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Metabolomics offers new insights into disease mechanisms that is enhanced when
adopting orthogonal instrumental platforms to expand metabolome coverage, while
also reducing false discoveries by independent replication. Herein, we report the first
inter-method comparison when using multisegment injection-capillary electrophoresis-
mass spectrometry (MSI-CE-MS) and nuclear magnetic resonance (NMR)
spectroscopy for characterizing the serum metabolome of patients with liver fibrosis
in chronic hepatitis C virus (HCV) infection (n = 20) and non-HCV controls (n = 14). In this
study, 60 and 30 serum metabolites were detected frequently (>75%) with good
technical precision (median CV < 10%) from serum filtrate samples (n = 34) when using
standardized protocols for MSI-CE-MS and NMR, respectively. Also, 20 serum
metabolite concentrations were consistently measured by both methods over a
500-fold concentration range with an overall mean bias of 9.5% (n = 660).
Multivariate and univariate statistical analyses independently confirmed that serum
choline and histidine were consistently elevated (p < 0.05) in HCV patients with late-
stage (F2-F4) as compared to early-stage (FO-F1) liver fibrosis. Overall, the ratio of
serum choline to uric acid provided optimal differentiation of liver disease severity (AUC
= 0.848, p = 0.00766) using a receiver operating characteristic curve, which was
positively correlated with liver stiffness measurements by ultrasound imaging (r =
0.606, p = 0.0047). Moreover, serum 5-oxo-proline concentrations were higher in
HCV patients as compared to non-HCV controls (F = 4.29, p = 0.0240) after adjustment
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for covariates (age, sex, BMI), indicative of elevated oxidative stress from glutathione
depletion with the onset and progression of liver fibrosis. Both instrumental techniques
enable rapid yet reliable quantification of serum metabolites in large-scale metabolomic
studies with good overlap for biomarker replication. Advantages of MSI-CE-MS include
greater metabolome coverage, lower operating costs, and smaller sample volume
requirements, whereas NMR offers a robust platform supported by automated spectral
and data processing software.

Keywords: metabolomics (OMICS), capillary electrophoresis-mass spectrometry, nuclear magnetic resonance,
serum, biomarkers, liver fibrosis, hepatitis C virus infection

INTRODUCTION

High-field nuclear magnetic resonance (NMR) spectroscopy and
high-resolution mass spectrometry (MS) are two core
instrumental platforms used in discovery-based metabolomics
research. Selection of one or more analytical method(s) is
dependent on several factors, including infrastructure/
operating costs, sample volume/workup requirements, sample
throughput, as well as selectivity and sensitivity that impact
overall metabolome coverage. In general, NMR offers excellent
reproducibility and quantitative performance together with
unambiguous metabolite identification, and thus is well suited
for longitudinal metabolomic studies, metabolic flux analysis, and
non-invasive analysis of tissue specimens (Emwas et al., 2019).
However, concentration sensitivity and resolution are limited
without isotopic enrichment when using fast spectral acquisition
protocols in one-dimensional proton ('H)-NMR. These
constraints result in quantification of typically a few dozen
polar serum metabolites depending on magnet field strength,
probe design, and spectral processing strategies (Wishart, 2019;
Casadei-Gardini, et al., 2020). NMR metabolite coverage can be
further expanded to include various lipoprotein, cholesterol and
fatty acid species when ultrafiltration is avoided (Wiirtz et al.,
2017). In contrast, MS-based metabolomic methods are more
accessible when using bench-top instrumentation with greater
sensitivity and resolution especially when coupled to one or more
high efficiency separation techniques (Kuehnbaum and Britz-
McKibbin, 2013). For instance, liquid chromatography (LC)-MS
using separation mechanisms (e.g., reversed-phase, hydrophilic
interaction) provide exceptional metabolome coverage (Rhee
et al., 2019) especially when using chemical isotope labeling
methods (Han and Li, 2018). Yet, separations in LC-MS are
generally constrained by lower throughput and complicated data
pre-processing when performing non-targeted metabolite
profiling (i.e., time alignment, peak picking), where a major
fraction of molecular features comprise compounds with
unknown chemical structures (da Silva et al, 2015).
Alternatively, multisegment injection-capillary electrophoresis-
mass spectrometry (MSI-CE-MS) offers a multiplexed separation
platform for metabolomics (Kuehnbaum et al., 2013) with higher
sample throughput, improved quality control, and lower sample
volume requirements (Nori de Macedo et al., 2017) Furthermore,
customized serial injection configurations accelerate biomarker
discovery using novel data workflows to encode mass spectral

information temporally within a separation (DiBattista et al.,
2017) while providing robust inter-batch adjustment in large-
scale metabolomic studies (Shanmuganathan et al, 2021).
Although there have been several cross-platform metabolomic
analysis involving NMR and LC-MS (Nevedomskaya et al., 2011;
Psychogios et al., 2011; Bruno et al., 2018; Bhatia et al., 2019), to
the best of our knowledge no study to date has explored the
potential benefits of combining CE-MS with NMR methodologies
in metabolomics (Marshall and Powers, 2017).

Chronic hepatitis C virus (HCV) infection can lead to
progressive liver disease with a high risk for death from
cirrhosis and hepatocellular carcinoma if not treated early with
pangenotypic direct-acting antiviral regimens (Ghany and
Morgan. 2020). Most individuals (~85%) infected with HCV
develop chronic infections, which contribute to a high burden
of liver-related disease complications and spiraling healthcare
costs (Myers et al., 2014). Similar to other forms of chronic liver
disease, HCV infections are accompanied by liver fibrosis, a
scarring process characterized by thickening of liver tissue and
accumulation of extracellular matrix proteins with eventual loss
of liver function (Khatun and Ray, 2019). Optimal patient care
and treatment decisions are dependent on staging of disease
progression, which has relied on a liver biopsy to assess the
severity of fibrosis, such as the widely used Meta-analysis of
Histological Data in Viral Hepatitis (METAVIR) scoring system
(Goodman, 2007). However, liver biopsy is an expensive and
invasive procedure with risks for patient bleeding, including other
complications. It is also prone to both sampling and inter-subject
variability depending on quality of biopsy, and thus has been
increasingly supplanted by less invasive methods for liver fibrosis
assessment, such as ultrasound imaging and blood-based liver
protein panels. As a result, there is growing interest in
metabolomics to identify novel biomarkers of hepatic fibrosis
that offer greater specificity, sensitivity, and reproducibility, and
accessibility in a clinical setting (Chang and Yang, 2019). This is
urgently needed to augment diagnostic applications for chronic
liver disease differentiation (Soga et al., 2011), monitoring
treatment responses to therapy (Meoni et al., 2019), and risk
assessment of advanced stages of liver disease (Diren and Idle,
2020), including patients co-infected with HCV/HIV (Naggie
et al., 2020).

