
enriched Gene Ontology (GO) terms and their p values
were imported into REVIGO (http://revigo.irb.hr/) to
remove redundant GO terms. GO: 0062023 (collagen

containing extracellular matrix) and GO: 0031012
(extracellular matrix) gene lists were downloaded from
MSigDB Collections (http://www.gsea-msigdb.org/gsea/msigdb/)
and converted into corresponding mouse genes. Based on these
gene lists, the pathway enrichment score for each sample was
calculated by using gene set variation analysis in the GSVA
(v1.36.2) package (Hanzelmann et al., 2013).

Bleomycin-Induced Pulmonary Fibrosis in
Mice
Six- to eight-week-old male C57BL/6 mice were purchased from
the Experimental Animal Center of Nantong University
(institutional license: SYXK(SU)-2012-0030). Mice were
maintained under a 12 h light/12 h dark cycle, and normal diet
and water were provided ad libitum throughout the study.
Animal experiments were approved by the Animal Ethics
Committee at Nantong University (approval number:
20140901-001).

One dose of 2.0 U/kg of bleomycin (Hisun Pfizer
Pharmaceutical Co., Ltd., Zhejiang, China) was intratracheally
instilled to induce pulmonary fibrosis in mice. After bleomycin
administration, body weights were monitored every third day.
According to the previous report, weight loss is an indicator of
successful model construction (Vandivort et al., 2016). Mice
with a weight loss of less than 5% at day 7 or less than 10% at day
10 post the bleomycin challenge were excluded from
further study.

Hyperbaric Oxygen Exposure of Mice or
Cells
A hyperbaric chamber designed for small animal research was
used for HBO exposure, as described previously (Yuan et al.,
2020). Briefly, after the chamber was flushed with pure oxygen for
5 min, the pressure ramped up to 2.5 ATA (1.5 atm) by inflating
100% oxygen slowly in 5 min, then sustained at 2.5 ATA for
90 min, and finally decompressed slowly in 5 min. The
concentrations of carbon dioxide and oxygen were monitored
by SDA carbon dioxide and oxygen monitors (Analox, North
Yorkshire, England) during the exposure. Bleomycin-challenged
mice were randomized into control or HBO-treated group, in
which HBO exposure was applied daily from day 7 after
intratracheal bleomycin instillation until day 20, and samples
were collected at day 21. Mice in the control group were
maintained in the normoxia condition throughout the study.
Before sample collections, mice were anesthetized with
composited anesthetics (257 mM chloral hydrate, 176 mM
magnesium sulfate, 36 mM pentobarbital sodium, 14.25%
ethanol, and 33.8% propylene glycol).

To treat cells with HBO, a hyperbaric chamber designed for
cell culture was used. An embedded circulating water device was
used to keep the environmental temperature at 37°C. HBO
exposure was applied at 2.5 ATA for 90 min. To maintain the
pH of the cell culture medium, the mixed gas with 98% oxygen
and 2% carbon dioxide was used to maintain the partial pressure
of carbon dioxide at 5 kPa under 2.5 ATA pressure.
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Hematoxylin and Eosin and Masson’s
Trichrome Staining
The left lung lobes of the mice were used for morphological
examinations. Lungs were fixed with 4% paraformaldehyde for
24 h, dehydrated by gradient ethanol, embedded in paraffin, and
sliced 5 μm thick successively. For staining experiments, the
tissue sections were dewaxed and rehydrated. For H/E
staining, a H/E stain kit (Beyotime Biotechnology, Shanghai,
China) was used according to the protocol. For Masson’s
trichrome stain, a Masson stain kit (Nanjing Jiancheng
Bioengineering Institute, Jiangsu, China) was used following
the manufacturer’s instructions. The DM4000B microscope
(Leica, Wetzlar, Germany) was used for imaging.

Ashcroft Score Evaluation
Ashcroft scores were evaluated as previously described (Hubner
et al., 2008). To ensure the accuracy of the results, a double-blind
strategy was adopted when scoring. Two researchers were asked
to score without knowing group information, and the means of
the scores for each sample were used for further statistical
analysis.

