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The ever increasing computer power, together with the improved accuracy of
atomistic force fields, enables researchers to investigate biological systems at the
molecular level with remarkable detail. However, the relevant length and time scales of
many processes of interest are still hardly within reach even for state-of-the-art
hardware, thus leaving important questions often unanswered. The computer-aided
investigation of many biological physics problems thus largely benefits from the usage
of coarse-grained models, that is, simplified representations of a molecule at a level of
resolution that is lower than atomistic. A plethora of coarse-grained models have
been developed, which differ most notably in their granularity; this latter aspect
determines one of the crucial open issues in the field, i.e. the identification of an
optimal degree of coarsening, which enables the greatest simplification at the
expenses of the smallest information loss. In this review, we present the problem
of coarse-grained modeling in biophysics from the viewpoint of system representation
and information content. In particular, we discuss two distinct yet complementary
aspects of protein modeling: on the one hand, the relationship between the resolution
of a model and its capacity of accurately reproducing the properties of interest; on the
other hand, the possibility of employing a lower resolution description of a detailed
model to extract simple, useful, and intelligible information from the latter.

Keywords: modeling, coarse-graining, molecular dynamics, proteins, biophysics

1 INTRODUCTION

Among the many revolutions that have spangled the 20th Century, the advent and diffusion of the
computer is certainly one of the most momentous. Computing machines have impacted human life
and society in practically all compartments, such as communication, work, information, education,
health, and entertainment. The scientific environment is certainly one of the main leaders of this
revolution, but it has been largely affected by it as well: in fact, computers have not only changed the
way we do science, they also created new ways of doing science that were simply unthinkable before.
Besides the “trivial” usage of computers in speeding up regular calculations (that is, to carry out the
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job of Los Alamos’ human computers1 in a faster and more
human-friendly manner), a novel technique arose that rapidly
became pervasive of practically all scientific fields, as well as a field
per se: computer simulations.

Among the synonyms of simulation we can find words such as
copy, facsimile, imitation, counterfeit, and fake. Computer
simulations are indeed all these things: while aiming at
reproducing, as faithfully as possible, the real object of study,
its properties, and its dynamics, they necessarily are but the
shadow of a dream—the fictitious dance of a projection of the
object. And yet, precisely in this intangible nature lies their power.

Simulations constitute a bridge between the experimental
investigation of a system and its abstract, theoretical study.
While the former relies on direct observation, probing, and
quantitative measurement, the latter describes the system or
phenomenon of interest in terms of quantities and relations
among them, and carries out the investigation making use of
mathematical manipulations. The computational approach takes
from both: it presupposes a representation of the system in terms
of rather idealized fundamental constituents, whose nature is
closer to abstract Platonic entities rather than physical,
“Aristotelian” ones. Such representation enables the
investigation down to a level of detail that is practically and
even fundamentally inaccessible to experiments; however, its
usability in the study and comprehension of Nature
presupposes that a one-to-one relation can be established
between the constitutive elements of a real system and those
of its model. The validity of the latter depends on the capacity of
the modeler of identifying the essential features of a system and
endowing the model with them; a model is just as good as the
pieces of which it is made.

The field of application of this computational microscope (Lee
et al., 2009) spans several orders of magnitude in space and time.
Depending on the specific property or phenomenon of interest,
various models can be employed that describe reality (or rather a
part of it) in a relatively small length and time scale interval; no
single model can be employed to study whatever system, for two
reasons: our limited computational capacity, and the intrinsic
limitations of the model.

At present, the most successful description we possess of the
constituents of matter and their interactions is provided by the
Standard Model of particle physics: even though the latter is an
incomplete and effective2 theory, it still provides the most
powerful and predictive (Hanneke et al., 2011; Aoyama et al.,
2015) framework for the investigation of physical reality; that is to
say, this theory constitutes the sharpest conceptual device we
currently have at hand to rationalize observed phenomena and
predict new ones. Nonetheless, a straightforward and brute-force
application of such model to the study of systems larger than a
small atomic nucleus is practically unfeasible: in fact, the
associated computational cost makes it impossible to simulate,

in terms of relativistic quantum fields, even the smallest molecule
for a physically interesting time scale. Hence the first of the two
aforementioned limitations.

All models beyond the most fundamental one (if any) are
affected by both shortcomings. Certainly there will be systems too
large or processes too slow to be studied by means of any derived
representation; additionally, all these non-fundamental, effective
representations will have a range of validity beyond which the
model does not make sense. Non relativistic quantum mechanics
works well for slow, low-energy particles, but the resolution of the
processes it can reproduce is limited from below; additionally, it is
too complex to study systems composed by more than a few
atoms. Fortunately, within appropriate ranges of time, size, and
energy, further effective theories can be constructed, that allow
one to incorporate quantum mechanical properties in classical
potentials: this process, epitomized by the Born-Oppenheimer
approximation, fills the gap between quantum and classical
mechanics, and between the small world and the not-so-small
(e.g., molecular) world.

In general, then, the larger the scale of the system, and the
longer the time scales of the processes of interest, the harder it is
to perform simulations at a given level of resolution. This
limitation originates from the increasing duration of the
simulation and, in turn, the necessity to employ larger and
larger memory and computing power. However, even when
sufficient computational resources are at hand, another issue
lies before us, which is the capability to make sense of the
simulation. A detailed description of a large macromolecule,
e.g., one in which each atom is described as a point-like
particle, is certainly sufficient to reproduce several properties
that would not involve quantum mechanical features explicitly,
but it might as well be excessively detailed for the purpose. A
simplified representation of the system and its interactions might
be sufficient to reproduce the process of interest.

A further reduction of resolution is thus possible, in which the
system is not described in terms of atoms, but rather of effective
interaction sites each of which is representative of a group of
several atoms. A model whose resolution is lower than atomistic
is commonly referred to as a coarse-grained (CG) model. CG
models range all possible resolutions from a few atoms per site up
to the continuum, and a plethora of strategies have been
developed to parametrize them so as to reproduce one or
more properties of the system of interest. In fact, exactly as
any effective theory can be trusted in a limited range of length and
times scales only, so it is for any particular CG model.

This apparently trivial observation opens up a crucial issue, whose
practical and philosophical implications have just started to be studied
(see Figure 1), namely the identification of the level of model detail
that is the most appropriate for the study of a given phenomenon. In
fact, the construction of a model is implicitly dictated by its purpose,
and its usage implicitly complies (or should comply) with the range of
validity in which the model is effective. Insofar, the decision of the
model resolution has largely been based on intuition, and quantitative
investigation of the appropriate level of detail is really just in its
infancy.

A second, even more subtle issue is the definition of the
appropriate resolution distribution, that is, whether each

1https://www.atomicheritage.org/history/human-computers-los-alamos.
2The SM is incomplete as it does not incorporate the general-relativistic theory of
gravity; furthermore, it is an effective theory as it holds for energies lower than the
Planck scale (see e.g., Burgess (2020)).
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system part should be represented with the same level of detail, or
rather a modulation of the latter can be implemented so as to
attribute higher resolution (and more computational resources)
to a given region, while reducing the accuracy elsewhere. This task
actually requires solving two problems: first, one has to determine
what level of resolution can be employed, and where; second, one
has to devise a model that guarantees the appropriate degree of
accuracy to each region of the system, such that the various
regions at different resolution can interact with one another
seamlessly.

Besides the questions related to the construction of
computational models of physical systems a further one lies,
that tackles the issue of system representation from a different
perspective, namely that of employing modeling strategies for the
analysis of the system. Computer simulations of large systems are
becoming increasingly more feasible, which bears with it two
major consequences: on the one hand, the steady growth in the
amount of data to make sense of, even for a single run; on the
other hand, the increase in the complexity of the systems and
processes that can be tackled, which naturally requires a richer
and often system-specific toolbox of analysis instruments. These
are essential to safely navigate the sea of data produced, and land
to the shores of the system’s understanding; the latter, however,
can only be achieved through a process of reduction and synthesis,
by which the vast amount of numbers crunched and spat out by
the computer are distilled into a few, intelligible and interpretable
parameters, their time evolution, and their relations.

This is indeed what is being done since the dawn of
thermodynamics, as systems composed by bazillions of
particles are eventually described and studied in terms of a
handful of quantities (temperature, pressure, volume, chemical
potential, compressibility, specific heat...). The necessity behind
this procedure is the human incapacity of making sense of ∼ 1023

degrees of freedom; the reason behind the success of such a
drastic program, which brings down that number of coordinates
to less than ten, is the fact that indeed a full, meaningful
characterization of the system is intrinsically achievable in
terms of those few variables and no more than that.

In the case of a system as simple as a gas or a liquid, the
identification of those parameters that are relevant and sufficient
for a complete description and understanding of the system is
straightforward and largely intuitive. When the object of study is
a macromolecule, however, things might be more subtle: one can
wonder if it is possible to devise an algorithmic procedure aimed
at the identification of those variables in terms of which a
simplified representation of the system can be achieved, which
maximizes the insight about it while at the same time retaining
the lowest number of descriptors. Questions such as this hold the
promise of discriminating, in an unsupervised manner, the signal
from the noise in the outcome of a computer simulation.

The scope of this review is to present and discuss in some
detail the questions raised insofar. The extension and richness of
the field of modeling and coarse-graining forces us to renounce at
any expectation of exhaustiveness: we however hope to provide
the readers with a sufficiently broad and organized overview to
grasp and appreciate the variety and diversity of models and
methods that have been developed in the context of computer
simulations of macromolecules. Our focus will lie on applications
to proteins. This choice has two reasons: first, any attempt at
including more than this class of systems might have easily
doubled the length of the manuscript, as the field of biological
and artificial soft matter modeling is just as broad as the list of
systems itself; second, all the issues we discuss find in proteins a
most evident, remarkable, and interesting playground. Many
problems that we pose make little to no sense in other
contexts: for example, it is relatively uninspiring (even though

FIGURE 1 | In the construction of a model we are confronted with several questions, whose apparent philosophical quality entails a rather practical nature. In
particular, we ask ourselves: Can one always coarse-grain? Is there an optimal level of resolution? Is a single level of resolution meaningful? How to identify the optimal
resolution level or distribution? And how can we implement it in practice? (In the picture: “The thinker”, A. Rodin, 1904).
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not devoid of insight (Harmandaris et al., 2006; Ohkuma and
Kremer, 2017)) to wonder about a modulation of the model
resolution in a long homopolymer, or to question whether an
intrinsically optimal level of detail exists in the representation of a
lipid bilayer. On the contrary, these questions can have as many
different answers as the proteins they are applied to, due to the
diversity of size, structure, function, and properties that these
molecules exhibit.

The remainder of the paper is structured as follows. In Section
2 we introduce some fundamental concepts upon which the
procedures of modeling and coarse-graining are constructed.
Albeit non-standard and universally accepted terms are
introduced, these are sufficiently intuitive and serve the
purpose of removing some of the potential ambiguities that
such a broad and rich field entails. In Section 3 we discuss the
most fundamental models one commonly finds in the context of
soft and biological matter simulation, namely atomistic models.
We enter the field of coarse-graining in Section 4, where we
recapitulate the main general ideas, and illustrate examples of the
models and methods that have been developed. Specifically, in
Section 5 we focus on those models where the degree of detail is
uniform through out the system, while in Section 6 we consider
those strategies that make use of two or more resolution levels in
the same model. In Section 7 we shift from the idea of modeling
to that of filtering, that is, reading a simulation with a lower level
of detail so as to discriminate those structural characteristics that
entail the largest amount of information about the system
properties. Finally, in Section 8 we summarize with a few
concluding thoughts.

2 REPRESENTATION, MODEL AND FILTER

In order to carry out some kind of computer-aided quantitative
investigation of a macromolecular system, e.g., a molecular
dynamics simulation, it is necessary to provide a
representation of the system. By this term we refer to a
collection of mathematical entities conceptually associated to a
corresponding physical entity: for example, the physical entity
“atomic nucleus” is associated to a point in three dimensions
whose position in space is determined through its coordinates in a
(usually three-dimensional) Cartesian space. This point is the
mathematical entity associated to the physical atomic nucleus,
and a collection of such points, one for each atom of the molecule
and its environment, constitutes the representation of the system
we feed the computer with.

