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RNA polymerase I (RNAPI) and RNAPIII are multi-heterogenic protein complexes that
specialize in the transcription of highly abundant non-coding RNAs, such as ribosomal
RNA (rRNA) and transfer RNA (tRNA). In terms of subunit number and structure,
RNAPI and RNAPIII are more complex than RNAPII that synthesizes thousands of
different mRNAs. Specific subunits of the yeast RNAPI and RNAPIII form associated
subcomplexes that are related to parts of the RNAPII initiation factors. Prior to their
delivery to the nucleus where they function, RNAP complexes are assembled at least
partially in the cytoplasm. Yeast RNAPI and RNAPIII share heterodimer Rpc40-Rpc19,
a functional equivalent to the αα homodimer which initiates assembly of prokaryotic
RNAP. In the process of yeast RNAPI and RNAPIII biogenesis, Rpc40 and Rpc19 form
the assembly platform together with two small, bona fide eukaryotic subunits, Rpb10
and Rpb12. We propose that this assembly platform is co-translationally seeded while
the Rpb10 subunit is synthesized by cytoplasmic ribosome machinery. The translation
of Rpb10 is stimulated by Rbs1 protein, which binds to the 3′-untranslated region of
RPB10 mRNA and hypothetically brings together Rpc19 and Rpc40 subunits to form
the αα-like heterodimer. We suggest that such a co-translational mechanism is involved
in the assembly of RNAPI and RNAPIII complexes.
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INTRODUCTION

Gene expression is one of the most fundamental processes in all domains of life. DNA is transcribed
to RNA by complex machinery, the core component of which is RNA polymerase (RNAP). Both
bacteria and archaea have single RNAPs, multiprotein complexes that originated from two-barrel
RNA polymerase enzymes and present a high degree of similarity, including other core subunits
and various auxiliary factors (Figure 1; Werner and Grohmann, 2011; Fouqueau et al., 2017).
Eukaryotes have at least three RNAPs that transcribe nuclear genes. RNAPII, which transcribes
messenger RNAs (mRNAs), is most similar to archaeal RNAP (Werner and Weinzierl, 2002).
RNAPI and RNAPIII specialize in transcribing highly abundant non-coding RNAs, including
ribosomal RNA (rRNA) and transfer RNA (tRNA).

The mechanisms that allowed for the evolution of RNAPI and RNAPIII remain unknown.
Recent findings suggest that eukaryotic cells evolved from Asgard archaea, which are able to
form a stable interface with bacteria (Zaremba-Niedzwiedzka et al., 2017; Imachi et al., 2020).
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This evolutionary step may be associated with the establishment
of the compact nucleoprotein organization which formed pre-
nucleus and thus reflect a physical limitation that is available
for transcription.

OVERVIEW OF TRANSCRIPTION
SYSTEMS

Yeast RNAPII transcribes various different transcripts, mainly
mRNAs, the abundance of which spans slightly more than two
orders of magnitude (Lahtvee et al., 2017). Transcripts undergo
various co-transcriptional modifications, including 5′ capping,
splicing, cleavage, and polyadenylation. RNAPI transcribes only
one 7-kb-long pre-rRNA, a polycistronic transcript from ∼150
rDNA repeats in yeast. RNAPI undergoes general regulation,
and its transcriptional output is regulated by the availability of
rDNA repeats (Wittner et al., 2011; Turowski, 2013). RNAPIII
transcribes short, abundant non-coding RNA, including tRNA
and 5S rRNA (Leśniewska and Boguta, 2017).