Hydroxyproline Quantification
Lung tissues were harvested from mice at day 21 after bleomycin
administration. Following excision, tissues were immediately
flash-frozen in liquid nitrogen. A hydroxyproline assay kit
from KeyGEN BioTECH (Jiangsu, China) was used to
detected hydroxyproline levels in lungs following the
manufacturer’s instructions. Hydroxyproline contents were
normalized to the lung tissue mass.

Cell Culture and Reagents
Human lung fibroblast HFL1 cells were purchased from the
Institute of Cell Research (Chinese Academy of Sciences,
China) and were cultured in the Nutrient Mixture F-12 Ham
(Sigma-Aldrich, MA, United States) cell culture medium
containing 10% fetal bovine serum (Gibco, NY, United States)
and 1% penicillin/streptomycin. Cells were cultured in a 37°C
incubator containing 5% CO2. No mycoplasma contamination
was detected in the cell line used. TGF-β was from PeproTech
(NJ, United States).

Western Blot Analysis
Protein samples from cells or lung tissues were lysed with RIPA
buffer (Beyotime Biotechnology, Shanghai, China) containing the
protease inhibitor (Meilunbio, Liaoning, China). Primary
antibodies were from Cell Signaling Technology (α-SMA,
14968), Sigma-Aldrich (β-actin, A5316), and R&D Systems
(HIF-1α, AF 1935). Signals were detected using an ECL
detection system with a Tanon 5200 Multi imaging system
(Shanghai, China) and evaluated by ImageJ 1.42q software
(National Institutes of Health).

Real-Time qPCR Analysis
Total RNA samples were isolated from cultured cells or lung
tissues with the TRIzol reagent (Invitrogen, CA, United States),

following the manufacturer’s instructions and quantified
using a One Drop OD-1000+ Spectrophotometer (One
Drop, Shanghai, China). HiScript II RT SuperMix for
qPCR was used for reverse transcriptions (+gDNA wiper)
(Vazyme, Jiangsu, China). Universal SYBR qPCR Master Mix
was used for qPCR assays (Vazyme, Jiangsu, China). Relative
transcript levels of target genes were normalized to β-actin
(ACTB in human and Actb in mouse). Primers for the genes
detected were as follows:

Human ACTA2-Forward: ACTGCCTTGGTGTGTGACAA,
Human ACTA2-Reverse: CACCATCACCCCCTGATGTC;
Human FN1-Forward: AGGAAGCCGAGGTTTTAACTG,
Human FN1-Reverse: AGGACGCTCATAAGTGTCACC;
Human COL1A1-Forward: GAGGGCCAAGACGAAGACATC,
Human COL1A1-Reverse: CAGATCACGTCATCGCACAAC;
Human ACTB-Forward: GGATTCCTATGTGGGCGACGA,
Human ACTB-Reverse: GCGTACAGGGATAGCACAGC;
Mouse Acta2-Forward: TCCCTGGAGAAGAGCTACGAAC,
Mouse Acta2-Reverse: AGGACGTTGTTAGCATAGAGATCC;
Mouse Col1a1-Forward: AGCACGTCTGGTTTGGAGAG,
Mouse Col1a1-Reverse: GACATTAGGCGCAGGAAGGT;
Mouse Fn1-Forward: CCCCAACTGGTTACCCTTCC,
Mouse Fn1-Reverse: TGTCCGCCTAAAGCCATGTT;
Mouse Actb-Forward: ACACCCGCCACCAGTTC,
Mouse Actb-Reverse: TACAGCCCGGGGAGCAT.

Statistical Analysis and Repeatability of
Experiments
Each experiment was repeated at least twice. Data are
presented as mean and standard deviation (s.d.). A two tailed,
unpaired, parametric, or nonparametric t-test was used to
compare two groups of values, depending on whether the data
distribution passed the normality test. One outlier in Ashcroft
scores identified by ROUT analysis (Q � 1%) was removed from
statistical analysis. One-way ANOVA (single-factor analysis of
variance) was used to compare more than two groups of data.
Two-way ANOVA (two-factors analysis of variance) was applied
to analyze the difference of the body weight change curve.
GraphPad Prism 8.0 software was used for analysis and p <
0.05 was considered as statistically significant.