As such, the representation is a static object. This does not mean
that it cannot be informative per se: indeed, knowing the position of
the molecule’s atoms allows us to establish geometrical relationships
among them, fromwhich, in turn, we can infer properties that connect
shape and function. A particularly intuitive example is provided by the
crystallographic orNMR techniques that turn realmolecules in a set of
atomic coordinates. However, in order to make a step forward from
structure to function it is necessary to expand the set of properties the
representation is endowed with and, most importantly, to confer to it
the capacity of actively producing dynamic information. To this end,
we have to “dress” the representation with interactions, thus enabling

it to evolve in time or to sample its accessible phase space. When
properties and interactions are specified for a given representation of
the system, we dub it a model. Models are thus mathematical
idealisations of a system that, by means of an appropriate
processing of their properties and interaction, can produce
nontrivial information (e.g., time series, correlation and response
functions, conformational sampling...).

Once a representation or a model are given, though, one can
apply to them the same procedure that leads from the real-life
system to the idealized representation. More specifically, given a
representation that we think of as the more fundamental one,
thus dubbed first level representation (FLR), it is possible to
establish a quantitative relationship from its mathematical
entities to those of a second level representation (SLR),
typically given in smaller number than those of the first one.
As an example, all the atoms constituting a protein in the first
level representation can be associated to one single point for each
amino acid, so that the second level representation constitutes a
simplified description of the first. If this procedure is applied to all
configurations obtained in a molecular dynamics simulation, the
result is a trajectory generated with the model defined at the first
level, but described in terms of the second level representation.
Hence, the SLR cannot produce nontrivial information by itself,
but it can return a subset of the information produced by the
underlying model; because of this property we refer to such SLR
overlaid on a model as a filter3. These ideas are illustrated in
Figure 2.

For a given system, one can provide representations at different
levels of resolution: restricting our considerations to particle-based
representations of proteins, we can let each of these particles represent
an atom, part of an amino acids, an entire amino acid, a group of
amino acids, an entire protein and so on.When the size of the system
is such that a particle-based description of it does not make sense any
more, continuumor quasi-continuum representations come into play,
such as finite elements representations, where the surface of a protein
is described in terms of a triangular tessellation, or descriptions
involving density fields. Each of these representations is
informative in its own right, in that it can highlight different
structural features of great importance—atom proximity, binding
pocket geometry, solvent-accessible surface area, overall shape, and
so on. As already highlighted, however, the amount of information
they can deliver is limited to what can be extracted from the structure
alone; to gain further insight, conformational sampling, time
correlation and energetics are required, which can only be
achieved through simulation and, in turn, rely on a set of
interactions. Each of the aforementioned representations thus
constitutes the basis for a wide range of models, differing by
complexity, accuracy, computational requirements, and so on.
These models are employed to investigate the behavior and
properties of systems at various level of detail, ranging from all-
atomdescriptions, where each atom is explicitly accounted for, to very
coarse and qualitative pictures where an entire protein is treated as a
featureless sphere. Evidently, the choice of a model over another

3As it will be detailed in the following sections, filters and SLRs are referred to in the
literature as mappings and mapped representations, respectively.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6769764

Giulini et al. From System Modeling to System Analysis

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


depends on the problem one is interested in: the resolution of the
model determines the lowest-level, most fundamental causes it can
produce, and with it the processes and properties it can generate.

Filters, on the other hand, have not been developed so far with
the same intensity as models, in spite of the fact that their usage is
ubiquitous. We cannot think of making sense of an all-atom
molecular dynamics simulation by examining all 3N coordinates
in each frame at a time: a process of synthesis4 is necessary in
order to extract, from such a large amount of data, the relevant
and intelligible bit that we can make use of. This process is often
carried out quantitatively, e.g., by defining a specific reaction
coordinate that allows one to discriminate between two distinct

conformers of a molecule. In such a case, one has to know in
advance what to look at in order to construct this coordinate;
rather frequently, however, a qualitative approach is the first and
possibly unique one, and it takes the form of a visual inspection of
the MD trajectory. Albeit very sophisticated, as it passes through
immensely complex neural networks (our brains), the
information is eventually reduced to simple notions such as
“open” and “closed”.

More quantitative examples of filters are available, such as
simplified representations of a protein in terms of quasi-rigid
domains, where a group of amino acids is treated as a unique
block whose internal dynamics is neglected. To determine the
structure of these domains (i.e., which amino acids belong to
which domain) on the basis of their dynamical properties it is
necessary to make use of a model defined at a higher resolution
with respect to the blocks themselves; however, once their

FIGURE 2 | Pictorial illustration of modeling and filtering. A real system, such as a protein (panel (A), PDB code 2CPG) can be described in terms of the position of its
atoms (panel (B)). If we assume it to be the most detailed representation, this constitutes the first level representation (FLR). By “dressing” it with interactions we obtain a
model (panel (C)) that can be used to perform conformational sampling, e.g., through a molecular dynamics simulation. The resulting conformations can be inspected
with the same level of detail of the FLR; alternatively, only a subset of the model’s degrees of freedom can be taken into account: in this latter case we have a lower-
resolution, second level representation (SLR), that is obtained through the application of a filter to the FLR (panel (D)).

4In a currently very popular language, one might call this a feature extraction
process.
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identity is fixed, the trajectory can be studied filtering out the
movement internal to the blocks and focusing on the relative
displacements among them. This procedure of feature
extraction enables one to derive, from a large amount of
data inherent in the output of a model defined at the fist
level of representation, a smaller and more manageable
amount of information defined at the second level of
representation.

In the following, we will provide an overview of the most
common models employed in the computer-aided investigation
of proteins, and discuss what impact the level and distribution of
the detail of the underlying representation has on the capacity of
the model to generate information; subsequently, we will discuss
how filters can be employed to rationalize the impressive amount
of data produced in a single MD run and separate the signal from
the noise.

3 ALL-ATOM MODELING

The models of reference in the computational study of molecular
systems are the so-called all-atommodels. They are defined at an
atomic scale resolution, meaning that each atomic nucleus is
represented as a material point-like particle.

In all-atom models, each particle interacts with the
surrounding ones through classical potentials. This is justified
by the Born-Oppenheimer approximation (Born and
Oppenheimer, 1927), which allows one to eliminate the
electron degrees of freedom by taking the quantum-
mechanical expectation value over the electronic wave
function, under the assumption of an effective decoupling of
nuclear dynamics and electronic ground state. As a result, the
interaction energy, which is quantum in nature, can be
approximated by a classical potential energy surface that
depends only on the position of the atomic nuclei, ignoring
the evolution of the electronic distributions. Moreover,
interactions in all-atom models are based on the assumption
that the contribution of each atom to the Born-Oppenheimer
potential energy can be approximated by a sum of few-body
terms, each shaped into a simple, empirical and semi-empirical
functional form. These energy terms, which collectively take the
name of force field, can generally be divided in two types: those
describing bonded interactions, and those describing interactions
between particles close in space but not connected by any
chemical bonds (non-bonded interactions). The former are
associated to the presence and distortion of chemical bonds,
and are modeled as a sum of contributions with a dependence on
bond lengths, bond angles, and dihedral angles; non-bonded
interactions, instead, are described in terms of Van der Waals,
electrostatic, and hydrogen bond potentials.

Force field parameters are obtained from experimental data
and quantum-level calculations performed on specific sets of
systems. Bond lengths and corresponding stiffness values, as well
as angle parameters, are commonly determined from
crystallographic or spectroscopic data; Van der Waals terms
from small molecules liquid density, heat of evaporation, or
solvation free energies; partial atomic charges from quantum-

mechanical calculations (González, 2011). As no unique
parametrization strategy exists, a plethora of atomistic force
fields have been developed through the years, all having a
strikingly similar functional form but different coefficients. In
the case of proteins, examples of common atomistic force fields
are Amber (Maier et al., 2015) and CHARMM (Huang and
MacKerell, 2013); recently, improved versions of these force
fields for both folded and intrinsically disordered proteins
have also been developed (Huang et al., 2017; Robustelli et al.,
2018), in addition to force field types designed for amyloid
assembly (Nguyen et al., 2021). In any of these force fields,
each amino acid type in a defined protonation state is
described through the same set of parameters, irrespective of
its position along the protein sequence; exceptions are the N- and
C-termini, which usually require ad hoc parameterisations
according to the capping groups. Moreover, particles within
each residue are generally not distinguished on the basis of the
sole chemical element, but according to the atom type. This
distinction is much stronger than the one based on the atomic
number, since atom types differ also in their hybridization state
and the local electronic environment of the atoms they are
covalently bonded to. The definition of atom types in a force
field is of fundamental importance, since it determines the
specificity of the interactions.

Even within the limits of validity imposed by the
aforementioned approximations, these models are of
tremendous importance to perform an in silico exploration of
a macromolecule’s energy landscape, with the aim of bridging the
gap between structure, dynamics, and function. In this regard, the
conformational sampling method of choice in the biophysics
community is molecular dynamics (MD), through which
successive configurations of the system are generated by
numerically integrating Newton’s equation of motion, thus
allowing the calculation of both equilibrium and time-
dependent properties.5

Atomistic MD has brought a significant progress in a wide
range of biological applications in the last decades, due to the
advancement of novel algorithms and high-performance
computing. The gap between timescales resolved in
simulations and in experiments has been significantly reduced
due to the concurrent advances in the corresponding techniques;
particularly significant is the recent diffusion of graphic
processing units (GPUs) for MD calculations (Stone et al.,
2010; Lindert et al., 2013; Sweet et al., 2013), and the
consequent GPU implementation of popular molecular
modeling software packages (Lee et al., 2018; Kutzner et al.,
2019; Phillips et al., 2020). Groundbreaking was the
development in the last decades of the supercomputer Anton
(Shaw et al., 2008; Shaw et al., 2009; Shaw et al., 2014), specifically

5Monte Carlo (MC) is another popular simulation technique, which, however,
found less space in the all-atom investigation of biomolecular systems; its main
disadvantages, when compared to MD, are the inefficiency for exploring the
configurational space of large biomolecules, the slowness of the convergence
rate, and the lack of information about the time evolution of structural events
(Adcock and McCammon, 2006).
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designed for running atomistic MD simulations with extremely
high efficiency (Pan et al., 2016; Masureel et al., 2018; Pan et al.,
2019).

Making use of standard resources, computational scientists
can nowadays access micro-to millisecond timescales with atomic
detail, for systems comprising several hundreds of thousands of
particles. This is sufficient to characterize many critical biological
processes, such as ligand-binding events and the folding of small
proteins (Kubelka et al., 2004; Freddolino et al., 2008). However,
several phenomena are still inaccessible with all-atom MD; this is
the case of large-scale structural rearrangements, whose
characteristic time scale typically impairs an exhaustive
exploration of the accessible conformational space. To alleviate
this limitation, diverse enhanced sampling techniques have been
developed, including metadynamics and replica exchange MD,
which boost the conformational sampling by “helping” the
system overcome high free energy barriers; excellent reviews
on these topics can be found in Bernardi et al. (2015) and
Yang et al. (2019).

The advances in the field of atomistic simulation are paralleled
by the increase in the amount of information they generate. MD
trajectories, which consist of the set of three Cartesian
coordinates per atom per simulation time step, can easily
result in an enormous quantity of raw data: appropriate tools
are required to separate the most meaningful information buried
in the high dimensional space of the simulation output from the
rest, thus addressing specific questions about the phenomenon
under investigation. Indeed, this challenge led to the development
and application of several dimensionality reduction algorithms
(Sittel and Stock, 2018; Tribello and Gasparotto, 2019) to the
analysis of all-atom MD trajectories. Still, no standard procedure
or unique technique exists that can allow the blind and automated
determination of the fundamental degrees of freedom of the
system. Nowadays, the common approach consists in combining
several analysis tools in a system-specific fashion, in order to
reduce data complexity and facilitate the understanding. The
specific analyses performed are strictly connected to the molecule
simulated, to the technique used to generate the dynamics, and to
the type of information one is interested in.

In order to investigate the behavior of a protein in terms of its
structural stability, it is standard procedure to compute the root
mean square deviation (RMSD) and the root mean square
fluctuation (RMSF) on the positions of a subset of particles,
typically the Cα atoms. The former quantity indicates the global
evolution in time of the atomic position, and gives indications on
the drift from a given conformation; the latter instead is usually
time-averaged on a residue basis, and can help to identify the
relative flexibility of protein segments. In addition, secondary
structure content can be monitored by applying analysis
algorithms such as STRIDE (STRuctural IDEntification)
(Frishman and Argos, 1995) or DSSP (Define Secondary
Structure of Proteins) (Kabsch and Sander, 1983), which
assign a secondary structure conformation to each residue on
the basis of the hydrogen bond pattern of its backbone. In the case
of the STRIDE method, the secondary structure assignment
includes torsion angle potential calculations, as well as
statistical propensities extrapolated from experimentally

determined structures. The information provided by DSSP and
STRIDE is useful to follow the evolution of the secondary
structures in time, and eventually to detect changes associated
to partial unfolding or disorder-to-order transitions (Lin et al.,
2019).