Transcription initiation by RNAPII depends on multiple
transcription factors (TFs), including TATA-binding protein
(TBP), TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH (Schier and
Taatjes, 2020). RNAPI and RNAPIII initiate transcription in vivo
by utilizing dedicated TFs. RNAPI utilizes Rrn3, TBP, core factor
(CF), and upstream-associated factor (UAF) (Figures 1C,D;
Albert et al., 2012). The RNAPIII preinitiation complex includes
binding of internal promoters by multisubunit TFIIIC followed
by recruitment of TFIIIB (consisted of TBP, Brf1/Brf2, and
Bdp1) to the transcription start site (Figures 1E,F). TBP is
involved in transcription initiation by all three RNAPs, and is
recruited to TATA-containing as well to TATA-less promoters,
while Brf1 is functionally related to the TFIIB (Turowski and
Tollervey, 2016; Ciesla et al., 2018; Ramsay and Vannini, 2018).
TFs play a key role in transcription initiation which requires
opening of the DNA double helix and directing initial RNA
synthesis. When formed, the DNA-RNA-RNAP ternary complex
has extraordinary stability (Cai and Luse, 1987; Churchman
and Weissman, 2011). Biochemical data clearly indicate that
all RNAPs have high affinity for an RNA-DNA hybrid (Greive
and von Hippel, 2005), confirming that opening of the DNA
double helix is a key step in transcription initiation for all
eukaryotic RNAPs whereas additional RNAP-specific factors
account for differences in promoter recognition and gene-class
specific regulation.

Research during the last decade revealed new mechanisms
that are important for the regulation of eukaryotic transcription.
RNAPII was shown to transcribe nearly the entire genome at
a low level, a process referred to as pervasive transcription
(Churchman and Weissman, 2011; Milligan et al., 2016). Many
RNAPII promoters are bidirectional, and antisense transcription
is common. This is in marked contrast to RNAPI and RNAPIII
transcription, which uses very specific promoters and remains
unidirectional (Turowski et al., 2016, 2020; Clarke et al., 2018).
Finally, transcription is regulated by the local concentration of
TFs and three-dimensional chromatin organization (Hnisz et al.,
2017). A high number of very weak, multivalent interactions

within transcription preinitiation complexes may lead to liquid-
liquid phase separation. This phenomenon was previously
reported for yeast RNAPI and pre-rRNA transcription and
processing (Lafontaine, 2019). Recently, phase separation was
demonstrated to drive chromatin function in the human genome
(Cook and Marenduzzo, 2018; Sabari et al., 2018; Frottin et al.,
2019; Brackey et al., 2020).

RNA POLYMERASE STRUCTURE:
SIMILARITIES AND DIFFERENCES

There is remarkable structural and functional conservation
among RNAP enzymes in all eukaryotes, from yeast to man.
RNAPI and RNAPIII are homologous to RNAPII, but their
structures incorporated additional subunit homologs to RNAPII
TFs (Figures 1A,B). The majority of subunits are encoded by
independent, RNAP-specific genes. Two subunits, Rpc40 and
Rpc19, are homologous to bacterial α and shared between RNAPI
and RNAPIII (Wild and Cramer, 2012). Moreover, all three
eukaryotic RNAPs share five relatively small subunits: Rpb5,
Rpb6, Rpb8, Rpb10, and Rpb12. Four subunits common for
RNAPI and RNAPIII, Rpc40, Rpc19, Rpb10, and Rpb12, form a
subcomplex called the assembly platform corresponding to the
assembly platform that was defined for archaeal RNAP (Werner
et al., 2000; Werner and Weinzierl, 2002). All RNAPs contain the
two largest subunits that are homologous to bacterial β and β′ and
slightly vary in size. For RNAPI, these are Rpa190 and Rpa135.
For RNAPIII, these are Rpc160 and Rpc128. Both RNAPI and
RNAPIII lack the long unstructured C-terminal domain (CTD)
that is present in Rpb1, the largest subunit of RNAPII. The
CTD is responsible for binding and orchestrating many RNA
processing factors, such as capping enzymes or the spliceosome,
and its role is tightly coupled to phosphorylation status of the
CTD (Hsin and Manley, 2012). Moreover, the CTD was shown
to regulate RNAPII clustering via a phase separation mechanism
(Boehning et al., 2018).

The RNAPII Rpb4/7 (stalk) subcomplex interacts with Rpb1
directly and via an Rpb6 interaction (Armache et al., 2005).
Interestingly, Rpb6, a subunit that is common to all three
RNAPs and homologous to a small ω subunit of bacterial RNAP,
participates in anchoring stalk homologs in RNAPI and RNAPIII
(i.e., the heterodimers Rpa14/43 and Rpc17/25, respectively
(Minakhin et al., 2001; Jasiak et al., 2006; Engel et al., 2013;
Fernández-Tornero et al., 2013).