RESULTS

Repetitive Hyperbaric Oxygen Treatments
Downregulates Extracellular Matrix Gene
Expression in Mouse Lungs
Our previous study suggested that repetitive HBO treaments may
affect biological processes in the lungs, such as response to
wounding and extracellular matrix (Yuan et al., 2020). We
reported that in the down-regulated genes in mice lungs
following repetitive HBO exposure (GSE143348), enriched
terms for cellular component classification including
the “collagen containing extracellular matrix” and “extracellular

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6754373

Yuan et al. Hyperbaric Oxygen on Pulmonary Fibrosis

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


matrix component,” suggesting that the extracellular matrix may
be affected (Yuan et al., 2020). These findings were also reflected
using the REVIGO TreeMap, which found the “extracellular
matrix” as a GO-enriched term (Figure 1A).

The effect of HBO treatment on ECM genes was further
demonstrated through gene set variation analysis (GSVA)
using a gene list from GO: 0062023 (collagen containing

extracellular matrix); GSVA scores calculated based on this
gene list were significantly lower in HBO-treated vs. control
(normoxia) mice lungs (p � 0.037; Figure 1B). Similar results
were obtained using another gene list from GO: 0031012
(extracellular matrix) (p � 0.039; Figure 1C). Together, these
results demonstrate the potential impact of HBO treatment on
ECM deposition in mice lungs.

FIGURE 1 | Repetitive HBO treatments downregulate extracellular matrix gene expression in mouse lungs. (A) REVIGO TreeMap showing Gene Ontology (GO)
analysis of downregulated differentially expressed genes (DEGs) in mice lungs exposed to repetitive HBO (GSE143348). Common colors represent groupings based on
parent GO terms, and each rectangle is proportional to the relative enrichment of the GO term compared to the whole genome. Genes with a false discovery rate
(FDR) < 0.05 were considered as DEGs. (B,C) Graphs showing GSVA scores calculated based on gene lists from GO: 0062023 (collagen containing the
extracellular matrix) (B) or GO:0031012 (extracellular matrix) (C) in HBO-treated and control lungs. Data were analyzed with the unpaired t-test. Data are mean ± s.d.,
with p values indicated. n � 4 samples per group.
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FIGURE 2 | Repetitive HBO treatments reduce the fibrotic area and collagen content in bleomycin-challenged mice lungs. (A) Schematic diagram of the
experimental procedure (details in Methods). (B,C) Lung tissues from bleomycin-challenged mice (Bleo) or bleomycin-challenged mice treated with repetitive HBO
exposure (Bleo + HBO) were stained with the H/E (B) or Masson’s trichrome stain [(C), collagen shown in blue]. In (B,C), top panels show the whole left lung lobes (scale
bar: 1 mm) with higher-magnification images in bottom panels (scale bar: 100 μm).
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Repetitive Hyperbaric Oxygen Treatments
Attenuate Bleomycin-Induced Pulmonary
Fibrosis in Mice
Given the above observation, we next tested whether HBO
exposure could affect the development of pulmonary fibrosis,
where aberrant ECM deposition is a key feature. To test this
hypothesis, bleomycin-induced pulmonary fibrosis in C57BL/6
mice was used (Supplmentary Figure S1). HBO exposure was

FIGURE 3 | Repetitive HBO treatments attenuate bleomycin-induced
pulmonary fibrosis in mice. (A) Ashcroft scores in lungs from bleomycin-
challenged mice (Bleo) or bleomycin-challenged mice treated with repetitive
HBO (Bleo + HBO). Numbers of mice within each group and the p
value are indicated. (B) Graph showing the relative hydroxyproline content
in lungs from bleomycin-challenged mice (Bleo) or bleomycin-challenged
mice treated with repetitive HBO (Bleo + HBO). Lung tissue
mass–normalized hydroxyproline levels in the Bleo group were used to set
the baseline value at unity. Data are mean ± s.d., with numbers of mice
within each group and the p value indicated. Data in (A) were analyzed with
the unpaired t-test. Data in (B) were analyzed with the nonparametric t-test
(Mann–Whitney test).