The combination of RMSD, RMSF, and secondary
structure analysis can give details on specific regions of the
protein that are more stable than others. As an example, in
recent works (Spagnolli et al., 2019; Spagnolli et al., 2020),
one of us investigated the stability of atomistic models of
infectious prion proteins by combining the aforementioned
analysis techniques in a synergistic approach. Due to
difficulties in the wet lab procedure, experimentally solved
structures of prion proteins are still unavailable; therefore,
testing the stability of models via MD simulation represents
an extremely important step toward the 3D structure
elucidation.

If the protein under investigation undergoes large
conformational changes, it can be appropriate to group, or
cluster, the configurations explored during the simulation on
the basis of their structural similarities. To this aim, various
clustering methods have been developed in the past 30 years, each
presenting different algorithmic characteristics and
computational performances (Shao et al., 2007). The 2D
RMSD matrix, which includes the deviations between any pair
of trajectory frames, typically defines the distance between the
conformations to cluster. Based on this measure, a variety of open
source tools are available to perform the clustering; among these,
it is worth mentioning the widely used MDAnalysis package
(Michaud-Agrawal et al., 2011), which employs python libraries
to perform the calculations.

Clustering can also be combined with principal component
analysis (PCA), as in Wolf and Kirschner (2013) and Wolf and
Kirschner (2013), where the two approaches are applied to the
trajectory of a bacterial ribosomal domain. The advantages of
applying PCA prior clustering analysis lie in the remarkable
dimensionality reduction, which results in a simplification of
the clustering operation, and in a better visualization of the
clusters when plotted in the most represented PCA space.

While clustering allows one to easily identify the variety of
conformations sampled during an MD simulation, it can hardly
give information on the dynamics of transitions between them.
Kinetically relevant states and their rates of interconversion can
instead be estimated from Markov state models (Chodera and
Noé, 2014). Starting from large sets of individual short MD
trajectories, this approach has been used to tackle biological
problems happening at relatively long time-scales, such as
protein folding, protein-ligand binding, or large
conformational changes.

Tools from information theory can also be employed to
analyze atomistic trajectories. For instance, cross-correlation or
mutual information (Lange and Grubmüller, 2006) can shed light
on concerted movements between protein regions; while the
former captures only linear correlations between residues, the
latter can detect also the non-linear ones. Both cross-correlation
and mutual information can be used to build a network
representation of the protein, where each residue is defined as
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a node and the graph edges between neighboring elements are
weighted according to the correlations extracted from an MD
simulation. The resulting network can be analyzed through well-
established techniques of graph theory, such as node centrality
and edge betweenness (Böde et al., 2007). These analyses proved
valuable in the study of allostery, as described in the work of
(Bowerman and Wereszczynski, 2016). Here, the authors
simulated at atomistic level the enzyme thrombin, and
calculated correlations among residues in terms of cross-
correlation, mutual information, and non-linear generalized
correlation. The latter is then employed to construct a graph
and obtain information about allosteric pathways and hotspots.

In spite of the advancements in simulation tools and analysis
techniques, however, the simulation of large macromolecules and
slow biophysical processes still remains out of reach for detailed,
atomistic models. Additionally, such a high level of detail in the
description of the system can even represent a limitation in the
comprehension of the system of interest and its properties. To
overcome these limitations simpler representations are employed,
which offer an increased efficiency at the expenses of a lower
degree of resolution. These coarse-grained models are the object of
the following sections.

4 COARSE-GRAINED MODELING:
GENERAL FRAMEWORK

In 1975, Levitt and Warshel published a paper in which they
employed an extremely crude representation of a protein in terms

of few sites endowed with simple interactions to gain insight in
the process of protein folding (Levitt and Warshel, 1975); while
the specific results obtained have been later questioned (Hagler
and Honig, 1978), this work represents a milestone as the first,
pioneering attempt to investigate fundamental biophysical
problems making use of minimalistic models of the system
instead of extremely accurate ones. Since then, biomolecular
CG modeling has steadily grown to become an essential tool
in the computational investigation of biological matter: only
considering proteins, a whole zoo of CG models and
techniques has been developed, which aim at capturing the
physicochemical behavior of a large variety of molecules over
a wide range of characteristic length and time scales (Saunders
and Voth, 2012; Kmiecik et al., 2016; Singh and Li, 2019; Nguyen
et al., 2021). Given this extreme diversity, we deem it useful to
briefly recapitulate the main concepts underlying the
development or choice of a CG model.

As discussed in Section 2, the first ingredient required in
the construction of a CG model for a biomolecular system is
the selection of a SLR, obtained by superimposing a mapping
to the fundamental representation—in our case, the atomistic
one. The mapping constitutes the observational filter
connecting the detailed description of the protein’s
instantaneous configuration to its low resolution
counterpart, meaning that, in the latter, only a limited
amount of the original degrees of freedom is explicitly
employed. One can think of this process as putting on a
pair of “coarse-graining glasses” whose effect is that of
blurring an already neat and defined image (see Figure 3).

FIGURE 3 | The process of filtering is akin to wearing a pair of spectacles while enjoying a perfect eyesight. The loss of detail is generally considered a defect,
however it does have the advantage of simplicity and parsimony - if it is done properly. Artwork by R. Potestio.
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Critically, inherent to the CG mapping is the definition of the
elemental units composing the newly-introduced representation:
in particle-based CG pictures (Noid, 2013; Kmiecik et al., 2016),
such units are the effective interaction sites, or “beads”, obtained
by lumping together subsets of the system’s constituent atoms.
Depending on the chosen resolution level, each site can be
representative of small to medium-sized chemical moieties
(Monticelli et al., 2008; Bereau and Deserno, 2009; Darrè
et al., 2015), single or groups of amino acids (Clementi et al.,
2000; Atilgan et al., 2001; Micheletti et al., 2004; Zhang et al.,
2017), up to entire molecular structures (Chu and Voth, 2006;
Sept and MacKintosh, 2010; Dama et al., 2013). In all these cases,
the mapping is formally expressed as the functional relation
R � M(r) between the effective sites’ coordinates R and the
atomistic ones r (Noid et al., 2008a; Rudzinski and Noid,
2011).6 In continuous or quasi-continuous CG representations
(Oliver et al., 2013; Welch et al., 2020), the elemental units can
instead be identified with the finite volume elements employed to
decompose the protein’s macroscopic structure, and the mapping
can be considered as the specific discretization mesh prescription
employed in numerical calculations.

The selection of the level of resolution employed to describe a
system is per se an already highly nontrivial problem, as this
process naturally introduces a lower bound in the length scales
the CG representation is in principle able to resolve. Indeed, for a
CG observer it will be impossible to capture fluctuations of the
system taking place below the size of the average radius of a
bead—or the distance between two beads—in particle-based
pictures, or smaller than the size of the discretization mesh in
continuous ones. In turn, this implies that a CG representation
characterized by a specific minimum length scale, when
employed to inspect the system, can only enable the
investigation of emergent properties or phenomena occurring
at or above such scale: it is technically impossible for the CG filter
to grasp the rotation of a specific protein side chain around its
main axis, if it is depicted as a point-like particle. This limitation
has to be explicitly accounted for when designing the low-
resolution representation of a system.

Subsequently, for the simplified representation to acquire
predictive power—that is, for the CG mapping to become a
model—interactions among its effective degrees of freedom
must be introduced. In the case of continuous CG
representations, this amounts at providing, as input
parameters, the appropriate material properties of the protein,
e.g., shear viscosity and shear/bulk moduli, which determine the
overall stress tensor of the system and consequently its
hydrodynamic behavior (Oliver et al., 2013). Particle-based CG
models, on the other hand, require the definition of the
interaction potential—more precisely, a free energy—acting
among the point-like effective sites that constitute the
molecular structure (Rudzinski and Noid, 2011; Noid, 2013).
As during the last decades substantial effort has been devoted to
the development and application of particle-based CG protein

models, we here showcase the main approaches behind the
parameterization of the associated constitutive interactions.
Our objective in this and the following sections is to provide
the reader with an idea of the diversity of the available models,
their properties, and their applications in a qualitative and non-
exhaustive manner; for much more detailed and technical
presentations the interested reader is referred to the excellent
reviews that have been recently presented in the literature (Noid,
2013; Kmiecik et al., 2016; Singh and Li, 2019; Nguyen et al.,
2021).

Depending on the nature of the ingredients employed in the
construction of the CG potential, particle-based models are
usually divided in three main classes: knowledge-based, top-
down, and bottom-up models (Noid, 2013).7

In the knowledge-based approach, the parameters of the CG
potential are identified through statistical analyses performed
over one or more experimentally resolved, static protein
structures. To some extent, knowledge-based methods thus
directly translate bioinformatic or “frequentist” information
about the occurrence of specific local properties—such as side-
chain affinities (Tanaka and Scheraga, 1976; Miyazawa and
Jernigan, 1996; Bahar and Jernigan, 1997; Davtyan et al.,
2012), backbone torsional angles (Betancourt, 2008; Kim et al.,
2013), or hydrogen bond capabilities (O’Meara et al., 2015)—to
the forces acting among the system’s CG effective sites. Top-down
models, on the other hand, typically hinge on simple functional
forms for the CG potential, the a priori choice of which is dictated
by physicochemical intuition, and fine-tune their constituent
parameters so as to reproduce a set of experimentally-
measured meso-to macroscopic observables for the system at
hand, including structural and/or thermodynamic ones
(Monticelli et al., 2008; Coluzza, 2011; Najafi and Potestio,
2015; Dignon et al., 2018; Perego and Potestio, 2019; Dignon
et al., 2019).

The two aforementioned CG strategies do not explicitly rely
on the existence of a more fundamental model of the protein, in
our case an all-atom force field; the problem of distilling the
interactions among CG sites directly from those governing the
microscopic constituents, so that the former become emergent
properties of the latter, is addressed in bottom-up methodologies.

Bottom-up CG’ing stems from a rigorous statistical mechanics
framework in which the high-resolution detail of a system is
explicitly integrated out in favor of a lower-resolution
representation (Rudzinski and Noid, 2011). This process
results in an effective interaction among the CG sites, the
potential of mean force (PMF), which in principle provides a
complete, faultless description of the system as observed through
the “CG glasses”, see Figure 3. The price one pays for the
simplification is that the PMF is intrinsically many-body in
nature: even if the energetic landscape of the original
microscopic system comprises only pair potentials among its

6Note that this definition does not straightforwardly apply to the case of adaptive
resolution models, vide infra.

7We stress that this sharp distinction is getting more and more smeared as the field
of CG modeling steadily evolves: indeed, complementary ingredients extracted
from each of the three aforementioned classes are often combined together in
parametrizing the CG potential of a protein.
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constituent atoms, once the resolution reduction is performed a
whole hierarchy of interactions appears that involve, in addition
to pairwise terms, triplets of CG sites, quadruplets, and so on
(Dijkstra et al., 1999). These many-body components can play a
key role in generating, and comprehend the origin of, the correct
large-scale behavior of a system (D’Adamo et al., 2015;
Menichetti et al., 2017), such as, in the case of proteins,
secondary structure motifs (Kolinski et al., 1993; Derreumaux,
1999; Bereau and Deserno, 2009; Liwo, 2013; Sieradzan et al.,
2017); at the same time, however, their presence makes the exact
determination of a PMF largely unfeasible in practice, except for
very simple microscopic models (Diggins et al., 2018).

The ultimate goal of bottom-up strategies has thus become the
construction of increasingly accurate approximations to the
correct result, achieved by relying on a wide variety of
different theoretical techniques. Approaches exist that allow
the explicit calculation of the set of interactions composing the
low-resolution potential, including the aforementioned many-
body terms, through a systematic decomposition of the PMF in
terms of Kubo cluster cumulants (Liwo et al., 2014; Sieradzan
et al., 2017; Liwo et al., 2020). Other methods focus instead on
reproducing a subset of the system’s structural observables
(Lyubartsev and Laaksonen, 1995; Soper, 1996; Tschöp et al.,
1998; Mullinax and Noid, 2009a; Lyubartsev et al., 2010;
Rudzinski and Noid, 2015) or aim at approximating the MB-
PMF by means of variational approaches, either directly (Shell,
2008; Shell, 2016), or matching the many-bodymean forces—that
is, the gradient of the MB-PMF (Izvekov and Voth, 2005; Noid
et al., 2008a; Noid et al., 2008b). In the case of structure-based
techniques, the implicit assumption is that, if the model generates
a set of important properties whose values are quantitatively in
line with those of the high-resolution model, this is a sign of CG
interactions reasonably approximating the MB-PMF; conversely,
if the CG potential optimally reproduces the MB-PMF as in
variational approaches, one can expect it to give rise to
observables that match the AA ones.