In this work, metabolomic analyses were performed on serum
filtrate samples collected from HCV patients at different stages of
liver fibrosis, as well as non-HCV controls when using MSI-CE-MS
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TABLE 1 | Study characteristics of treatment-naive hepatitis C virus (HCV) infected patients (n = 20) at different stages of liver fibrosis, and healthy non-HCV infected

participants (n = 14).

Criteria Non-HCV (n = 14) HCV early-stage (n = 9) HCV late-stage (n = 11) p-value®
Age (years) 44 + 15 57 + 10 63 + 11 0.0318; 0.216
Sex (male) 10 (77%) 8 (89%) 9 (82%) -
BMI (kg/m?) 244 +13 26.0 + 5.8 265+ 5.0 0.334; 0.843
FibroScan test (kPa)® 4.81 + 0.55 5.39 + 1.1 112 + 3.6 0.111;1.73 x 107*
FibroTest score® 0.22 + 0.17 0.63 + 0.23 0.69 + 0.23 1.61 x 107%; 0.592
y-Glutamyltransferase (U/L) 29 + 26 132 + 125 76 + 77 8.69 x 1073, 0.233
Total bilirubin (uM) 11.0+6.3 148+ 75 11.8+6.8 0.216; 0.369
Alpha-2-macroglobulin (g/L) 1.82 + 0.56 34+12 44 +12 4.08 x 1074 0.0747
Hapatoglobin (g/L) 1.08 £ 0.39 1.09 + 0.51 1.40 + 0.75 0.780; 0.337
Apolipoprotein A1 (g/L) 1.36 £ 0.20 1.44 + 0.11 1.40 £ 0.30 0.311; 0.720
Alanine aminotransferase (U/L) 241 +8.4 82 + 65 52 + 36 1.16 x 1073, 0.151
Fibrosis grade/METAVIR score®

FO 14 5 — —

F1 — 4 — —

F2 — — 5 —

F3 — - 2 -

F4 — — 4 —
HCV genotype

1A/1B — 9/0 9/2 —

aStudent’s t-test to assess statistical significance (p < 0.05) when comparing healthy non-HCV controls with early-stage HCV, as well as early-stage HCV with late-stage HCV patients,

respectively.

bFibroScan test results to assess liver fibrosis based on transient elastography using ultrasound imaging.
FibroTest uses an algorithm that combines 5 standard serum protein biomarkers, including y-glutamyltransferase, total bilirubin, alpha-2-macroglobulin, haptoglobin, and

apolipoprotein A1.

IMETAVIR score to assess the extent of inflammation and fibrosis by histopathological examination of a liver biopsy.

and '"H-NMR. Standardized protocols were used for sample
preparation, data acquisition, and data pre-processing allowing
for an inter-method comparison of serum metabolites consistently
measured by both techniques. Importantly, this cross-platform
metabolomics study allowed for independent replication of serum
biomarker candidates associated with liver fibrosis progression
from chronic HCV infection, which complement tissue
histopathology, serum liver protein panels, and ultrasound
imaging techniques.

RESULTS

Clinical Characteristics of Study
Participants

Demographic and clinical characteristics of all study participants,
including healthy non-HCV participants (n = 14), and patients
with chronic HCV infection at different stages of liver fibrosis (n =
20) are summarized in Table 1. In this pilot study, most recruited
subjects were older, overweight male adults, with non-HCV
participants generally being younger (p = 0.0318). HCV infected
patients were treatment naive at the time of recruitment with most
having a HCV genotype A, as confirmed by positive serum anti-
HCYV antibodies and HCV RNA test results. Staging of liver fibrosis
using the METAVIR scoring system was performed by tissue
histopathology which confirmed no fibrosis (F0) in non-HCV
controls, whereas minimal scarring/inflammation (early-stage, FO-
F1, n=9) or more advanced stages of fibrosis (late-stage, F2-F4, n =
11) in HCV patient sub-groups with four individuals having
cirrhosis (F4). Similarly, FibroScan test results using transient

elastography measurements revealed no differences in liver
stiffness between non-HCV and early-stage liver fibrosis HCV
patients (FibroScan <7.0 kPa, p < 0.05), in contrast to the late-stage
fibrosis HCV patients (FibroScan >8.0 kPa, p = 1.73 x 107%). As
expected, a panel of blood liver proteins and FibroTest scores were
elevated in HCV patients as compared to non-HCV controls.
However, there were no significant differences in circulating
liver protein levels between HCV sub-groups at different stages
of liver fibrosis severity (p > 0.05).

Serum Metabolome Characterization by
Multisegment Injection-Capillary

Electrophoresis-Mass Spectrometry

Serum samples were prepared by ultrafiltration to remove protein
after dilution with recovery/internal standards prior to MSI-CE-
MS analysis, which were analyzed under two configurations for
cationic (pH 1.8, positive ion mode) and anionic (pH 8.5, negative
ion mode) metabolites with full-scan data acquisition. Sample
throughput in MSI-CE-MS is enhanced when using a serial
sample injection format comprising 13 serum filtrates analyzed
within a single run. In this case, duplicate analysis of each serum
filtrate diluted in a distinctive pattern (1:2, 1:1, 2:1) together with
apooled QC sample were acquired in random sequence as shown
for alanine and lactic acid in Figure 1A. Data pre-processing in
MSI-CE-MS combined both targeted analysis of known serum
metabolites, as well as a nontargeted screening strategy to
authenticate unknown metabolites from a pooled serum
sample as described elsewhere (Shanmuganathan et al., 2021).
All serum metabolites were annotated based on their
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FIGURE 1 | Cross-platform method comparison for characterization of the serum metabolome from HCV patients with liver fibrosis and non-HCV controls when using
(A) MSI-CE-MS and (B) 'H-NMR. In both cases, diluted serum filtrate samples were analyzed using standardized protocols, which included 60 and 30 polar/ionic metabolites
measured in most samples (>75%) with adequate precision (CV < 35%) by MSI-CE-MS and NMR, respectively. Each sample was analyzed by NMR with signal averaging
(120 scans, 12 min/sample) followed by automated spectral processing by MAGMET using a targeted metabolite library, whereas six pairs of serum filtrates together
with a pooled QC were analyzed in each MSI-CE-MS run (8 min/sample) using both targeted and nontargeted approaches with metabolite quantification using external
calibration curves with internal standards. Serum metabolite concentrations measured consistently by both platforms are illustrated in this case for alanine and lactic acid.