FIGURE 4 | Effects of repetitive HBO treatments on fibroblast
activation and ECM deposition in mice lungs. (A) Fold change in the mRNA
levels of Acta2 (α-SMA), Col1a1 (collagen I), and Fn1 (fibronectin) in the
lungs from bleomycin-challenged mice (Bleo) or bleomycin-
challenged mice treated with repetitive HBO (Bleo + HBO). Actb (β-actin)
-normalized mRNA levels in the Bleo group were used to set the baseline
value at unity. Data are mean ± s.d., with numbers of mice within each
group and the p value indicated. (B) Protein expression of α-SMA in lungs
from bleomycin-challenged mice (Bleo) or bleomycin-challenged mice
treated with repetitive HBO (Bleo + HBO). β-actin was used as a loading
control. In the graph, β-actin-normalized protein levels in the Bleo group
were used to set the baseline value at unity. Data are mean ± s.d., with
numbers of mice within each group and the p value indicated. Data in (A)
were analyzed with the unpaired multiple t-test. Data in (B) were analyzed
with the unpaired t-test.
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applied daily from day 7, after intratracheal bleomycin instillation
until day 20, one day before sample collections (Figure 2A).
Bleomycin-challenged mice showed a clear development of
pulmonary fibrosis, with thickened alveoli septae and collagen
deposition in the interstitium visualized in the H/E stain
(Figure 2B) and Masson’s trichrome stain (Figure 2C). In
contrast, fibrotic areas and collagen deposition were markedly
reduced in lungs from bleomycin-challenged mice treated with
repetitive HBO (Figures 2B,C, right panels).

To quantify the severity of fibrosis, Ashcroft scores were
evaluated, and a clear reduction was observed in the lungs
from bleomycin-challenged mice treated with repetitive HBO
compared to those from bleomycin-challenged mice (p �
0.002; Figure 3A). Hydroxyproline is a major component of
fibrillar collagen of all types. Consistent with the
morphological changes and Ashcroft scores above, the
hydroxyproline content was significantly reduced in lungs
from bleomycin-challenged mice treated with repetitive
HBO (p � 0.009; Figure 3B). Effects of HBO on body
weight in mice after the bleomycin challenge were minimal
(p � 0.820; Supplementary Figure S2). Taken together, these
data highlight an impact of repetitive HBO exposure on
bleomycin-induced pulmonary fibrosis in mice.

Effect of Repetitive Hyperbaric Oxygen
Treatments on Fibroblast Activation and
Extracellular Matrix Deposition in Mice
Lungs
We next checked the expression levels of Acta2 (encoding
α-smooth muscle actin, α-SMA, a myofibroblast marker) and
other ECM genes, including Col1a1 (encoding type I collagen)
and Fn1 (encoding fibronectin) in mice lungs. As expected, the
mRNA levels of Acta2 (α-SMA), Col1a1 (collagen I), and Fn1
(fibronectin) were significantly increased in the lungs from
bleomycin-challenged mice compared to that of the control
mice (all p values were less than 0.05; Supplementary Figure
S3). When the bleomycin-challenged mice were exposed to
repetitive HBO treatments, the mRNA level of Acta2 (α-SMA)
and Col1a1 were both significantly reduced (p � 0.005 and 0.014,
respectively; Figure 4A). Under the same conditions, the
expression of Fn1 was also decreased, although statistical
significance was not reached (p � 0.259; Figure 4A). Similar
results were obtained when measuring the protein level of α-SMA
using western blot (p � 0.037; Figure 4B). These results indicate
that repetitive HBO exposure could potentially reduce
myofibroblast differentiation and activation in vivo.