Recently, many of these strategies have benefited from the
introduction of machine learning protocols that aim at easing the
construction and usage of bottom-up CG force fields; notable
examples are, in the case of force-based methods, DeepCG for
liquid water (Zhang et al., 2018) and CGnets for small peptides
(Wang et al., 2019). Despite having been so far applied to
relatively small systems, the promising results obtained suggest
that machine learning techniques will soon grow to become a
cornerstone in the parameterization of accurate CG potentials for
biologically relevant macromolecules.

Irrespective of the parameterization workflow, CG
interactions pose nontrivial conceptual challenges. In principle,
the selection of a filter with a specific level of resolution allows one
to observe all phenomena in the system that occur at a length scale
equal to or larger than the characteristic size of the elemental CG
units; in the construction of a CG model, though, it is the choice
of the interactions that limits its ability to reproduce such
phenomena. If the CG potential accurately reproduces the
MB-PMF, all thermodynamical properties and observables of
the system can be obtained, even if they originate from processes
that take place at a scale below the resolution level of the model

(Wagner et al., 2016; Lebold and Noid, 2019a; Lebold and Noid,
2019b; Dannenhoffer-Lafage et al., 2019). However, in practical
applications it is not possible to calculate all many-body
contributions that appear in the PMF, let alone embodying
them into computationally manageable functional forms. In
the construction of the CG potential one is thus doomed to
rely on a limited basis set of interaction terms, commonly
consisting in few-body ones, which leaves out high-order
contributions; consequently, some effects of the removed
DoF’s will not appear. With a limited expansion of the MB-
PMF, we thus expect that a reduction in the resolution level will
correspond to a decrease in the spectrum of properties and
phenomena that the model is able to predict.

In some occasions it is reasonable to suppose that a
particularly well-chosen representation of the system might
lead to a substantial simplification of the interactions, e.g., by
making many-body terms small or even negligible (D’Adamo
et al., 2015): if this were the case, the MB-PMF could be expressed
through simple interactions among few constituents, thus making
the model simple to parametrize and understand. Alternatively, if
the many-body nature of the PMF cannot be reduced or
neglected, more complex interactions have to be incorporated,
as it is done in the case of density-dependent potentials (Allen and
Rutledge, 2008; Sanyal and Shell, 2016; Wagner et al., 2017;
Sanyal and Shell, 2018; Rosenberger et al., 2019; DeLyser and
Noid, 2019; Shahidi et al., 2020).

It is thus of paramount importance, for a successful usage of
coarse-graining methods, to identify which is the simplest
model—in terms of representation and interactions—that is
capable of accurately reproducing the properties of interest.
This problem will be addressed in Sections 5 and 6 of this
work, where we will present an overview of examples taken from
the literature. Specifically, in Section 5 we will focus on the
interplay between resolution level and range of observable
phenomena: we will discuss how, in general, by decreasing the
former we limit the latter, but at the same time we gain access to
larger length and time scales. The discussion will be restricted to
the case of homogeneous CG representations, that is, models in
which roughly the same level of resolution is employed
throughout the whole protein structure.

The homogeneity constraint will be subsequently relaxed in
Section 6, where we will focus on examples of hybrid models in
which different levels of resolution are concurrently coupled in
the description of the protein and/or the surrounding solvent.
This approach is particularly suited for the study of phenomena
localized on a well-defined region of the molecular structure: in
such a case, the high-resolution level is typically dictated by the
characteristic length scale of the phenomenon of interest, while
the rest of the system can be described with a coarser, and
consequently computationally less expensive, degree of detail.

5 COARSE-GRAINED MODELING:
RESOLUTION LEVEL

In Section 4 we discussed how a reduction in the resolution level
of a CG model can in turn lead to a limitation in the amount of
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emergent properties or phenomena the model is able to
reproduce. Critically, this is not a mere consequence of the
increase in the model’s smallest length scale; it also stems
from our incapacity to parametrize CG potentials capable of
comprehensively capturing the increasing amount of microscopic
detail that gets integrated out.

In this section we will explicitly investigate this tradeoff by
relying on a subset of protein CG models extracted from the
literature (Saunders and Voth, 2012; Kmiecik et al., 2016; Singh
and Li, 2019; Nguyen et al., 2021). We will restrict our analysis to
homogeneous models and present them in order of decreasing
resolution, moving from the most detailed CG representations all
the way down to continuum pictures. For each resolution step, we
will mention what phenomena the corresponding model is
appropriate to investigate.

Before starting the discussion, however, a couple of remarks
are in order. Firstly, we stress that the following list is not
exhaustive. The CG models selected in this work serve the
only purpose of providing the reader with a representative
landscape of the possible descriptions employed to investigate
biomolecular systems across a wide range of time and length
scales.

Secondly, although a decrease in the resolution of the CG
model should in principle correspond to an increase in the
characteristic sizes of the analyzed systems and phenomena it
can produce—thanks to the reduction in the associated
computational cost—in the presented applications this will not
always be the case. This is a consequence of our choice of ranking
CG models according to their resolution level rather than their
chronological appearance: more detailed and thus resource-
intensive CG models, when recent, benefited from the modern
explosion experienced in accessible computational power,

enabling their applications to system sizes that only a few
years earlier would have been unconceivable to address at
such a high level of detail. The inverse correlation between
resolution and accessible time/length scales should thus be
interpreted as a trend rather than a rule.

To construct our hierarchy of CGmodels, in the following we will
resort to a division in fourmain categories that account for similarities
in the underlying CG’ing philosophies. Specifically, in Section 5.1 we
will discuss explicit solvent CG models, whose elemental units aim at
preserving, in a reasonable although approximate manner, the
chemical features of the original microscopic components of the
protein as well as those of the solvent in which the protein is
immersed. Subsequently, in Section 5.2 this relatively high degree
of local detail will be significantly reduced through the introduction of
implicit solvent CG models. It is in this context that a decrease in
resolution, combined with further simplifications in the associated
interactions, more severely implies a bottleneck in the landscape of
phenomena a specific model can capture. The residue-based
decomposition of a protein that is common to both explicit and
implicit solvent CGmodels will be then loosened in Section 5.3, where
we will discuss Ultra-CG ones. Here, a single effective site becomes
representative of group of residues, a small protein, up to an entire
molecular complex. Finally, in Section 5.4 the particle-based CG’ing
scheme will be abandoned in favor of protein models in the
continuum. A schematic representation of this resolution-based
hierarchy of CG force fields, providing information about which
emergent phenomena each class of models can provide insights on, is
presented in Figure 4.

5.1 Explicit Solvent Coarse-Grained Models
The uppermost rung of a hierarchy of CG models arranged in
order of decreasing resolution is occupied by particle-based ones

FIGURE 4 | A schematic illustration of the relation between a model’s accuracy and its capacity of reproducing long time-scale phenomena. In principle, an
extremely accurate model might reproduce all phenomena that take place at a characteristic length and time scale that lies above that of its fundamental constituents;
however, practical limitations make its usage impossible beyond a certain limit. The coarser the model, the longer the time scale that can be achieved, at the expenses of
a shorter and shorter list of processes that it can manage to produce.
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that account for the solvent environment in a simplified but
explicit manner. Immersed in this CG solvent, an ensemble of
beads is then employed to describe a protein, each bead being
meant to encapsulate a small chemical moiety comprising few
constituent atoms, thus resorting to a rather moderate level of
CG’ing. Notable examples in this class of models include the
popular SIRAH (Darrè et al., 2015; Machado et al., 2019) and
MARTINI (Marrink et al., 2007; Monticelli et al., 2008) force
fields, in which, within a relatively “granular” solvent, a quite
conspicuous number of effective interaction sites is employed to
represent a single amino acid composing the protein structure.
Particular attention is further paid to approximately capturing the
“local” chemical features and flexibility of amino acid side chains,
so that several beads can be employed in their description.
Overall, this fairly high level of detail can limit the
computational speedup generated by these models, especially
due to the presence of the solvent; at the same time, it often
allows an almost one-to-one reconstruction, or backmapping, of
the microscopic structure starting from the CG one (Darrè et al.,
2015).

Interactions among the CG sites are parametrized to account
for the average properties of the atoms they enclose, and include
bonded as well as non-bonded contributions; in both SIRAH and
MARTINI, the former are tailored so as to reproduce (a subset of)
structural features, such as bond distances and the bending and
dihedral angles between consecutive units. Different philosophies
lie instead at the core of the determination of the non-bonded
potentials: while SIRAH aims at providing an accurate
description of the system electrostatics and sterics (Darrè
et al., 2015; Machado et al., 2019), MARTINI mainly targets
experimental free energies of partitioning of small chemical
fragments between a polar and an apolar phase (Marrink
et al., 2007; Monticelli et al., 2008). In both cases, the result of
this overall parameterization protocol is a “dictionary” of CG
building blocks, one per amino acid, that can be combined
together to model the protein structure of interest and
investigate its behavior.

The resolution level and chemical specificity characterizing the
fundamental units of SIRAH and MARTINI enables their
application to the investigation of large-scale conformational
and/or thermodynamic properties of a system, as well as to
problems in which the local detail, down to a sub-residue
level, can play a crucial role on the system emergent
phenomena: among these we mention the rearrangement of
side chains; hydrogen bonding; and protein-solvent, protein-
protein, or protein-substrate interactions. Despite the similar
length scales characterizing the elemental units composing the
two models, however, already at this limited degree of CG’ing the
delicate interplay between resolution level and effective
interactions has a considerable impact on the spectrum of
observable phenomena. Restricting ourselves to one significant
example, SIRAH was shown to be able to preserve the stability of
proteins comprising α-helix as well as β-sheet elements in absence
of explicit topological biases (Darrè et al., 2015). On the contrary,
MARTINI requires secondary structure motifs to be enforced a
priori, thus preventing its application in studies involving folding
or general conformational rearrangements (Monticelli et al.,

2008; Poma et al., 2017; Souza et al., 2020). While this
limitation is commonly associated to the relatively low
resolution at which the protein backbone is treated in
MARTINI (one bead per peptide), it should rather be
considered a direct consequence of the particular choice in the
parametrization of the interactions: in fact, effective models exist
that rely onMARTINI-like CG representations and are capable of
stabilizing secondary structure elements without introducing ad
hoc constraints (Alemani et al., 2010; Spiga et al., 2013).

This crucial difference naturally introduces a distinction in the
class of phenomena on which the twomodels can provide insight.
Specifically, SIRAH has been largely applied in the study of
problems where structural properties, in combination with the
local chemical detail, are pivotal: these include the dynamic
behavior of disordered proteins (Ramis et al., 2019), the
impact of post-translational modifications on protein
structural stability (Garay et al., 2019), and the prediction of
protein-protein binding free energies (Patel and Ytreberg, 2018).
On the other hand, the parametrization of MARTINI is based on
polar/apolar phase partitioning, which makes it particularly
suited in the analysis of protein-membrane systems.
Applications include the insertion and assembly of membrane
proteins and protein-protein complexes in lipid bilayers (Bond
and Sansom, 2006; Periole et al., 2012), the investigation of the
effect of protein crowding on transmembrane diffusion
(Javanainen et al., 2013), and the simulation of proteins in
realistic membrane environments (Corradi et al., 2018).
Recently, the model was also shown capable of predicting
protein-ligand binding affinities with no prior knowledge of
binding pockets or pathways (Souza et al., 2020).

5.2 Implicit Solvent Coarse-Grained Models
Explicit solvent CG models are required when, although by
relying on a blurred microscope, an attempt of tackling all of
the intricacies of a system’s local chemical maze is conducted. On
the contrary, their level of resolution can be considered excessive
when dealing with phenomena that take place at larger length
scales, such as protein folding, conformational rearrangements,
or self-assembly. Consider for example the case in which a net
attraction/repulsion between pairs of amino acids constitutes the
driving force of the macroscopic process; for this to emerge from
the CG model, a much lower resolution than that of SIRAH or
MARTINI might be sufficient, e.g., removing the solvent and
describing each amino acid as an effective interaction unit.