characteristic accurate mass: relative migration time (mm/z:RMT)
under positive (p) or negative (n) ion mode detection after
rejecting spurious signals, background ions and dataset
redundancy (Saoi et al., 2020). Overall, 55 serum metabolites
in this study were identified with high confidence (level 1) after
spiking with authentic standards (i.e., co-migration) and having

low mass error (<5 ppm). This also allowed for their quantification
using an external calibration curve with ion responses normalized to
an internal standard (20 uM, 4-chlorotyrosine, Cl-Tyr or naphthalene
monosulfonic acid, NMS) over a 100-fold dynamic range with good
linearity (R° > 0990). Otherwise, unknown metabolites
(5 compounds, level 4) were annotated based on their most likely
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FIGURE 2| Overview of the serum metabolome and data quality when using MSI-CE-MS as depicted in 2D scores plot using PCA, which compares the technical
precision (median CV = 8.8%, n = 6) from repeat QC samples relative to the larger biological variance in chronic HCV liver fibrosis patients (median CV = 64%, n = 20) and
non-HCV controls (median CV = 29%, n = 14). Control charts for the recovery standard (3-fluorophenylalanine, F-Phe) confirms acceptable intermediate precision (mean
CV = 6.8%, n = 156) when analyzing all serum samples in this study by MSI-CE-MS in positive and negative ion modes.

T
10

Serum Sample Injection®

molecular formula. Overall, 60 polar/ionic metabolites were
consistently analyzed (median CV < 35%) in most serum samples
(>75%) from non-HCV controls and HCV patients (1 = 34) by MSI-
CE-MS. Figure 2 depicts a 2D scores plot from principal component
analysis (PCA) confirming acceptable technical precision achieved
for 60 serum metabolites from QC samples (median CV = 8.8%, n =
6) relative to the larger biological variance in non-HCV (median CV
=29%, n = 14) and HCV patients (median CV = 64%, n = 20). Also,
control charts for the recovery standard (20puM, 3-
fluorophenylalanine, F-Phe) added to all serum samples and
analyzed under both MSI-CE-MS configurations demonstrated
good intermediate precision (mean CV = 6.8%, n = 156) with few
data (~5%) exceeding warning limits (+2s).

Targeted Metabolite Profiling of Serum
Filtrates by Nuclear Magnetic Resonance

A standardized approach was also used to prepare serum samples
(280 ) after ultrafiltration to remove protein followed by a 1.25-fold
dissolution in a buffer system (70 pl, 250 mM phosphate, pH 7.0
with 54% vol D,0O) containing a chemical shift reference that also
served as internal standard (1.0 mM 2,2-dimethyl-2-silapentane-5-
sulfonate, DSS-d6). 'H-NMR spectra (700 MHz) in 5 mm diameter
tubes were acquired using a NOESY pulse sequence with water
suppression after a manual shimming protocol, which generated an
average line width for DSS-d6 of (0.95 + 0.14) Hz (n = 40). Each
"H-NMR spectrum required 12 min for 128 scans as shown for a
pooled serum filtrate sample from the study cohort in Figure 1B.

Most proton resonances for serum metabolites have signals clustered
within distinct chemical shift windows (§ ~ 3.2-4.2 ppm; 1.8-2.7
ppm; 0.8-1.2 ppm) as compared to prominent peaks for lactic acid
(methyl proton, § = 1.40 ppm, doublet), alanine (methyl proton, § =
1.46 ppm doublet), and D-glucose (a-anomeric proton, § = 5.22
ppm, doublet). Raw FID NMR data was uploaded to a user-friendly
webserver, Magnetic Resonance for Metabolomics (MAGMET)
using an automated workflow for data pre-processing and
spectral deconvolution from a library of 47 serum metabolites
(Ravanbakhsh et al, 2015). After spectral processing, serum
metabolite concentrations were calculated using a reference
standard with known concentration (DSS-d5, 1,000 uM).
Technical precision was assessed from the intermittent analysis
of an external QC comprised of four amino acid standards (mean
CV = 2.5%, n = 3), as well as internal QC of pooled serum from
cohort (median CV = 9.0%, n = 3) which had higher variance
(CV > 35%) for certain serum metabolites prone to spectral
interferences (e.g., arginine, methionine, leucine, hydroxyvaleric
acid). Overall, 30 polar/ionic metabolites were reliably quantified
by 'H-NMR in most serum samples in this study.

Serum Metabolite Quantification:
Multisegment Injection-Capillary
Electrophoresis-Mass Spectrometry vs
Nuclear Magnetic Resonance

An inter-method comparison was next performed for serum
metabolites measured with high detection frequency (>75% of
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FIGURE 3 | Inter-method comparison for serum metabolite quantification by "H-NMR and MSI-CE-MS platforms in non-HCV and HCV patients (n = 34). (A) A
Bland-Altman %difference plot confirms a normal distribution for 20 serum metabolite concentrations measured independently in 34 serum filtrate samples having a
mean bias of 9.5% (n = 660) with few metabolites (~5%) exceeding mutual agreement limits ( + 2s). (B) A summary of the mean concentration (uM) for each serum
metabolite consistently measured by both instrumental platforms, as well as a bar graph depicting the mean bias (% difference) together with an error bar indicating
the mean precision (+1 s) in reported bias across all samples (n = 34). Serum metabolites analyzed in this study were ranked ordered (top to bottom) from lowest to

all samples analyzed) and adequate technical precision (CV <
35%) by both MSI-CE-MS and NMR platforms. Concentration
detection limits for 'H-NMR under the acquisition conditions
used were about 5 uM, but higher detection thresholds were
evident for certain serum metabolites prone to chemical shift
spectral overlap. In MSI-CE-MS, concentration sensitivity is
metabolite dependent given the disparity in solute ionization
efficiency (Chalcraft et al., 2009) with detection limits (S/N ~ 3)
ranging from 0.2 to 0.5 uM when using a conventional coaxial
sheath liquid interface with small volumes (~5 nL) introduced on-

capillary. Figure 3A depicts a Bland-Altman %difference plot
highlighting a normal data distribution with an overall mean
bias of 9.5% (n = 660) based on 20 serum metabolite
concentrations measured in 34 serum samples by MSI-CE-MS
and NMR with few missing data (20 or 2.9% in total). There was a
significant overlap in metabolome coverage (~67%) between both
platforms that comprised primarily micromolar levels of polar/
ionic metabolites from serum filtrates. Over a 500-fold dynamic
range in serum metabolite concentrations was assessed in non-
HCV controls and HCV patients (n = 34) ranging from D-glucose
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(mean concentration of 4.8 mM) to O-acetyl-L-carnitine (mean
concentration of 11 uM). Bias was evident among a sub-set of
samples/serum metabolites (e.g., proline, tyrosine, phenylalanine),
yet only a small fraction of total data (~5.0%) exceeded mutual
agreement limits (+2s). Figure 3B illustrates the bias distribution
for each of the 20 serum metabolites (mean bias of 10.4% ranging
from -29 to +51%) that are depicted as solid bars. Also, the mean
precision in measured bias between the two platforms is 27%,
which is shown as an error bar (+1s) for each serum metabolite.
Overall, serum alanine, glycine, ornithine, valine, histidine,
glutamine, isoleucine, lactic acid, glucose, carnitine and betaine
had the most consistent measurements across both methods in
terms of acceptable bias and variability (<25%) when using only a
single internal standard for data normalization. An excel file in the
Supplementary Material provides a complete list of serum

metabolites and their responses/concentrations measured in
non-HCV and HCV patients using MSI-CE-MS and NMR,
including calibration curves and figures of merit acquired for 20
serum metabolites used in this inter-method comparison.