FIGURE 5 | Effects of HBO treatment on TGF-β–induced fibroblast activation in HFL1 cells. (A) Schematic diagram of the experimental procedure. In brief, TGF-β
(5 ng/ml) was added to HFL1 cells for 48 h to induce fibroblast activation, after which TGF-β was removed, and cells were exposed to 2.5 ATA HBO for 90 min
immediately. Samples were collected at 72 h after the beginning of TGF-β treatment. (B) The fold change in themRNA levels ofACTA2 (α-SMA),COL1A1 (collagen I), and
FN1(fibronectin) in HFL1 cells with indicated treatments. ACTB (β-actin)-normalized mRNA levels in control cells (vehicle) were used to set the baseline value at
unity. (C) Protein expression of α-SMA in HFL1 cells with indicated treatments. β-actin was used as a loading control. In the graph, β-actin–normalized protein levels in
control cells (vehicle) were used to set the baseline value at unity. Data in (B,C) are mean ± s.d., with p values indicated. n � 3 samples each group. Data were analyzed
with one-way ANOVA.
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Effect of Hyperbaric Oxygen Treatment on
TGF-β–Induced Fibroblast Activation and
HIF-1α Levels in Human Lung Fibroblasts
To validate the findings in vitro, the effects of HBO treatment on
TGF-β–induced fibroblast activation in human lung fibroblasts
HFL1 were examined (Figure 5A). After incubating HFL1 cells
with TGF-β for 48 h, the mRNA levels of ACTA2 (α-SMA),
COL1A1 (collagen I), and FN1(fibronectin) were all induced in
HFL1 cells compared to that of control cells (all p values were
less than 0.05; Supplementary Figure S4), indicating fibroblasts
were activated. TGF-β was then removed and HBO exposure
was applied to HFL1 cells for 90 min (Figure 5A). At 72 h after
TGF-β treatment, ACTA2 (α-SMA), COL1A1, and FN1
sustained at high expression levels in TGF-β-treated groups
compared to that of controls (all p values were less than 0.05;
Figure 5B). In TGF-β–treated cells, the mRNA levels of ACTA2
(α-SMA), COL1A1, and FN1 were significantly reduced when
exposed to HBO (all p values were less than 0.05; Figure 5B). In
the absence of TGF-β, the mRNA levels of ACTA2 (α-SMA),
COL1A1, and FN1 were also decreased when exposed to HBO,
although statistical significance was not reached (Figure 5B).
Similar results were obtained when measuring the protein level
of α-SMA using western blot (Figure 5C). In addition, to test if
HBO treatment could block TGF-β–induced fibroblast
differentiation, HBO exposure was applied immediately
following TGF-β treatment (Supplementary Figure S5A).
Q-PCR showed that this treatment could also reduce TGF-
β–induced ACTA2 (α-SMA) mRNA levels in HFL1 cells (p �
0.043) (Supplementary Figure S5B). These results suggested
that HBO exposure could reverse and block, at least partially,
TGF-β–induced fibroblast activation.

Finally, we checked the effects of HBO treatment on HIF-1α
levels following TGF-β treatment in human lung fibroblasts
(Figure 6A). In consistence with previous studies (Yamazaki
et al., 2017; Senavirathna et al., 2020), TGF-β treatment
significantly upregulated the protein levels of HIF-1α in HFL1
(p � 4.9E-4; Figures 6B,C). As expected, HBO exposure
dramatically reduced TGF-β–induced HIF-1α protein
expression (p � 3.9E-5; Figures 6B,C). In addition, we were
able to show that HBO exposure can also block TGF-β–induced
HIF-1α levels in HFL1 (Supplementary Figures S5C–E).

DISCUSSION

Pulmonary fibrosis is a chronic, progressive lung disease with limited
therapeutic options (Richeldi et al., 2017). In this study, we utilized an
animal model and assessment methods for pulmonary fibrosis
recommended by the American Thoracic Society (Jenkins et al.,
2017). We report that repetitive HBO exposure attenuates
bleomycin-induced pulmonary fibrosis in mice, and that HBO
exposure, both in vivo and in vitro, inhibits fibroblast activation
andECMproduction.HBO therapy is generally very safe (Camporesi,
2014;Hadanny et al., 2016;Hadanny et al., 2019) and has been used in
a variety of clinical practices (Choudhury, 2018; Kirby, 2019).
Together with earlier reports indicating an improvement of
pulmonary function in IPF patients following HBO therapy (Ma
and Du, 2003; Qiu et al., 2013), our findings support HBO as a
potential therapy for patients with pulmonary fibrosis.