In principle, such a procedure should come at the price of
introducing a more complex (free-)energetic landscape among
the elemental sites to compensate for the additional reduction in
detail. This, however, is largely unfeasible in practice, and one
typically relies on further approximations, such as the derivation
of the low-resolution potential through the truncation of formal
statistical mechanics series expansions (Liwo et al., 2014), or its a
priori definition in terms of extremely simplified functional forms
(Derreumaux, 1999; Voegler Smith and Hall, 2001; Bereau and
Deserno, 2009; Cheon et al., 2010).

This discussion brings us to the second class of CG models
within our hierarchical ladder, that is, implicit solvent ones. Here,
as the name suggests, the solvent degrees of freedom are
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integrated out from the description, and one only accounts for the
effect they on average exert on the proteins under investigation.
Such proteins, on the other hand, are still decomposed in terms of
the their constituent residues, albeit in an increasingly simpler
form as the structural coarsening progresses. It is in this context
that the correlation between resolution level, CG interactions, and
range of observable phenomena becomes particularly strong: a
decrease in the first is usually not balanced by an increase in the
second, which in turn can result in a reduction of the third.

Among implicit solvent CG models, the more detailed ones
aim at preserving the “chemical identity” of each amino acid.
Since such information is inherently contained in the side chain,
this directly translates into the usage of one or more explicit CG
beads representing it and accounting for its chemical features, in
addition to the effective sites that are employed to describe the
peptide backbone. In analogy with the case of the explicit solvent
models discussed in Section 5.1, the desired outcome is again a
protocol in which the fundamental units embodying each amino
acid type can be joined together to assemble the specific system
under investigation. Examples of such intermediate resolutionCG
force fields are OPEP (Derreumaux, 1999; Maupetit et al., 2007;
Sterpone et al., 2013), the one by Bereau and Deserno (BD)
(Bereau and Deserno, 2009), PRIME (Voegler Smith and Hall,
2001; Cheon et al., 2010), AWSEM (Davtyan et al., 2012; Wu
et al., 2018), and UNRES (Liwo et al., 2014; Sieradzan et al., 2017;
Liwo et al., 2020).

The first model, OPEP, is characterized by a high degree of
structural detail (Derreumaux, 1999; Maupetit et al., 2007;
Sterpone et al., 2013). All the heavy atoms composing the
protein backbone as well as the amide hydrogens are retained
as CG sites, while a single bead describes the side chain of each
amino acid—except for proline, which is represented by all its
heavy atoms. Interactions among these fundamental units are
then parametrized via a combination of structural,
thermodynamic and knowledge-based approaches, and
comprise conventional bonded and nonbonded
contributions—e.g., harmonic or Lennard-Jones potentials—as
well as terms that account for hydrogen bond capabilities and ion
pair interactions. Interestingly, while the original version of the
model neglected the solvent degrees of freedom, hydrodynamic
interactions were later incorporated in OPEP by coupling it with a
Lattice Boltzmann representation of the solvent (Sterpone et al.,
2015). As for BD and PRIME, they lean on a similar CGmapping
prescription to describe each amino acid, namely three beads for
the backbone and one for the associated side chain. Notable
differences exist, however, in the derivation of their constitutive
interactions. In particular, in analogy with OPEP, BD is again
defined in terms of a conventional basis set for the bonded and
non-bonded interactions, whose fundamental parameters are
tuned by combining structural and knowledge-based protocols
(Bereau and Deserno, 2009). In addition to terms accounting for
connectivity, steric repulsion, side chain affinities, and hydrogen
bond capabilities, the BD force field aims at favoring the correct
α/β secondary structure ratio through the presence of additional
bonded potentials mimicking dipolar-like interactions that tend
to stabilize β-sheet components. Furthermore, BD was later
generalized to protein-lipid systems (Bereau et al., 2014).

PRIME, on the other hand, resorts to a very crude interaction
network in which extremely simplified potentials such as hard-
sphere and square-well functions describe steric repulsion and
bonding/attractive interactions among the effective sites,
respectively (Voegler Smith and Hall, 2001). This choice
enables the usage of discontinuous molecular dynamics
(Rapaport, 1978; Bellemans et al., 1980), further speeding up
simulations. Originally blind to the side chain chemical detail,
PRIME was later generalized via a knowledge-based approach so
as to capture their specificity (Cheon et al., 2010). In AWSEM,
three CG sites, respectively located on the peptide Cα, Cβ, and
oxygen atoms, are employed to represent a single protein amino
acid (Davtyan et al., 2012; Chen et al., 2016; Wu et al., 2018).
Bonded potentials among the AWSEM CG units are then
complemented with a complex network of nonbonded
interactions: these include hydrogen-bonding terms,
bioinformatic terms biasing the formation of local structures, 8

nonlocal terms describing contacts—either direct or water/
protein-mediated—among distal residues along the sequence,
and burial terms that aim at accommodating an amino acid
into its preferential environment—e.g., the protein bulk or
surface. The corresponding parameters are tuned via a
combination of structural and knowledge-based approaches.
AWSEM further enables the simulation of membrane proteins
by relying on an implicit membrane potential (Kim et al., 2014).
Finally, UNRES maps each amino acid onto three CG sites,
namely the Cα atom, the center of the peptide bond, and the
side chain, the latter being described as an ellipsoid of revolution
(Liwo et al., 2014). Only the last two elements, however, are
explicit effective interaction sites, while the Cα sites only serve the
purpose of tracing the protein geometry. Interactions among the
UNRES building blocks are then parametrized through a rigorous
bottom-up procedure: the potential of mean force of the system is
expanded in a truncated series of Kubo-cluster cumulants, which
enable the derivation of the multi-body interactions acting among
the CG sites in a systematic manner (Liwo et al., 2014; Sieradzan
et al., 2017; Liwo et al., 2020).

The computational speedup generated by OPEP, BD, PRIME,
AWSEM and UNRES enables their application to problems
whose characteristic time and length scales were, until
recently, prohibitively large to be effortlessly accessed by
conventional all-atom simulations. Specifically, OPEP was
largely employed in the context of folding and structure
prediction of isolated proteins, protein-ligand and protein-
protein complexes (Wei et al., 2004; Shen et al., 2014;
Lamiable et al., 2016; Kynast et al., 2016), in aggregation
studies (Lu et al., 2012; Nasica-Labouze and Mousseau, 2012),
as well as to investigate the structure of long, intrinsically
disordered amyloid monomers (Nguyen and Derreumaux,
2020). Moreover, the introduction in OPEP of a Lattice
Boltzmann solvent paved the way for its exploitation to

8We exclude from the discussion the AAWSEM force field developed by Wolynes
and coworkers (Chen et al., 2016; Chen et al., 2017) in which the local structure
biasing terms are obtained through explicit all-atom MD simulations of fragments
of the protein under investigation, thus rendering the model non transferable.
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analyze hydrodynamic effects on biomolecular systems, including
the behavior of proteins under shear flow (Sterpone et al., 2018)
or the impact of molecular crowding on the dynamics of protein
suspensions (Sterpone et al., 2014). Applications of the BDmodel
encompass the investigation of folding processes, including the
analysis of the interplay between secondary and tertiary
structures in cooperative folding (Bereau et al., 2010), as well
as peptide aggregation phenomena (Bereau and Deserno, 2009).
Given the additional computational gain provided by its
discontinuous potentials, PRIME was instead extensively
exploited to investigate the behavior of large-scale systems,
especially in the context of aggregation of fibrils in presence or
absence of fibrillation seeds or inhibitors (Nguyen and Hall, 2004;
Cheon et al., 2011; Wang et al., 2017; Wang and Hall, 2018). In
addition to protein folding (Jin et al., 2020), applications of
AWSEM include the investigation of protein-protein
association (Zheng et al., 2012) and fibrillar aggregation
processes (Zheng et al., 2016; Chen et al., 2020), as well as the
analysis of the static and dynamic behavior of intrinsically
disordered proteins (Wu et al., 2018; Lin et al., 2019). The
incorporation of an implicit membrane potential in AWSEM
enabled it to provide insight on the folding behavior of
transmembrane proteins (Lu et al., 2018) and protein
assemblies (Truong et al., 2015). Finally, while UNRES was
originally applied to perform protein structure prediction via
energy minimization (Liwo et al., 1999), subsequent MD-based
studies include the investigation of folding processes (Liwo et al.,
2005), self-assembly of protein complexes (Sieradzan et al., 2012),
fibrillar aggregation (Rojas et al., 2010; Rojas et al., 2017), as well
as conformational transitions in molecular chaperones (Gołaś
et al., 2012).

The power of the intermediate resolution CG models lies in
their transferability, that is, the possibility of employing them to
provide insight on the behavior of systems that were not directly
involved in the models’ parameterization. It follows that
particular care must be taken as far as meso-to macroscopic
properties are concerned; while these can be explicitly included in
the construction of the effective potential, for the latter to be
transferable the introduced restraints should be flexible enough so
as not to bias the model predictions toward very specific
outcomes, associated to particular systems. This requirement is
especially evident in the case knowledge-based approaches, in
which abstraction of the interaction parameters from the stable
conformation of a specific protein—conformation that is here
interpreted as the emergent property participating in the
parameterization of the CG potential—is achieved by
performing a statistical analysis over an ensemble of structures
(Tanaka and Scheraga, 1976; Miyazawa and Jernigan, 1996; Bahar
and Jernigan, 1997; Betancourt, 2008; Kim et al., 2013; O’Meara
et al., 2015). It is thus possible, and indeed often advantageous, to
design transferable implicit solvent CG models tackling well-
defined large-scale problems; at the same time, one should make
their constitutive ingredients as general as possible, so as to enable
the characteristic phenomenon of the system of interest to arise
from the model, without the need of imposing it a priori. On the
other hand, one might need implicit solvent CG models that are
more severely bound to a subset of knownmacroscopic properties

associated to a specific biomolecule. In this case, the model could
be asked, e.g., to reproduce the experimentally resolved tertiary
structure of a particular system. The emergent property now
directly represents an input of the CG’ing protocol.

One could clearly resort to standard CG’ing strategies and
develop a dedicated effective model in which these conditions are
satisfied (Izvekov and Voth, 2005; Rudzinski and Noid, 2011;
Shell, 2016); this often lengthy parameterization procedure,
however, should at least in principle be repeated from the
ground up every time a new system is investigated, for which
the same kind of external piece of information is available. It is
therefore highly desirable to construct CG models that rely on
more “intuitive” interaction potentials and are easily
generalizable to arbitrary systems through a minimal fine-
tuning. The particular choice of the phenomenological
potential will play a pivotal role in defining the class of
phenomena the model can additionally provide insight on.
The simplification of the interaction network typically goes on
par with an additional reduction in the resolution level and
chemical detail, with every amino acid composing the
molecule being now described as a single interaction site.

A notable example of this second class of implicit solvent CG
models is represented by structure-based ones, such as G�o-like
models (GLM) (Hills and Brooks, 2009; Takada, 2019) or elastic
networkmodels (ENM) (Sanejouand, 2013; Togashi and Flechsig,
2018). Here, the external macroscopic input involved in the
construction of the effective CG potential is the static, either
stable or metastable, three-dimensional spatial conformation
assumed by the protein of interest. Both GLM and ENM
describe the interaction among the elemental CG units in
terms of very general functional forms, tailored to reproduce
the target structure but easily applicable to arbitrary ones; the
complexity and richness of the basis set, however, significantly
decreases while moving from GLMs to ENMs, generating a
crucial impact on the spectra of phenomena these two classes
of models can respectively capture.

G�o models originally represented a protein as a self-avoiding
walk on a lattice (Taketomi et al., 1975). Large-scale structural
information enters GLMs through attractive interactions
occurring between pairs of sites that, although distant along
the protein sequence, are in direct contact in the native
conformation. Despite this extremely crude description, such
models are capable of driving a protein to spontaneously fold
toward its native state (Go, 1983). The lattice formulation was
later extended to the continuum enabling the use of MD
simulations (Clementi et al., 2000). Here, a protein is
represented by sites located on its Cα atoms and interacting
via simple potentials whose functional form is borrowed from
standard all-atom force fields. The folded conformation is
enforced in both bonded and non-bonded interaction terms:
the former are parametrized by setting the equilibrium
structural parameters equal to the distances and bond/dihedral
angles of the protein native state; non-bonded contributions are
instead conceptually akin to the lattice version of the model, so
that general, unspecific attractive (resp. repulsive) interactions
occur between residues that form (resp. do not form) a native
contact. In both cases the strength of the interaction parameters is
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independent of the residues’ chemical detail; this condition,
together with the Cα mapping prescription, was later relaxed
in subsequent generalizations, which relied on more chemically-
realistic functional forms for the interactions (Karanicolas and
Brooks, 2002), as well as quasi-atomistic descriptions of the
biomolecule (Whitford et al., 2009).