In contrast to RNAPII, specialized RNAPs incorporated
TFIIF-like heterodimers as stable Rpa49/34 subunits for RNAPI
and Rpc37/53 subunits for RNAPIII. Additionally, the C-terminal
region of Rpa49 forms a “tandem winged helix” domain that
is predicted in TFIIE (Geiger et al., 2010). The Rpa49/34
heterodimer plays a role in transcription initiation and
interactions with the TF Rrn3 (Beckouet et al., 2008; Albert
et al., 2011). Furthermore, RNAPIII contains a heterotrimeric
subcomplex, Rpc82/34/31, that is similar to TFIIE and crucial for
transcription initiation (Fernández-Tornero et al., 2007).

Another interesting feature of specialized RNAPs is
incorporation of the TFIIS zinc-finger domain into polymerase
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FIGURE 1 | Comparison of RNAPI and RNAPIII structures and transcription factors. (A) General architecture of RNAPII, consisting of the catalytic core and stalk.
RNAPII core consists of a DNA binding channel, catalytic center, and assembly platform. RNAPII binds multiple transcription factors (TFs). Some TFs are
homologous to additional subunits of specialized RNAPs (i.e., TFIIF). (B) Subunit composition of eukaryotic RNAPs. Human nomenclature is shown for comparision.
Please note that C-terminal region of Rpa49 subunit harbors a “tandem winged helix” which is predicted in TFIIE and that human RNAPIII RPC7 subunit is coded by
two isoforms α and β. The question mark indicates name unconfirmed. (C) Subunit composition of yeast RNAPI. (D) Model of the RNAPI pre-initiation complex,
showing an early intermediate with visible Rrn3 and core factor (CF). TATA-binding protein (TBP) and upstream-associated factor (UAF) are added schematically.
(E) Subunit composition of yeast RNAPIII. (F) Atomic model of RNAPIII pre-initiation complex with TFIIIB. The Rpc82/34/31 heterotrimer is involved in initiation and
marked in green as in E. TFIIIC is added schematically. PDB: 5C4X, 5FJ8, 4C3J, 6EU0, and 6TPS (Fernández-Tornero et al., 2013; Barnes et al., 2015; Hoffmann
et al., 2015; Abascal-Palacios et al., 2018; Pilsl and Engel, 2020).

subunits (Ruan et al., 2011; Khatter et al., 2017). This domain
is responsible for the endonucleolytic cleavage of the nascent
RNA 3′ end. In RNAPI and RNAPIII this domain fuses with
Rpa12 and Rpc11 subunits, respectively. Therefore, specialized
RNAPs are predicted to more effectively release from polymerase
backtracking. In summary, the permanent recruitment of TFs
might contribute to the efficiency of RNAPI and RNAPIII that is
fundamental for optimization of the cell growth rate.

Finally, RNAPI incorporated unique features that allow
complex dimerization. The dimerization of RNAPI has been
shown for S. cerevisiae and S. pombe, suggesting that this is a
conserved phenomenon. A homodimer of RNAPI is assembled

in response to environmental stress, such as nutrient deprivation.
This mechanism is reversible and can also be induced by
perturbations in the ribosome biogenesis pathway, suggesting
that homodimer assembly may be a storage mechanism of RNAPI
(Torreira et al., 2017; Heiss et al., 2021).

The specialization of RNAP machinery appears to be a
driver upon the archaea-to-eukaryote transition. Nevertheless,
the incorporation of TFs may suggest an additional mechanism.
We speculate that limited space within a crowded environment
of the pre-nucleus transformed transient interactions into the
stable incorporation of TFs into structures of RNAPI and
RNAPIII. In fact, archaeal general TFB binds upstream protein
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coding genes but is depleted upstream the rRNA, indicating that
differences between the occupancy of TFs between rRNA and
mRNA transcription units are also present in archaea (Smollett
et al., 2017). Additionally, ribosomal components loop together
in archaeal chromatin, suggesting the spatial organization of
ribosome biogenesis (Takemata and Bell, 2021). Therefore, we
suggest that spatial organization of the eukaryotic genome
promoted the evolution of RNAP-specific and co-evolution of
specific TFs. Ultimately, the evolution of specialized transcription
machinery allowed the optimal use of limited space in the nucleus
organized by chromatin.