Serum Metabolites Differentiating Liver

Fibrosis Progression in Hepatitis C

A major focus of this pilot study was to identify putative serum
biomarkers that differentiate liver fibrosis in treatment naive
HCV patients. Complementary multivariate and univariate
statistical analyses were performed on serum metabolome data
to identify putative serum biomarkers that may enable less
invasive assessment of liver fibrosis. Figure 4 compares two
partial least squares-discriminant analysis (PLS-DA) models
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TABLE 2 | Cross-platform comparison of serum metabolites that differentiate
HCV patients with late (F2-F4, n = 11) to early-stage (FO-F1, n = 9) liver fibrosis.

Serum Metabolite/ID Mean FC p-value Effect size®

MSI-CE-MS — — —
Choline 1.43 0.0312 1.03
Proline 1.41 0.0401 0.99
Histidine 1.19 0.0653 0.90

TH-NMR - - -
2-Hydroxybutyric acid 2.24 0.0307 1.04
Choline 1.32 0.0447 0.94
Histidine 1.21 0.0456 0.97

A two-tailed student’s t-test with equal variance of log-transformed serum metabolite
concentrations was used to differentiate liver fibrosis progression, where effect size is
defined as eta®.

from MSI-CE-MS and 'H-NMR data to rank order significant
serum metabolites (VIP >1.5) that differentiate late-stage fibrosis
(F2-F4, n = 11) from early-stage (FO-F1, n = 9) fibrosis in well-
matched HCV patients based on their METAVIR scores
(Table 1). Overall, serum choline and histidine were among
the top ranked metabolites consistently elevated in late-stage

A Cross-Platform Serum Metabolomics Comparison

as compared to early-stage fibrosis HCV patients by both
MSI-CE-MS and NMR. Table 2 confirms that both MSI-CE-
MS (choline, proline, histidine) and NMR (2-hydroxybutyric
acid, choline, histidine) identified four serum metabolites
elevated (mean fold-change, FC > 1.2, p < 0.05, effect size
>0.90) with more advanced stages of liver fibrosis when using
a two-tailed student’s t-test with equal variance. Hydroxybutyric
acid isomers were not fully resolved by MSI-CE-MS in this study
preventing their accurate quantification, whereas serum proline
was not found to be different between HCV sub-groups using
NMR, and thus not independently replicated. Several other serum
metabolites also had higher serum concentrations with increasing
liver fibrosis (e.g., asparagine, arginine, tyrosine, hydroxyproline)
in contrast to uric acid and phenylalanine (Figure 4); however,
these trends were not statistically significant (p > 0.05).

Figure 5A depicts a receiver operating characteristic (ROC)
curve for the ratio of serum choline to uric acid based on MSI-CE-
MS data, which provided optimal discrimination between HCV
liver fibrosis patient sub-groups (AUC = 0.848, p = 0.00766) not
feasible by serum liver protein panels or FibroTest scores (Table 1).
Moreover, Figure 5B confirms that there was a moderate positive
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FIGURE 5 | (A) Receiver operating characteristic (ROC) curve highlighting that serum choline:uric acid ratio optimally differentiates late (F2-F4) from early (FO-F1)
stage liver fibrosis in treatment naive HCV patients with an area under the curve, AUC = 0.848. (B) A moderate positive correlation is shown between the serum choline to
uric acid ratio and independent FibroScan results from ultrasound imaging of HCV patients at different stages of liver fibrosis. (C) ANCOVA (between-subject effects) with
covariate adjustments confirms that serum 5-oxo-proline concentrations are elevated in HCV patients with early and late-stage liver fibrosis as compared to non-

HCV controls (*p < 0.05). (D) A weak positive correlation is depicted for serum 5-oxo-proline concentrations and FibroTest scores from a blood liver protein panel that
differentiate non-HCV controls from HCV patients with chronic hepatic inflammation.
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correlation (r = 0.606, p = 0.0047, n = 20) between the serum
choline to uric acid ratio and liver stiffness measurements from
FibroScan test results (kPa) in HCV patients. Also, an ANCOVA
(between-subject effects) with adjustment for covariates (age, sex
and BMI) revealed that serum 5-oxo-proline concentrations
measured only by MSI-CE-MS were consistently elevated (mean
FC = 1.44, F = 4.29, p = 0.0240) in HCV patients with early and
late-stage fibrosis as compared to non-HCV controls as shown in
Figure 5C. In contrast, liver stiffness measurements based on
FibroScan test results were not able to differentiate non-HCV
controls from early-stage fibrosis (FO-F1) HCV patients (Table 1).
Figure 5D highlights that there was a weak correlation between
serum 5-oxo-proline concentrations and FibroTest score (r =
0.349, p = 0.0586, n = 30), which is derived from an age/sex-
adjusted algorithm of five serum liver proteins.