Due to their extreme simplicity and flexibility, GLMs have a
long and successful history in the field of protein folding (Hills
and Brooks, 2009; Hu et al., 2017; Takada, 2019). Furthermore,
the original native-centric standpoint was later extended to
account for the presence of multiple (meta)stable
conformational basins, allowing transitions between them at
greatly reduced computational cost (Best et al., 2005; Okazaki
et al., 2006). Applications in this context range from the
investigation of conformational rearrangements of “simple”
proteins (Lu and Wang, 2008), all the way up to, e.g., large-
scale molecular motors (Hyeon et al., 2006; Kanada et al., 2013).

Sticking to a structure-based CG’ing protocol but further
reducing the complexity of the interaction basis set one
encounters elastic network models (Sanejouand, 2013; Togashi
and Flechsig, 2018). ENMs stem from the pioneering observation,
made by Monique Tirion (Tirion, 1996), that the low-frequency
dynamics of globular proteins, in the vicinity of their native
conformation, can be accurately reproduced by replacing the
system’s complex interaction network by a set of Hookean
springs of equal strength connecting neighboring atoms up to
a given cutoff distance. CG equivalents of this original version of
the model have been subsequently developed, which typically
retain one or two atoms per amino acid (Atilgan et al., 2001;
Micheletti et al., 2004). Structural information is more strictly
enforced in ENMs compared to GLMs, preventing the study of
processes such as folding or tertiary structure rearrangements. As
for the latter, however, it was shown that ENMs are able to
capture at least the essential, early-stage behavior of a protein’s
conformational changes, further cementing their role as a
fundamental building block in the edifice of mesoscopic CG
modeling of biomolecules (Tama and Sanejouand, 2001;
Petrone and Pande, 2006). Moving away from protein
simulations, the simplicity of ENMs allowed their application
to the investigation of the low-energy fluctuations of complex
systems where all-atom as well intermediate resolution CG
models would prove computationally too demanding, ranging
from macromolecular motors such as ribosomes (Tama et al.,
2003) up to entire viral capsids (Tama and Brooks, 2005; Grime
et al., 2016).

5.3 Ultra Coarse-Grained Models
The class of models presented in Sections 5.1 and 5.2, although
characterized by a gradual decrease in the level of detail, always
rely on a residue-based decomposition of a protein, in which only
one or few effective interaction centroids describe each amino
acid composing the biomolecule. To push the applicability of
particle-based CG models to the investigation of phenomena
occurring at even larger time and length scales, one possibility is
that of resorting to ultra coarse-graining (UCG) methods. Here,
each CG site becomes representative of larger chemical entities,
be that few residues, whole proteins or even entire molecular

complexes (Chu and Voth, 2006; Sept and MacKintosh, 2010;
Zhang et al., 2017). Several examples of UCG models, ranging
from more “chemically accurate” to more heuristic ones, have
been presented in the literature. While more traditional
applications typically focus on single proteins (Zhang et al.,
2017; Zhang et al., 2020), UCG methods have provided
impressive insights into the behavior of overwhelmingly
complicated macromolecular structures (Saunders and Voth,
2012; Hagan and Zandi, 2016), including actin filaments (Chu
and Voth, 2006), bacterial flagella (Arkhipov et al., 2006a), and
viral capsids (Arkhipov et al., 2006b; Nguyen et al., 2009; Grime
et al., 2016).

As pointed out in Dama et al. (2013), from a conceptual point
of view UCG models pose notable additional challenges
compared to their more detailed counterparts, which are, as it
is the case for the previously discussed studies, often overlooked
in the construction of the UCG effective interaction potential of a
system. Specifically, as the structural coarsening progresses,
several internal states of the system can end up being mapped
onto the same CG configuration. For instance, let us consider the
case of a macromolecular complex, a whole protein of which is
represented as a single UCG site. If the protein undergoes a
conformational rearrangement between two states that leave the
CG site coordinates unaltered, both states contribute to the
energetic landscape of a single CG macrostate and, as far as
the model is concerned, they are indistinguishable. At the same
time, the rearrangement could play a key role in the generation of
the macroscopic phenomenon of interest, and it would thus be
desirable to construct a UCG model able to discriminate the two
conformational basins. To tackle the problem of constructing CG
models for systems possessing internal states, Voth and
coworkers have recently developed an extremely elegant
Theory of Ultra Coarse-Graining (UCGT) in a series of works
(Dama et al., 2013; Davtyan et al., 2014; Dama et al., 2017), to
which we refer the interested reader. While applications of this
theory have been, to our knowledge, so far limited to relatively
high-resolution CG representations of liquids, UCGT represents
an extremely promising framework for the development of
accurate UCG models of biologically relevant macromolecules.

5.4 Continuous Models
Particle-based CG models share the fundamental common
feature of tracking the dynamics of a system through each of
its mesoscopic constituent degrees of freedom, or effective
interaction sites. As an extreme act of coarse-graining, such a
scheme can be completely abandoned in favor of representations
that treat the whole macromolecular body as a continuous
medium subject to the laws of hydrodynamics.

In this perspective, starting from the observation that a
protein in its folded, globular conformation behaves as a
viscoelastic solid (Wang and Zocchi, 2011), Harris et al.
introduced the Fluctuating Finite Elements Analysis (FFEA)
scheme for macromolecular simulations (Oliver et al., 2013). In
FFEA, fluctuations of a biomolecule around its native
conformation are described through hydrodynamic
observables, with the evolution of the system in response to
stress being obtained by means of finite element analysis.
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Notably, in addition to elastic and viscous factors, the effect of
thermal noise is directly incorporated into the protocol by
means of an appropriate stress tensor. The absence of an
atomistic level of detail clearly sets a dramatically large
lower bound to the length scales achievable by FFEA; on the
other hand, this method represents a promising opportunity
for pushing the analysis of biological systems to truly meso-to
macroscopic scales. Originally applied to the prediction of the
dynamics of globular proteins close to their native states
(Oliver et al., 2013), FFEA was later employed to analyze
the behavior of complex macromolecular systems such as
molecular chaperones (Solernou et al., 2018), conformational
transition of molecular motors (Richardson et al., 2014;
Hanson et al., 2015; Richardson et al., 2020; Hanson et al.,
2021), and the effect of the application of stretching and
torsional forces on the structural stability of antibodies (van
der Heijden et al., 2020).

A straightforward application of FFEA to the case of highly
elongated biomolecules such as thin, rod-like structures is
difficult because of the variety of length scales characterizing
the conformational variability of these systems. To tackle the
problem,Welch et al. recently introduced the Kirchhoff biological
rod algorithm (KOBRA), a fluctuating rod model designed to
perform continuum simulation of slender molecules (Welch
et al., 2020). In KOBRA, a thin system is represented as an
elastic material curve subject to thermal noise, whose dynamic
equations of motion are solved based on a discretization in terms
of straight rods connecting a set of nodes. The first application of
the model on elongated protein complexes showed promising
results; furthermore, the coupling of KOBRA with FFEA suggests
the possibility of generating mesoscopic, continuous models of
biomolecular systems comprising globular as well as slender
components.

6 COARSE-GRAINED MODELING:
RESOLUTION DISTRIBUTION

The first historical applications of hybrid multiscale models of
biomolecules trace back to the 1970s, with the works of Warshel
and Karplus (1972) and, a few years later, of Warshel and Levitt
(1976). These works, coupling a quantum mechanical and a
classical description, led the foundation for the quantum
mechanics/molecular mechanics (QM/MM) methodologies
(Amaro and Mulholland, 2018; Magalhães et al., 2020),
whose relevance was recognized by the attribution of the
Nobel prize in Chemistry to Karplus, Warshel, and Levitt in
2013. The development of QM/MM approaches opened the way
for the coupling of lower resolution levels for the investigation
of phenomena happening at increasingly larger length scales. In
this section, we present examples of such coupling schemes and
their range of applications. These include processes of ligand
binding studied with hybrid atomistic/coarse-grained
resolutions, or protein conformational changes reproduced
by the integration of CG scales at different levels of detail. In
addition, examples of a dual description of the solvent
(atomistic/CG or atomistic/continuum) are reported: they

allow the construction of a larger simulation box,
representing a computationally efficient solution for finite-
size effects. Importantly, all these cases require the definition
of the resolution domains during the phase of simulation set-up,
on the basis of some previous knowledge of the system. This
issue is overcome by the use of coarse-graining as an informative
tool, as explained in Section 7.

6.1 Coupling Quantum
Mechanical–Classical Atomistic Models
In QM/MM, a computationally expensive quantum mechanical
approach is used to simulate only a subset of atoms, where a
classical force field may fail: a typical example is the active site of
an enzyme, where a chemical reaction takes place. The other
components of the system, including the rest of the protein and
the solvent, are treated in a less computation-intensive way by
molecular mechanics. The classical, atomistic description of the
largest part of the system allows the simulation of full proteins in
their natural environment, either the solvent or the lipid bilayer;
however, the time-consuming quantum mechanical
calculations—even though restricted to a small number of
residues—limit the time scale spanned, which typically covers
a few hundreds of picoseconds.

Despite this limitation, which can nonetheless be alleviated by
the application of enhanced sampling techniques (Yang et al.,
2019), the QM/MMmethod is having an increasing impact on the
study of biomolecules (Lonsdale et al., 2013; Lonsdale et al., 2014;
Tyzack et al., 2016), mostly enzyme-ligand complexes. For
instance, QM/MM simulations proved useful to compute
binding free-energy profiles and barriers for enzyme-catalyzed
reactions (Barnes et al., 2013), and to characterize binding
kinetics (Haldar et al., 2018). Moreover, QM/MM plays a key
role in drug design for the discovery of covalent inhibitors
(Lodola et al., 2008; Ranaghan et al., 2014), small organic
molecules that steadily inactivate the target protein by forming
a covalent bond.

Although enzymatic reactions have been the primary target of
QM/MM studies, the approach proved to be effective also for the
investigation of proton transfer events, where the excess positive
charge is propagated through a network of hydrogen bonds
dynamically connecting water molecules, protein residues,
and/or cofactors. Since this process involves breaking and
forming covalent bonds and charge delocalization, a QM
description is required at least in the region where the transfer
takes place. Recent applications include the study of ion channels,
such as the Cl−H+antiporter ClC-ec1 (Chiariello et al., 2020).
Here, DFT-based QM/MM simulations and well-tempered
metadynamics (Barducci et al., 2008) free energy calculations
were performed, contributing to explain the transport inhibition
in ClC anion/proton exchangers. Another less obvious field of
application of QM/MM simulations is the computational study of
metallodrugs—namely coordination and organometallic
complexes, typically containing platinum, silver, gold,
vanadium, or iron ions (Palermo et al., 2016). The variety of
coordination modes, bond breaking and formation, ligand
exchange reactions, charge-transfer, and polarization effects in

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 67697616

Giulini et al. From System Modeling to System Analysis

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


these molecules requires a QM description of the drug and its
binding site on the biomolecular target. A widely studied case is
the mechanism of action of cysplatin, one of the most effective
and broadly used chemotherapeutic agents (Calandrini et al.,
2015).

A recent methodological progress in QM/MM simulations is
the development of a Hamiltonian adaptive multiscale scheme
(Boereboom et al., 2016). As solvent molecules diffuse in and out
of the reactive region, they are gradually included into (and
excluded from) the QM computation. This was later
implemented along with state-of-the-art path integral
simulation techniques, which allow for the calculation of
quantum statistical properties, and ring-polymer and centroid
molecular dynamics, which allow the calculation of approximate
quantum dynamical properties (Kreis et al., 2017). In another
definition of QM/MM adaptive scheme, the boundaries of the
QM region change during the simulation, adapting themselves to
the reaction site (Mones et al., 2015). These advancements pave
the way for further methodological developments in the QM/
MM field.

6.2 Coupling Atomistic–Coarse-Grained
Models and Beyond
Biological phenomena do not always involve the breaking/
formation of chemical bonds, which require an accurate
description of the electronic structure. It is the case, for
instance, of non-covalent protein-protein and ligand-protein
interactions, including the vast majority of drug discovery
applications, where the designed drug is not supposed to
undergo any chemical reaction once accommodated in the
protein binding site. If the domains involved in the interaction
are known in advance, e.g., from experimental evidence or
previous computational analysis, one can additionally exploit
the inherently multiscale nature of the problem to build a
hybrid atomistic/coarse-grained (AA/CG) set-up, where the
atomistic detail is retained only in the region of interest (in
the above example, the binding site of a receptor). The rest of the
macromolecule is instead treated at a lower, coarse-grained
resolution, bringing the immediate advantage of a reduced
computational cost.