As a master regulator of fibroblast activation, it was previously
reported that in human lung fibroblasts, TGF-β upregulates the
protein levels of HIF-1α and synergistically increases the
expression of myofibroblast markers and ECM genes

FIGURE 6 | Effects of HBO treatment on TGF-β–induced HIF-1α expression in HFL1 cells. (A) Schematic diagram of the experimental procedure. In brief, TGF-β
(5 ng/ml) was added to HFL1 cells for 48 h to induce fibroblast activation, after which TGF-βwas removed, and followed 2.5 ATA HBO exposure for 90 min immediately.
Samples were collected at the end of HBO exposure. (B) Protein expression of HIF-1α in HFL1 cells with indicated treatments. β-actin was used as a loading control. (C)
Fold change in the protein level of HIF-1α in HFL1 cells with indicated treatments. β-actin–normalized protein levels in control cells (vehicle) were used to set the
baseline value at unity. Data are mean ± s.d., with p values indicated. n � 3 samples each group. Data were analyzed with one-way ANOVA.
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(Senavirathna et al., 2020). In addition, TGF-β–induced fibroblast
activation is suppressed by HIF-1α inhibition in human lung
fibroblasts (Yamazaki et al., 2017). With evidence in this study
showing the ability of HBO to prevent and reverse TGF-
β–induced HIF-1α expression, we propose that HBO exposure
affects TGF-β–induced fibroblast activation by modulating the
expression of HIF-1α.

In addition to the effect of counteracting the upregulation of
HIF-1α induced by TGF-β, HBO is reported to reduce HIF-1α
levels through alleviating tissue hypoxia, in a similar manner to
multiple ischemic conditions, injuries, and inflammatory
conditions (Li et al., 2005; Calvert et al., 2006; Sun et al.,
2008; Bai et al., 2009; Zhou et al., 2013). Hypoxia is a
hallmark of pulmonary fibrosis. Previously, studies have
shown that the hypoxia signaling pathway was activated in
IPF patients (Tzouvelekis et al., 2007; Ueno et al., 2011; Xie
et al., 2013; Qian et al., 2015; Kusko et al., 2016; Philip et al.,
2017; Yamazaki et al., 2017; Burman et al., 2018; Aquino-Galvez
et al., 2019), Further, chronic exposure to hypoxic conditions
can increase the severity of bleomycin-induced pulmonary
fibrosis in murine models (Braun et al., 2018; Burman et al.,
2018; Gille et al., 2018). Furthermore, inhibition of HIF-1α,
directly or indirectly, alleviates pulmonary fibrosis in the
bleomycin-induced model (Yamazaki et al., 2017; Goodwin
et al., 2018; Strowitzki et al., 2019; Kseibati et al., 2020). Also,
hypoxia induced fibroblast differentiation directly and this effect
depended on HIF-1α (Robinson et al., 2012; Lv et al., 2018).
HBO is an effective way of oxygenating hypoxic tissues through
increasing the dissolved oxygen in plasma and amplifying
oxygen diffusion distance under higher pressure. Its effect on
alleviating tissue hypoxia has been confirmed in solid tumors
(Kinoshita et al., 2000; Beppu et al., 2002; Thews and Vaupel,
2016) and focal cerebral ischemia tissue (Sun et al., 2008).

Given both hypoxia and TGF-β signaling pathways are
activated in pulmonary fibrosis, HBO may inhibit HIF-1α
expression induced by both hypoxia and TGF-β. Previous
studies suggested that the effect on alleviating tissue hypoxia
by HBO can only maintain for a certain time (Kinoshita et al.,
2000; Beppu et al., 2002; Thews and Vaupel, 2016), suggesting
that repetitive HBO exposure is required. Future studies are
needed to optimize the protocol for the clinical application of
applying HBO as a therapy for pulmonary fibrosis.

In summary, this study provides evidence that HBO exposure
attenuates bleomycin-induced pulmonary fibrosis in vivo and
TGF-β–induced fibroblast activation in vitro. Mechanistically,
this effect may be mediated by downregulating TGF-β–induced
expression of HIF-1α. These findings support HBO as a potential

life-changing therapy for patients with pulmonary fibrosis,
although further research is needed to fully evaluate this.
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