DISCUSSION

Cross-Platform Serum Metabolomics

Comparison
CE-MS based methods have not been widely used within the
metabolomics community due to longstanding concerns regarding
migration time variability and long-term robustness. However,
these technical obstacles can be overcome with implementation of
standardized protocols in large-scale metabolomic studies (Harada
et al, 2018; Shanmuganathan et al., 2021). These protocols have
been recently implemented in international ring trials to
demonstrate cross-laboratory comparability (Drouin et al,
2020). Also, CE-MS inter-method comparisons increasingly
demonstrate reliable quantification of metabolite concentrations
relative to validated assays used in a clinical setting (DiBattista
etal, 2017; Wild et al., 2019; Azab et al., 2020). Yet, there have been
few cross-platform metabolomic studies involving CE-MS in
conjunction with other widely used instrumental methods, such
as LC-MS and GC-MS (Biischer et al., 2009; Naz et al., 2013; Rojo
et al,, 2015). To the best our knowledge, this work represents the
first direct comparison between CE-MS and NMR for
characterization of the serum metabolome following ultrafiltration.
There was considerable metabolome overlap between MSI-
CE-MS and '"H-NMR with 20 metabolites consistently measured
in serum filtrate samples, including amino acids, carnitines,
organic acids, and glucose (Figure 3). MAGMET uses
automated spectral processing, phasing, water-removal,
baseline correction, chemical shift referencing, peak picking,
curve fitting and spectral deconvolution via a biofluid-specific
reference library for targeted quantitative profiling of 47 serum
metabolites (Ravanbakhsh et al., 2015); however, only 30 serum
metabolites were reliably measured in most non-HCV controls
and HCV patients. This was likely due to sub-optimal shimming
contributing to higher-than-average spectral line widths
(~0.95Hz) and lower signal-to-noise for detecting several
lower abundance metabolites (e.g., hypoxanthine, acetoacetate)
and organic solvents (e.g., methanol, acetone) within the spectral
library. In contrast, MSI-CE-MS takes advantage of both a
targeted and nontargeted metabolomics data workflow with
serum filtrates analyzed under two separation/ionization

A Cross-Platform Serum Metabolomics Comparison

conditions for cationic and anionic metabolites (Figure 1); this
process also allows for the discovery of unknown metabolites
lacking authentic standards or reference data available in the
Human Metabolome Database (Wishart et al., 2018). In this
study, 60 serum metabolites (including five unknowns) were
measured in most serum filtrates by MSI-CE-MS with good
technical precision (CV < 10%) comparable to NMR
(Figure 2). The greater serum metabolome coverage for MSI-
CE-MS is mainly attributed to its improved resolution and lower
detection limits as compared to 1D "H-NMR. Both methods had
good mutual agreement for 20 metabolites measured in 34 serum
samples from non-HCV and HCV patients with a mean bias of
9.5% (n = 660) and few outlier data (Figure 3). Better quantitative
performance in MSI-CE-MS may be realized when using
matching stable-isotope internal standards with multiple
reaction monitoring (Saoi et al.,, 2020) to correct for potential
ion suppression effects unlike discovery-based metabolomics
using a single internal standard with full-scan data acquisition.
Furthermore, concentration sensitivity with deeper metabolome
coverage can be further enhanced when using sheathless or low-
flow CE-MS interface designs (Zhang et al., 2017).

Similarly, NMR quantification using automated MAGMET
processing was prone to spectral interferences and potential
bias, which can be minimized with lower detection limits when
using higher field magnets. Overall, multiplexed electrophoretic
separations based on MSI-CE-MS (Figure 1) enable faster data
acquisition than NMR (<8 min/sample [both ion modes] vs
12 min/sample) with a two-fold greater metabolome coverage
and analogous reproducibility. ~Additionally, MSI-CE-MS
requires far less sample volume than NMR (<5 ul [if required]
serum vs 450 pl serum) that is optimal for analysis of volume-
restricted biospecimens (Nori de Macedo et al., 2017), and single-
cell analyses (Duncan et al., 2019). Expanded metabolome coverage
can be further realized when using non-aqueous buffers systems in
MSI-CE-MS for a diverse range of water-insoluble yet ionic lipids
and fatty acids from serum ether extracts (Azab et al., 2020).

Serum Metabolites Signatures of Liver
Fibrosis in Chronic Hepatitis C Virus

Patients

Chronic HCV viral infections are one of several causes of liver
disease, including fibrosis, cirrhosis, and hepatocellular
carcinoma. Although liver biopsies remain the gold standard
for diagnosis and staging severity, there is increasing use of
ultrasound-based transient elastography for monitoring liver
fibrosis progression as it correlates well with the METAVIR
scoring system. However, this non-invasive method for
assessing liver stiffness suffers higher failure rates for obese
patients with ascites, and improved diagnostic confidence is
achieved for mild disease states when combined with serum
protein biomarker panels (Wilder and Patel, 2014). In our
study, recruited HCV patients at different stages of liver
fibrosis were well-matched (age, sex, BMI, HCV genotype,
treatment naive), with FibroScan test results differentiating
moderate to severe fibrosis (F2-F3) or cirrhosis (F4) from no
fibrosis (F0O) or mild fibrosis (F1) patient sub-groups (Table 1).

Frontiers in Molecular Biosciences | www.frontiersin.org

August 2021 | Volume 8 | Article 676349


https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

Shanmuganathan et al.

There was no difference in liver stiffness measurements when
comparing early-stage liver fibrosis (FO-F1) HCV patients to a
younger/healthy non-HCV control unlike the FibroTest score
primarily from elevated y-glutamyl transferase and alpha-2-
macroglobulin levels in circulation. Despite aberrant metabolic
signatures of fibrosis reported in various liver diseases (Chang
and Yang, 2019), few metabolomic studies have identified serum
biomarkers to differentiate liver fibrosis progression caused by
HCV infection (Sarfaraz et al., 2016).

In this work, we identified four serum metabolites that
differentiate fibrosis progression in HCV patients, including
choline, histidine, proline and 2-hydroxybutyric acid.
Interestingly, choline and histidine from serum filtrates were
elevated in severe fibrosis/cirrhosis (F2-F4) as compared to early-
stage fibrosis (FO-F2) HCV patients as independently confirmed
by both MSI-CE-MS and NMR methods (Table 2). Choline is an
essential dietary nutrient required for the biosynthesis of
phospholipids and donor in methylation reactions, which
plays a critical role in maintaining liver function (Mehedint
and Zeisel, 2013). Although choline deficient diets can
contribute to fatty liver and hepatic fibrosis, previous NMR
metabolomic studies have shown that elevated serum choline
in HCV patients differentiates hepatocellular carcinoma from
HCV controls without liver cancer (Wei et al, 2012). Yet,
contradictory findings were reported by NMR with lower
levels of serum choline in hepatocellular carcinoma as
compared to patients with liver cirrhosis (Gao et al., 2009). In
our case, chronic HCV patients with hepatocellular carcinoma
were excluded from study recruitment. However, more advanced
stages of liver fibrosis/cirrhosis may progress to cancer without
effective anti-viral medications. Additionally, serum histidine was
previously demonstrated by NMR to be elevated in HCV patients
with increasing liver fibrosis and necroinflammation (Safaraz
et al., 2016). Histidine is an essential amino acid that also
functions as an important antioxidant and metal chelator,
which has been shown to attenuate thioacetamide-induced
liver fibrosis in rats (El-Batch et al, 2011). Independent
replication by two orthogonal instrumental methods further
supports our findings in a well-matched patient cohort despite
a modest study power involving primarily older male
participants. Overall, the serum choline to uric acid ratio was
found to improve discrimination between different stages of liver
fibrosis (Figure 5A) as compared to choline alone (AUC = 0.803,
p =0.0317). In our study, lower circulating levels of uric acid were
associated with more advanced fibrosis in largely overweight male
HCV patients (Figure 4A), although hyperuricemia has been
associated with liver damage in patients with non-alcoholic fatty
liver disease (Afzali et al., 2010; Zhou et al., 2016). Importantly,
there was a positive correlation (r = 0.606, p = 0.0047) in the
serum choline to uric acid ratio with FibroScan test results, which
links aberrant metabolism in circulation to liver disease
phenotype/pathology in HCV patients (Figure 5B). Further
validation in a larger patient cohort is needed to reproduce
our findings and better demonstrate its clinical utility when
used in conjunction with ultrasound imaging techniques.