This general idea gave rise to a variety of approaches, where
the details of each method (namely, the resolution distribution
and the parameterization of interactions) are specifically
designed to tackle the system under investigation. Examples
range from the multi-resolution model of a polyamide melt
(Gowers and Carbone, 2015), where only the amide groups
involved in the formation of the hydrogen bonds are
maintained at atomistic resolution, to multimeric complexes
including both proteins and nucleic acids, as in Villa et al.
(2004), Villa et al. (2005), and Dans et al. (2010). In the latter
case, a multi-resolution simulation of the lac repressor protein
from E. coli and a 107-bp-long DNA segment is performed,
where the protein and the two bound operators are described
atomistically, while the DNA loop is modeled as an elastic
ribbon connecting the terminal base pairs of the DNA
operators.

In most of AA/CG applications the size of the atomistic region
is larger than a single chemical moiety, but substantially smaller
than the protein itself. This is the case of ligand-binding
multiscale studies, where an atomistic resolution is required
for only a few protein residues. In the work by Fogarty and
coworkers (Fogarty et al., 2016), an ENM representation of the
hen egg-white lysozyme is coupled with an atomistic description
of the active site, with and without the inhibitor di-N-
acetylchitotriose. The same model has been employed by
Fiorentini and coworkers (Fiorentini et al., 2020) with the aim
of assessing the accuracy of a hybrid AA/CG description of the
protein for binding free energy calculations.

A hybrid method specifically designed for the study of ligand-
protein interactions is the so-called Molecular Mechanics/
Coarse-Grained approach (MM/CG) (Neri et al., 2005; Neri
et al., 2006; Leguèbe et al., 2012; Tarenzi et al., 2019). In its
first version (Neri et al., 2005), MM/CG is validated on
cytoplasmic enzymes, whose catalytic site is represented
atomistically, while the rest of the protein is described at a CG
resolution according to a G�o-like model. Despite the absence of
explicit solvent, the method showed a good agreement between
the RMSF of the MM/CG simulations and the fully atomistic
ones, and a good overlap between the subspaces of the most
relevant eigenvectors computed with MM/CG and atomistic MD.

TheMM/CGmethod was then applied tomembrane receptors
of pharmacological relevance. In particular, with the introduction
of a surface potential surrounding the transmembrane region of
the protein and mimicking the interaction with the lipid bilayer
(Leguèbe et al., 2012), the MM/CG was specifically tailored for
predicting binding poses in low-resolution models of membrane
proteins, such as homology models of G-protein-coupled
receptors (GPCRs). The paucity of experimental structural
information and the low sequence identity between members
of the family lead to models with inaccurate side chain
orientations, which may introduce biases in fully atomistic
simulations: in such cases, coarse-graining part of the receptor
allows atomistic residues in the binding site to relax more easily to
the biologically functional conformation. Atomistic water
molecules in the extracellular side, hydrating the binding site,
are confined by a repulsive potential. This approach has been
widely tested on bitter taste receptor GPCRs (Schneider et al.,
2018; Fierro et al., 2019), and recently implemented in a
webserver pipeline (Schneider et al., 2020).

In the latest implementation of the method (Open Boundary
MM/CG) (Tarenzi et al., 2019), the multi-resolution model of the
protein is coupled to an adaptive resolution description of the
solvent through the Hamiltonian adaptive resolution (H-AdResS)
scheme (Potestio et al., 2013) (see Section 6.3 for further details).
Water is modeled with atomistic accuracy in the two hemispheres
capping the intracellular and extracellular parts of the receptor,
and free diffusion is ensured with a surrounding reservoir of CG
water molecules. The improved hydration model leads to the
simulation of a rigorous statistical ensemble and enables accurate
binding free energy calculations for a drug design purpose
(Korshunova and Carloni, 2021).

We conclude this subsection mentioning multi-resolution
models where the two or more resolutions concurrently
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employed are coarse-grained, that is, lower than atomistic. These
approaches aim at reproducing the large-scale conformational
dynamics of large biomolecules in a particularly efficient manner,
and are especially easy to rationalize. Proteins have been modeled
as networks of a small number of CG sites, fewer than the total
number of residues (Doruker et al., 2002; Kurkcuoglu et al., 2004;
Eom et al., 2007), and unevenly distributed along the primary
structure. The partitioning among resolution levels can be
performed on the basis of previous knowledge of the working
of the system functions: this is the case of the multiscale network
model (Jang et al., 2009): here, the fine-grained region is
constituted by specific functional sites represented at the
residue level as an ENM; the remaining regions are described
at a lower resolution, including only a subset of the Cα atoms as
interaction sites.

In other approaches, the choice of the level of resolution and
its distribution along the protein structure is not so obvious. This
is the case of the essential dynamics coarse-graining (ED-CG)
(Zhang et al., 2008; Zhang et al., 2009), where residues
undergoing collective dynamics are represented by pseudo-
nodal points. Such CG sites are determined through a
variational approach, with the objective of reproducing the
protein’s essential dynamics.

This last example illustrates in a rather clear manner the
relationship between the filter or mapping on one hand, and
the resulting model on the other. The definition of the CG sites is
not determined by their chemical structure or identity (as it is the
case for residue-to-bead mappings), but rather it is a consequence
of their emergent properties, such as the internal flexibility. This,
in turn, implies a non-uniform assignment of atoms to beads, as
different parts of the protein can show different degrees of a given
property, so that each CG site represents an arbitrary number of
atoms—or, alternatively, the resolution of the model varies non-
uniformly along the structure in terms of mass, number of atoms,
or chemical identity. More importantly, the mapping is not
assigned by the modeler from the top down: it is identified by
the system itself as the solution to a minimization process. This is
to say, a cost function is defined whose argument is the mapping
and whose minimum is the optimal mapping. The idea that the
system “informs the modeler” about which representation of itself
is the most appropriate (given certain criteria) represents a crucial
step forward in the process of modeling, and bears important
consequences on the interpretation of its outcomes. Section 7 of
this paper is devoted to exploring these ideas.

6.3 Multiscale Schemes Tailored for Solvent
Description
We conclude this section with an overview of those multi-
resolution approaches that have been applied to liquids and
diffusive systems, rather than to bonded structures whose
parts have a fixed resolution.

Needless to say, the most important liquid in biology is water.
Water molecules often play a direct role in biological processes,
such as ligand binding and enzymatic catalysis, by establishing
stable non-bonded interactions with protein residues and/or
ligands. At the same time, bulk solvent undoubtedly represents

the computationally most expensive component of the simulation
box. Several multiscale schemes have been designed in order to
tackle this duality; they are based on the common idea that water
in the hydration shell of a biomolecule requires an atomistic
description, while bulk water can be described at a coarser
resolution. However, such schemes pose the problem of
enabling proper diffusion of solvent molecules across regions
at different resolution, while keeping the overall thermodynamic
equilibrium under control. This issue is tackled, e.g., in Szklarczyk
et al. (2015) through the so-called “flexible boundaries for
multiresolution solvation” (FBMS). Here, the spatial
partitioning between atomistic and coarse-grained solvent is
enforced by means of half-harmonic distance restraints, which
attract atomistic molecules to the surface of the solute and repel
the CG beads. A restraint-free region at intermediate distances
enables the formation of a buffer layer, where the atomistic and
CG solvents can mix freely.

An alternative is given by those methods that allow solvent
molecules to smoothly change their resolution on the fly when
transitioning between an atomistic region and a CG region; these
include the adaptive resolution scheme (AdResS) (Praprotnik
et al., 2005) and the Hamiltonian adaptive resolution scheme
(H-AdResS) (Potestio et al., 2013). In both cases, solvent
molecules are free to diffuse between regions at different
resolution, without constraints; in so doing, they pass through
a hybrid resolution layer, where interactions between molecules
are governed by an interpolation of atomistic and CG forces (in
case of AdResS) or potentials (in the case of H-AdResS). The
interpolation scheme is defined by a position-dependent
transition function, which smoothly couples the two domains.
Moreover, tailored correction forces can be automatically
calculated and applied to the molecules in the hybrid region,
in order to ensure a uniform density profile across the
simulation box.

The relevance of such approaches in the context of
biomolecular simulations has been assessed by studying
ubiquitin at fully atomistic resolution in a multi-resolution
AdResS solvent (Fogarty et al., 2015), and atomistic proteins
atox1 and cyclophilin J in an H-AdResS solvent (Tarenzi et al.,
2017). In both works, each CG water molecule is represented as a
single bead located on the molecule’s center of mass. CG particles
interact through a potential derived from Iterative Boltzmann
Inversion (Reith et al., 2003; Rosenberger et al., 2016), which
reproduces the centre-of-mass radial distribution function of the
atomistic solvent; the protein is placed at the center of the
atomistic region, which is shaped as a sphere. A study on the
effect of the high-resolution region radius on the solute and the
hydration solvent was also performed. In Kreis et al. (2016), a
similar approach is employed, however, the shape of the high
resolution region is self-adjusting during the course of the
simulation, following the conformational changes of an
atomistic polypeptide during folding. The adaptive resolution
representation of the solvent served also for the calculation of
solvation free energies of side-chain analogues, using the AdResS
(Fiorentini et al., 2017) or H-AdResS (Korshunova and Carloni,
2021) scheme. Further applications of adaptive resolution
simulation methods include the coupling of atomistic water
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with a supramolecular, MARTINI-style model (Zavadlav et al.,
2019), or even an ideal gas representation (Kreis et al., 2015),
which can also provide an innovative solution for solvation free
energy calculation, by pulling the solute from the atomistic
solvent region to the CG one (Heidari et al., 2019).

A natural evolution of particle-based multiscale approaches
toward even coarser resolutions is the coupling of atomistic
solvent and continuum representations, which aims at
extending the range of applicability of such models to system
sizes beyond those reachable by particle-based models alone.
Several examples exist of simulation schemes including atomistic
and continuum descriptions for the simulations of water
(Brünger et al., 1984; Beglov and Roux, 1994; Im et al., 2001;
Lee et al., 2004; Deng and Roux, 2008; Wagoner and Pande, 2011;
Wagoner and Pande, 2013; Petsev et al., 2015). Attempts of triple-
scale simulation of liquid water have also been performed, by
concurrently coupling atomistic, CG, and continuum models
(Delgado-Buscalioni et al., 2009; Zavadlav et al., 2018).
Applications of an atomistic/continuum representation of the
solvent for biomolecular studies have been performed in
Wagoner and Pande (2018), where the boundary between the
explicit/continuum solvent models can adapt itself in response to
the conformational fluctuations of the atomistic peptide
simulated; and in Hu et al. (2019), for a multi-resolution
simulation of protein diffusion in water under a steady shear flow.

7 ON CHOOSING THE OPTIMAL
RESOLUTION LEVEL AND DISTRIBUTION,
AND ON MODELING AS AN ANALYSIS
TOOL

In the previous sections we showed how coarse-graining
techniques model soft matter systems, proteins in particular,
using a plethora of simplified representations, each one
characterized by its level of detail. In addition, several
methods have been developed to concurrently employ, in the
same simulation setup, models at different resolution, so as to
provide a small subregion with an accurate description and the
remainder of the system with a computationally efficient one. In
both cases, the level of detail and its distribution is usually
determined a priori on the basis of various characteristics
(chemical identity, biological function, intuition), depending
on the usage one does of the model. Recently, however,
interest has grown around the idea of allowing the system
itself to decide the “best” coarse-grained description of it.
Clearly, the notion of “best” is relative, and it necessarily has
to answer to the question best for what?

In this final section we report on the recent attempts to find the
optimal resolution of a biomolecule, namely the “most
appropriate” number and selection of degrees of freedom to
describe it, together with their spatial distribution. These two
concepts are deeply intertwined and several studies suggest the
existence of a link among the optimal resolution, the distribution
of detail assigned in the coarse-grained model, and the relevant
properties of the system of interest. This connection has its roots

in the philosophy behind bottom-up CG modeling, which
assumes that the properties of a system should emerge from
the behavior of a statistical mechanics-based, simplified model
obtained through the (exact) integration of a subset of its degrees
of freedom. Usually, this concept of “behavior” refers to the time
evolution of the CG system and its conformational space
sampling, which enable one to comprehend and understand it.
Here, we argue that the process of simplification (mapping) itself
can provide hints to non-trivial features of the high-resolution
model. This hypothesis has immediate consequences, such as the
conversion of coarse-graining methods into analysis tools, a
change of paradigm that could constitute a valuable
instrument for the analysis of high-resolution, fully atomistic
representations of biomolecules.

In bottom-up CGmodeling, the choice of the CGmapping has
proved to be critical for the properties of interest to emerge
systematically (Mullinax and Noid, 2009b; Rudzinski and Noid,
2011). This idea is pushed forward by Rudzinski and Noid
(Rudzinski and Noid, 2014), who quantitatively rationalize
how the quality of the modeling is influenced by the quality of
the mapping. Specifically, the authors group the configurations
sampled in a MD simulation into n (m) distinct molecular states
of the high-resolution (low-resolution) system; as the low-
resolution macrostates clearly depend on the choice of the
mapping scheme, Rudzinski and Noid posit that the most
informative CG representation should generate a bijective
correspondence between atomistic and CG molecular states.
This approach allows, in principle, to estimate the optimal
level of resolution as well as its distribution. It is thus the
system itself that informs the modeler about its low-resolution
description that maximizes the consistency with the high-
resolution behavior.

This promising paradigm is at the heart of a recent work by
Fiorentini and coworkers (Fiorentini et al., 2020), in which a
protein-ligand system is considered and the relationship
between the binding free energy and the chosen level of
resolution is quantified. The authors consider several
hybrid atomistic–coarse-grained representations of the
protein by treating a variable number of amino acids at the
all-atom level. The resulting values of binding free energy are
compared with the atomistic reference, showing that the
accuracy of the dual-resolution model does not necessarily
increase with the spatial extension of the atomistic region.
This result suggests the existence of a system-specific, optimal
number of amino acids that should be modeled with high
detail in such hybrid schemes.

In general, then, the idea has started to emerge that a
macromolecular system admits one or more optimal reduced
models, that is, simplified representations in terms of which it
(viz. its high-resolution model) can be observed with a marginal
loss of information in spite of a loss of detail. Furthermore, it
appears more and more evident that such an optimal
representation cannot, in general, be uniform: the degree of
fidelity with which the original, high-resolution structure is
reproduced in the simplified model can vary from point to
point, in parallel with the system’s chemical, mechanical,
dynamical, and functional properties.
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Foley and coworkers (Foley et al., 2015; Foley et al., 2020) have
pioneered the analysis of the CG model spectrum in a formal and
systematic way. In Foley et al. (2015) they considered a one-bead-
per-residue Gaussian network model (GNM) of proteins as the
reference, high-resolution representation; then, taking advantage
of the exact integrability of GNMs, they performed a systematic
decimation of the system’s beads to investigate how reduced
models at varying degrees of resolution manage to reproduce
fluctuations and correlations of the original model. In so doing,
they showed that the information loss that is inherent in the
process of coarse-graining is not a monotonic function of the
resolution, as an optimal value of the latter was found for which
the information content per CG bead (quantified by an
appropriate measure) exhibits a maximum. These works thus
highlighted the relation between the informativeness of a
representation and its resolution level.

The impact of resolution distribution was later studied by
Koehl and coworkers, also in this case making use of ENMs: the
Decimate (Koehl et al., 2017) algorithm progressively reduces the
resolution of a biomolecule by creating a hierarchy of increasingly
simplified models, in the spirit of the renormalization group
theory. As expected, such CG mappings show an uneven
distribution of detail: in the case of globular proteins, for
example, optimal models tend to concentrate atoms on the
surface of the molecule, thus heavily coarse-graining the inner
region—whose mechanical properties require fewer degrees of
freedom to be aptly reproduced. A related approach is employed
in a work by Diggins et al. (2018): here, the authors identify the
CG beads that produce a coarse-grained ENM whose
Hamiltonian interaction matrix is as close as possible,
measured according to an appropriate distance, to the high-
resolution, atomistic ENM. The proposed selection of atoms
proves to outperform a random assignment in terms of several
observables, such as the intra-block dynamics fraction.

Most of the mentioned approaches can be grouped under the
umbrella of methods to optimize the SLRs of a biomolecule in
order to improve the capability of the reducedmodels to faithfully
reproduce the atomistic properties of interest. We now
summarize the existing methods that, acting as pure filters,
focus only on the choice of the SLR without considering the
parametrization of the effective interactions.

The first prominent attempts at finding the most informative
reduced description of a biomolecule can be ascribed to Voth and
coworkers, who employed the χ2 residual of essential dynamics to
estimate the optimal number and partitioning of coarse-grained
sites for large protein complexes (ED-CG) (Zhang et al., 2009;
Zhang and Voth, 2010; Sinitskiy et al., 2012). In particular, in
Sinitskiy et al. (2012) this χ2 is subject to a constrained
minimization, in which the addition of a CG site to a
simplified description of a molecule is accepted only if there is
a substantial gain in information about the system. Related works
(Li et al., 2016a; Li et al., 2016b; Wu et al., 2020) by Xia and
colleagues start from the ED-CG method to develop several
protocols for the determination of the optimal representations
of biomolecules. In Li et al. (2016a) the authors introduce the
stepwise optimization with boundary constraint (SOBC)
algorithm to enhance the numerical performances of ED-CG

(Zhang et al., 2009; Zhang and Voth, 2010) on large proteins.
Subsequently (Li et al., 2016b) they propose to maximize the
ENM pairwise fluctuations between atoms that are mapped to
different CG sites (fluctuation maximisation). The resulting
reduced models, once equipped with simple, harmonic
interactions, are capable of matching the large-scale
fluctuations of the corresponding fine-grained counterparts.
More recently, Wu et al. (2020) adopt a combination of ED-
CG and internal clustering validation indices to estimate the
proper number of sites to coarse-grain proteins. Their results
suggest that the appropriate number of Cα atoms to be preserved
in a simplified model should lie between one half and one fourth
of the total.

Multiple examples of the application of CG’ing methods to
analyze simulation data of biomolecules rely on quasi-rigid
domain decomposition (Hinsen, 1998; Aleksiev et al., 2009;
Potestio et al., 2009). Polles et al. (2013) employed a quasi-
rigid domain decomposition of several viral capsids to single
out their fundamental mechanical blocks; once validated on a
dataset of known viruses, this method is used to formulate
predictions about structures whose mechanical subunits had
not been characterized yet. Following a similar approach
Morra et al. (2012) studied MD trajectories of three
representatives of the heat shock protein 90 (Hsp90) family,
simulated with and without substrates. They observed that,
when the protein is partitioned in as few as three quasi-rigid
domains, the relative rigid-like movements of the latter can
account for a significant fraction of the system fluctuations,
thus allowing to pinpoint two optimal axes for rigid rotations
of the domains. In turn, the position of these hinges was shown to
correspond to two interfaces: while the biological importance of
one of them had already been assessed, the other one was hitherto
unknown, thus highlighting a potentially druggable
functional site.

These remarkable results prove that it is possible to exploit
CG methodologies to perform a detailed analysis of the
fundamental aspects of an atomistic system. Nevertheless, it
is important to notice how these approaches rely on the
examination of mechanical properties of the system of
interest; although they certainly represent simple, intuitive
variables to look at, such features do not seem to be as
fundamental as the underlying problem they are applied to.
Examples of more profound approaches exist that aim at
optimizing the SLR of biomolecules in a systematic way
(Delvenne et al., 2010; Chen and Habeck, 2017; Boninsegna
et al., 2018; Wang and Gómez-Bombarelli, 2019). Delvenne
et al. (2010) rank SLRs according to the quality of the
corresponding partitioning induced on the protein graph.
Chen and Habeck (2017) propose a Bayesian procedure that
extracts the optimal SLR from a single macromolecule or cryo-
EM map. Boninsegna et al. (2018) combine time-averaged
diffusion maps (Banisch and Koltai, 2017) and Markov
State Models (Bowman et al., 2013) to select groups of
atoms that are mutually close (coherent) over a
conformational basin. Wang and Gómez-Bombarelli (2019)
employ a variational autoencoder to learn a set of latent CG
variables (that is, a SLR) from the atomistic configuration
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(FLR): in the decoding process the SLR aims at reconstructing
the original FLR in a deterministic procedure.

In the spirit of searching for a more significant and
informative metric to link the FLR with the space of
associated SLRs, some of us proposed a method (Giulini et al.,
2020; Errica et al., 2021) that aims at optimizing the choice of the
CG mapping through the minimization of the information loss
between the description given by the all-atom model and its
reduced representation. More specifically, the approach relies on
the calculation of the mapping entropy Smap (Shell, 2008;
Rudzinski and Noid, 2011; Foley et al., 2015), which is the
“distance”, in a Kullback-Leibler sense, between the all-atom
Boltzmann distribution and its projection onto the CG space.
Figure 5A illustrates a comparison of these distributions.

Given a reference all-atomMD simulation and a CGmapping,
this protocol optimizes the latter until a (necessarily local)
minimum of Smap is reached (see Figure 5B). CG mappings
obtained from independent minimisations of Smap share features
that are connected to the relevant biological properties of
proteins. Moreover, the resolution is not uniformly assigned
across the structures, but rather it is distributed to preserve
the maximum amount of information about the original,
atomistic description.

Since the calculation of Smap can be computationally time-
consuming, some of us (Errica et al., 2021) have proposed a
machine learning model to accelerate the assessment of the
quality of a coarse-grained mapping. This improvement allows
one to estimate the correct density of states of the system
(expressed in terms of the mapping entropy) by means of the
Wang Landau sampling scheme, a calculation that would be
computationally intractable without such machine learning-
based acceleration.

In conclusion, all the works showcased here reflect the
emergence of a profound need in the computational
biophysics community: that of a strategy to build a
faithful simplified representation of a molecular system in
an entirely unsupervised manner. In standard coarse-
graining recipes, such reduced descriptions must be
equipped with proper effective interactions in order to
generate data. However, the impressive development of
techniques to enhance the performances of atomistic
simulations is making this necessity less and less pressing.
In contrast, the huge amount of high-resolution data
produced at each MD run these days might benefit from
the capacity of CG models to serve as powerful instruments
to make sense of the data.

FIGURE 5 | (A) The mapping entropy is defined as the Kullback-Leibler distance between the atomistic, fully detailed probability distribution (left panel) and its
blurred reconstruction (right panel), obtained from a reduced description obtained neglecting a subset of degrees of freedom (middle panel). (B) The algorithmic
implementation of the method introduced by Giulini and coworkers (Giulini et al., 2020) iteratively refines the CG mapping until convergence: the resulting, optimal SLR
generates a reconstructed FLR that adheres as much as possible to the original one.
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8 DISCUSSION

In this reviewwe have presented a broad, though certainly incomplete,
overview of the ideas and motivations behind coarse-grained
modeling. The construction of a model of a physical system,
simple enough to be employed and understood while detailed
enough to enable nontrivial insight, is one of the core activities of
science in general. In the study of soft and biological matter, this need
becomes particularly pressing and complex, as the advantages of
generality, symmetry, and universality one enjoys in areas such as
particle physics or statistical mechanics of critical systems lose ground
in favor of specificity, peculiarity, and non-transferability; these latter
characteristics, however, are those that confer to soft matter its
spectacular spectrum of properties.

In such a varied and diverse scenario, one needs a comparably large
toolbox of models and analysis techniques to crack the code of the
relation among the constituents of a system, their arrangement and
relations, and the emergent properties. The term “coarse-grained
models” encompasses indeed such a variety, providing descriptions
of the same system at different levels of resolution and detail, and
serving as instruments to produce a given behavior as well as
techniques to analyze it.

During the past few decades the vast majority of the effort has
been put in the usage of coarse-grained models in lieu of more
detailed, but also computationally more expensive descriptions;
the recent impressive advancements of computer science are
releasing pressure from this need, and all-atom simulations
can now be performed of systems whose size and time scales
were yesterday achievable by low-resolution models only.

However, the feasibility of large-scale all-atom simulations is
not really putting coarse-grained models out of their job, but
rather it is making them change employment: indeed, the
extraordinary amount of data generated by such simulations
is, in general, all but trivial to understand, and appropriate
methods of analysis are required to make this information
intelligible. The knowledge acquired in the development of

effective low-resolution models thus proves especially useful in
discriminating the signal from the noise.

To conclude, based on the presented analysis of the
development of protein modeling throughout the decades, we
foresee that a bright future lies ahead of coarse-graining: there will
always be an inpatient necessity of simple models to investigate
complex phenomena, as the curiosity of researchers is bound to
lie beyond the capacity of their tools; complementarily, as more
and more systems will be viable for accurate and detailed
simulations, the need will grow for algorithmic, unsupervised
methods to climb the mountain of data, reach its top and say we
understand.
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