Serum 5-oxo-proline as measured by MSI-CE-MS was found
to be elevated in both early and late-stage fibrosis HCV patients as

A Cross-Platform Serum Metabolomics Comparison

compared to non-HCV controls (Figure 5C). Oxo-proline (or
pyroglutamic acid) is an important yet infrequently measured
amino acid intermediate within the glutathione cycle (Bachhawat
and Yadav, 2018), which accumulates in circulation due to
acquired 5-oxoprolinemia from hepatic oxidative insult and
glutathione depletion (Gamarra et al,, 2019). However, most
studies to date have focused on a high anion gap metabolic
acidosis  from  5-oxoprolinemia  following sepsis or
acetaminophen toxicity (Liss et al, 2013) rather than liver
fibrosis/inflammation from chronic HCV infection or non-
alcoholic steatohepatitis (Saoi et al., 2020). Serum cystine
concentrations were also elevated among HCV patients with
liver fibrosis relative to non-HCV controls in this study
indicative of elevated oxidative stress in liver diseases (Cichoz-
Lach and Michalak, 2014). In fact, serum 5-oxo-proline and
cystine were highly co-linear (r = 0.619, p = 9.38 x 107>, n =
34), yet they were not measured by NMR preventing their
independent replication. FibroScan test results did not
differentiate early-stage fibrosis HCV patients (FO-F1) from
non-HCV controls without fibrosis unlike specific serum liver
proteins, or FibroTest scores (Table 1), which were weakly
correlated with oxo-proline concentrations (Figure 5D).
Elevated circulating concentrations of oxo-proline reflecting
oxidative stress and impaired glutathione-dependent redox
homeostasis offers a plausible biochemical mechanism
associated with the onset and progression of liver fibrosis in
HCV patients.

CONCLUDING REMARKS

We conducted the first cross-platform serum metabolomics study
to compare the performance of MSI-CE-MS and NMR methods
using standardized protocols, which was also applied to identify
putative biomarkers of liver fibrosis from chronic HCV infection.
Both techniques offered similar reproducibility with good mutual
agreement and few outliers when quantifying 20 serum
metabolites using a single internal standard. A targeted NMR
metabolomics approach was facilitated by use of an automated
spectral processing and deconvolution software together with a
serum-specific metabolite library; however, sub-optimal
shimming contributed to line width broadening and lower
sensitivity with potential bias for certain serum metabolites
prone to spectral interference. On the other hand, multiplexed
separations by MSI-CE-MS offer faster data acquisition speeds,
much lower sample volume requirements and greater
metabolome coverage. Four serum metabolites were elevated
in HCV patients with more advanced liver fibrosis severity,
with choline and histidine being replicated independently by
both instrumental platforms. Overall, the choline to uric acid
ratio was found to optimally differentiate between late (F2-F4)
and early (FO-F1) stages of liver fibrosis, which was also correlated
well with liver stiffness measurements by ultra-sound imaging.
Similar to serum liver protein panels, oxo-proline concentrations
were higher in HCV patients with liver fibrosis as compared to
non-HCV controls reflecting elevated oxidative stress and
glutathione depletion from chronic inflammation. Further
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validation of serum biomarker candidates in this pilot study is
warranted in a larger cohort of HCV patients while evaluating
their clinical utility as compared to FibroTest scores and
FibroScan test results. Serum biomarkers of hepatic fibrosis
offer a less invasive procedure to liver biopsies when
monitoring disease progression and treatment interventions
for HCV patients to prevent end-stage liver failure.

MATERIALS AND METHODS

Chemical and Reagents

All metabolite standards and buffers were purchased from Sigma-
Aldrich (St. Louis, MO, United States). All LC-MS grade solvents,
including acetonitrile, isopropanol, methanol, and water were
obtained from Caledon Laboratories Ltd (Georgetown, ON,
Canada). Calibrant solutions for serum metabolites were
prepared by serial dilution of stock solutions (50 mM) in LC-
MS grade water and stored refrigerated (4°C). A NMR
Metabolomics Analysis Kit with access codes to MAGMET
software were supplied by The Metabolomics Innovation
Centre (Edmonton, AB, Canada). The kit includes Amicon
filters with a 3kDa molecular weight cut-off (MWCO),
microcentrifuge tubes, NMR buffer (250 mM potassium
phosphate, pH 7.0, 5mM 2,2-dimethyl-2-silapentane-5
sulfonate, DSS-ds, 5.84 mM 2-chloropyrimidine-5-carboxylic
acid, CPCA, and D,0 54% vol in H,0) and a QC standard
mixture (1.25 mM glycine, 1.25 mM alanine, 1.25 mM threonine
and 1.25 mM aspartic acid).

Study Population and Sample Collection

The study approval was obtained from the McMaster University
Health Research Ethics Board (REB Project #0932) and all study
participants (20 patients with chronic hepatitis C and 14
participants as healthy controls) provided signed informed
consent for study enrolment according to the Declaration of
Helsinki. Relevant clinical and demographic information was also
collected, including sex, age, body mass index (BMI), HCV
genotype, cardiovascular risk factors (e.g, hypertension,
diabetes, and dyslipidemia), medication history (e.g, lipid
lowering therapies, oral hypoglycemics, and insulin), and
habitual alcohol intake. An attending physician recruited
patients if they meet the inclusion criteria while a research
nurse, independent of the attending physician, obtained
consent. Peripheral blood samples were collected during clinic
visits. Following blood clotting (45 min at 25°C), the isolated
serum samples were immediately transferred to cryovials and
stored at —80°C. Routine clinical tests were also collected using Li-
heparin, K-EDTA, and plain collection vials for total bilirubin,
alanine aminotransferase, y-glutamyltransferase, alpha-2-
macroglogulin, haptoglobin and apolipoprotein Al. The study
included patients chronically infected with HCV from the 2F
Digestive Diseases Clinic at McMaster University (Hamilton,
ON). Study inclusion criteria included: 1) adult patients
(>18 years of age) and 2) treatment naive, chronic HCV
patients (genotype 1, positive anti-HCV antibodies and HCV
RNA in serum). Exclusion criteria included: 1) chronic hepatitis
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A, B, D and E, 2) conditions that may alter the accuracy of serum
biomarkers of fibrosis: extra-hepatic biliary obstruction;
immunosuppression (e.g., due to HIV, medications);
pregnancy; and systemic inflammatory conditions (e.g, sepsis,
inflammatory bowel disease), 3) excessive alcohol consumption
defined as > 40 g/d for men and >20 g/d for women, 4) antiviral
therapy for HCV within the previous 6 months, 5) patients with
NAFLD as determined by echogenic liver on ultrasound, and
6) patients with hepatocellular carcinoma. Percutaneous liver
biopsy was performed under local anesthesia with an
ultrasound guidance via the right costal approach (McGill,
2001). Although liver biopsies are considered the “gold
standard” for staging fibrosis, there has been a decline in its
use (Myers et al., 2014). FibroScan test results were used to
non-invasively assess liver fibrosis progression in non-HCV
and HCV patients at the Liver Clinic at McMaster University,
and liver fibrosis was graded using the METAVIR scoring
system. Also, the FibroTest score was calculated from a panel
of five serum liver protein measurements after adjustment for
age and sex.

Serum Filtrate Preparation Prior to

Metabolomic Analyses

Prior to NMR and MSI-CE-MS analysis, frozen serum samples
were slowly thawed on ice and a pooled quality control (QC)
sample was prepared by taking 10 pl aliquots of serum from each
participant in the study. All serum samples were processed
according to the protocol provided by the TMIC NMR
metabolomics kit (http://magmet.ca/spectra_collection). The
serum pre-treatment protocol was as follows: 3 kDa MWCO
filters (Amicon Ultra 0.5 ml Centrifugal Filter Unit, Millipore
Sigma Inc.) were first rinsed with 500 ul of water and centrifuged
for 15min at 14,000g to remove additives from the
manufacturing process. The rinsing process was repeated five
times after which the filters were air dried prior to serum
processing. An aliquot of 450 ul of serum sample was then
added to the pre-rinsed filter tube and centrifuged for 25 min
at 14,000 g. The serum filtrate containing free circulating polar/
ionic metabolites (i.e., non-protein bound fraction) was then
separately aliquoted for independent MSI-CE-MS and "H-NMR
analysis. In this case, removal of serum protein by ultrafiltration
reduced spectral interferences for metabolite quantification in
NMR, as well as deleterious capillary surface adsorption and ion
source contamination in MSI-CE-MS. An aliquot of 50 ul was
used for MSI-CE-MS analysis while 280 ul was required for NMR
analysis. The serum filtrate (280 pl) for NMR analysis was then
diluted 1.25-fold with 70 ul of the NMR kit buffer and the
solution was vortexed for 30s and transferred to a 5mm
NMR tube. The serum filtrate (50 ul) for MSI-CE-MS analysis
was diluted 4-fold in deionized water containing several internal/
recovery standards, including 4-fluoro-r-phenylalanine (F-Phe,
20 uM), 3-chloro-L-tyrosine (Cl-Tyr, 20 uM), 2-
naphthalenesulfonic acid (NMS, 20 uM), and '’C4-D-glucose
(13C-glucose, 2 mM). The solution was vortexed for 30 s and a
20 ul aliquot was transferred into a polypropylene vial prior to
MSI-CE-MS analysis.
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Nuclear Magnetic Resonance Data

Acquisition

Data was obtained on a Bruker Avance III 700 MHz NMR
spectrometer  (Bruker Biospin, Rheinstetten, Germany)
equipped with a 5mm QNP cryoprobe, operating at

700.17 MHz for 'H and controlled by TopSpin software (v.3.5
for Linux OS). Data was collected at room temperature, using a
noesypr 1d pulse program with water suppression (Ravanbakhsh
et al,, 2015). The acquisition and mixing time were set to 4 s and
100 ms, respectively. Spectra was acquired with eight steady state
scans with a field width of <80 Hz and O1P and spectral width
were set to 4.69 and 12 ppm, respectively. Each sample was
shimmed using a manual shimming protocol which included
Z6 shimming along the Z-X-Y axes before the Z-X-Y-XZ-YZ axes
to maintain a peak linewidth for DSS-d5 (<1 Hz) required for
automated MAGMET spectral processing. Each sample required
about 12 min to complete 128 scans.

Nuclear Magnetic Resonance Data Spectral

Profiling and Annotation

The raw NMR data was uploaded in a zip format (FID file) to
the MAGMET webserver (http://magmet.ca/users/login) that is
based on the automated 'H-NMR spectral processing of serum
filtrate samples as described previously (Ravanbakhsh et al.,
2015). Briefly, a standardized workflow is used to process NMR
spectral files, including Fourier transform/phase correction,
baseline correction, water suppression, spectral smoothing,
chemical  shift referencing, followed by  spectral
deconvolution and metabolite quantification from a library
of 47 serum metabolites. The following parameters were
selected: the biofluid was set to serum, spectrometer
frequency was set to 700 MHz, chemical shift (CS) reference
and CS concentration were set to 4,4-dimethyl-4-silapentane-1-
sulfonic acid (DSS-d6) and 1,000 uM, respectively. The internal
DSS-dé6 standard was used to calculate the concentration of all
metabolites detected in the serum filtrates by comparing the
peak area of individual metabolites in the spectra with the
known concentration of DSS-d6. Also, CPCA was used for
optimal automated phase correction based on its stable
chemical shift at 8.76 ppm. A list of identified metabolites
with their absolute concentration was outputted as a table
format from the webserver. Serum metabolites detected in
more than 75% of serum samples analyzed in this study were
included in the data matrix for statistical analysis and any
missing values and/or non-detects were replaced with half of
lowest detected value.

Serum Metabolomics by Multisegment
Injection-Capillary Electrophoresis-Mass
Spectrometry

An Agilent 6230 time-of-flight mass spectrometer (TOF-MS) with a
coaxial sheath liquid Jetstream electrospray ion source with heated
nitrogen gas was equipped to an Agilent G7100A capillary
electrophoresis (CE) unit and used for the analysis of polar/ionic
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metabolites under aqueous buffer conditions. An Agilent 1260
Infinity Isocratic pump, and a 1260 Infinity degasser were used
to deliver the sheath liquid at a rate of 10 pl/min. Separations were
performed on an uncoated open tubular fused-silica capillary with
an internal diameter of 50 pm and outer diameter of 360 pm
(Polymicro Technologies Inc., AZ, United States) with a total
capillary length of 135 cm. About 7 mm of the polyimide coating
was removed from both ends of the capillary using a capillary
window maker (MicroSolv, Leland, NC, United States) to reduce
sample carry-over and prevent polymer swelling and/or degradation
of the outer polyimide coating. Purine (10 pl) and hexakis (2,2,3,3-
tetrafluoropropoxy) phosphazine (HP-921, 10 ul) were added into
200 ml of sheath liquid (0.1% vol formic acid in 60:40 MeOH:H,0,
and 50:50 MeOH: H,O for positive and negative ion mode,
respectively) to allow for real-time mass correction while also
monitoring for potential matrix-induced ion suppression effects
during separations since constant mass signals were detected at m/z
121.0509 and 922.0098 for purine and HP-921, respectively. The
instrument was operated in 2 GHz extended dynamic range under
positive and negative ion modes that spanned a mass range of m/z
50-1700. The data acquisition rate was set to 500 ms/spectrum and
both profile and centroid data was stored in a “*.d” file format. The
electrospray ionization conditions were set to, 2000 V for the Vcap
and nozzle voltage during separation while turned off during
injection, nebulizer was turned off during injection but was set
to 10 psi during separation, while the drying gas was delivered at 8 L/
min at 300°C with a sheath gas flow of 3.5L/min at 195°C. In
addition, the MS voltage settings for the fragmentor, skimmer and
Octl RF were set to 120, 65, and 750 V, respectively. Instrument
control and data acquisition were performed using Agilent
MassHunter Workstation LC/MS Data Acquisition Software
(B.06.01). New capillaries were conditioned by flushing at high
pressure (900 mbar) with methanol for 30 min, 1.0 M NaOH for
30 min, de-ionized water for 30 min, and background electrolyte
(BGE) for 30 min. At the start of each day, the CE electrode and MS
interface was wiped daily with isopropanol:water (50:50) to avoid
salt build-up followed by mass calibration of TOF-MS instrument as
preventative maintenance measures.

All serum filtrate samples were analyzed by MSI-CE-MS under
two configurations prior to a 10 min capillary flush with BGE
namely an acidic BGE under positive ion mode for cationic/
zwitterionic metabolites (1M formic acid with 15% vol
acetonitrile, pH 1.8), and an alkaline BGE under negative ion
mode for acidic metabolites (50 mM ammonium bicarbonate, pH
8.5 adjusted with ammonium hydroxide). Serial sample injections
in MSI-CE-MS were performed by alternating a hydrodynamic
injection for each serum filtrate (100 mbar for 5 s) followed by an
electrokinetic injection of BGE (30kV for 75s) to initiate
electrophoretic separation at the capillary inlet. This interrupted
separation process was repeated for a total of 13 serum samples that
were introduced in a randomized order within a single run by MSI-
CE-MS to ensure no effective loss in separation performance
(Saoi et al,, 2019). An applied voltage of 30 kV at 25°C was used
for all runs in both positive and negative modes while a pressure
gradient of 2 mbar/min was applied during separation (total
time of 45 min) to allow for faster elution of slower migrating
metabolites. BGE and sheath liquid were degassed before use by
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sonication for 10 min. Data normalization for peak integration
used 20uM  4-chlorotyrosine (Cl-Tyr) and naphthalene
monosulfonic acid (NMS) as internal standards for positive and
negative ion mode, respectively with the exception of glucose (total
hexose) that used '*Cg-glucose as it co-migrates with the
electroosmotic flow (Shanmuganathan et al, 2021). A recovery
standard, 3-fluorophenylalanine (F-Phe) was added to all serum
samples prior to ultrafiltration to monitor for technical precision
using control charts. Each sample effectively required 4 min to
analyze by MSI-CE-MS in each ion mode while including a pooled
quality control (QC) sample in every run. Metabolite identification
for serum metabolites was confirmed (e.g,, co-migration, accurate
mass) by spiking authentic standards in pooled serum filtrates.
Serum metabolite quantification by MSI-CE-MS was achieved
using a six-point calibration curve (in duplicate) over a 100-fold
dynamic range with good linearity (R* ~ 0.998) after least-squares
linear regression with detection (S/N ~ 3) and quantification (S/N
~ 10) limits ranging from 0.2 to 0.5 uM to 1 and 2 uM, respectively
as summarized in the excel file of the Supplementary Material.

Statistical Analysis

Raw MSI-CE-MS data (*.d format) was processed using Mass-
Hunter Workstation Qualitative Analysis software (version
B.06.00, Agilent Technologies, 2012). A comprehensive study
of all detectable molecular features from the raw data was
performed using Mass-Hunter Molecular Feature Extractor,
Molecular Formula Generator tools, and an in-house
compound database. Molecular features were extracted using a
symmetric 10 ppm mass window and all ions were annotated
using their accurate mass (1m/z), relative migration time (RMT)
normalized to an internal standard (Cl-Tyr, NMS, or
’C-glucose), and ionization mode of detection (p: positive, n:
negative). RMTs are reported since they are an important
parameter used to exclude redundant adducts and/or fragment
ion peaks, which exhibit identical RMTs as the parent compound.
Peak smoothing was performed using a quadratic/cubic Savitzky-
Golay function (7 points) prior to peak integration. Peak areas and
migration times for all molecular features and internal standards
were transferred to an Excel worksheet (Microsoft Office) and
relative peak areas (RPA) for each unique molecular feature was
saved as csv file. Molecular features detected in more than 75% of
all serum samples analyzed with a coefficient of variance (CV <
35%) for QC samples were included in the final data matrix for
further statistical analysis. Any non-detects were replaced by a
value that was half the detection limit, where the limit of detection
was set to the smallest value in the data set. Multivariate data
analysis such as principal component analysis (PCA), partial least
squares-discriminant analysis (PLS-DA) and receiver operating
characteristic (ROC) curves were performed using the online
webserver, MetaboAnalyst 5.0 (Chong et al., 2018), where data
sets were (generalized) log-transformed (glog) and auto-scaled
(PCA, PLS-DA) unless otherwise stated. Univariate statistical
analysis, including student’s t-test and ANCOVA (between-
subjects with adjustments for age, sex and BMI), and data
normality test (Shapiro-Wilk test, a = 0.05) were performed
using the Statistical Package for Social Science (IBM SPSS
Statistical for Windows, Version 20.0. NY, United States). The

A Cross-Platform Serum Metabolomics Comparison

inter-method comparison between MSI-CE-MS and 'H-NMR
serum metabolite concentrations was performed using Bland-
Altman %difference plots with MedCalc statistical software
(MedCal® Version 12.5, Ostend, Belgium). All
electropherograms, mass spectra and graphs were displayed
using Igor Pro (Wavemetrics Inc, OR, United States) or
Microsoft Excel (Redmond, WA, United States).
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