ASSEMBLY OF RNAPI AND RNAPIII

Detailed knowledge of the structures of yeast RNA polymerases
contrasts with the incomplete information on the control
of their assembly. A hypothetical model of RNAPI and
RNAPIII assembly is based on the relatively well-recognized
assembly pathway of bacterial RNAP (Ghosh et al., 2001;
Kannan et al., 2001; Patel et al., 2020). The initial complex is
formed by two α-like subunits, Rpc40 and Rpc19 (Wild and
Cramer, 2012). As supported by genetic data, formation of the
Rpc19/40 heterodimer additionally involves a small common
subunit, Rpb10, which has no equivalent in the prokaryotic
enzyme. Mutations of the conserved motif of Rpb10 lead to
a complete depletion of the largest RNAPI subunit (Rpa190)
suggesting that the mutant enzyme is not properly assembled
(Gadal et al., 1999).

Rbp10 overexpression suppresses conditional rpc40 and rpc19
mutations that prevent RNAPIII assembly (Lalo et al., 1993) as
well as a conditional rpc128-1007 mutant that is located in the
Rpc128 subunit near contact points for the association between
Rpc128 and Rpc40 contact points (Cieśla et al., 2015). Rpb10 may
function in the RNAP assembly platform by acting as structural
adaptor between the α-like dimer Rpc40-Rpc19 and catalytic β-
like subunit Rpc128. Such a role was suggested for the archaeal
subunit N, which is homologous to yeast Rpb10 (Werner et al.,
2000). Essential function in the formation of assembly platform
of all RNAPs, by bridging between the Rpc40-Rpc19-Rpb10
subcomplex (or Rpb3-Rpb11-Rpb10 in RNAP II) and the β-like
subunit, was postulated for Rpb12 (Cramer et al., 2000). A role of
Rpb12 in RNAPIII assembly was also supported by earlier genetic
data (Rubbi et al., 1999).

The existence of intermediate complexes in the process of
yeast RNAP assembly was suggested by the mass spectrometry
analysis of RNAPIII disassembly (Lorenzen et al., 2007; Lane
et al., 2011). These analyses revealed two stable subcomplexes,
Rpc128-Rpc40-Rpc19-Rpb12 and Rpc160-Rpb8-Rpb5. In
addition to Rpb10, other small subunits also contribute to
the association of these macromolecular assembles (Minakhin
et al., 2001; Mirón-García et al., 2013). Although common to
all RNAPs, the small subunits may have distinct functions in
the assembly of each RNAP, thereby providing an interaction
platform for other molecules (Voutsina et al., 1999).

According to an existing model (Wild and Cramer, 2012),
eukaryotic RNAP enzymes are at least partially assembled in

the cytoplasm and then imported to the nucleus as a complex
with specific adaptor proteins. A set of RNAPIII subunits exhibit
coordinated nuclear import, indicating that the RNAPIII core
is assembled in the cytoplasm, with additional components that
bind in the nucleus (Hardeland and Hurt, 2006). This suggests
that the specific subcomplexes, particularly Rpc82-Rpc34-Rpc31,
would only bind the core in the nucleus (Hardeland and
Hurt, 2006). Interestingly, efficient RNAPIII assembly requires
sumoylation of the Rpc82 subunit, which is RNAPIII-specific
(Chymkowitch et al., 2017).

Several auxiliary factors, originally implicated in RNAPII
assembly and nuclear import and subsequently shown to be
common to RNAPI and RNAPIII were described in another
article published in the same issue by Navarro and colleagues.
Here we focus on the Rbs1 protein, a candidate RNAPIII
assembly/import factor, which was identified in a genetic screen
for suppressors of the RNAPIII assembly mutant rpc128-1007
(Cieśla et al., 2015). Genetic suppression correlated with an
increase in the stability of RNAPIII subunits and an increase
in their interaction. Additionally, Rbs1 physically interacts with
a subset of RNAPIII subunits (i.e., Rpc19, Rpc40, and Rpb5)
and the exportin Crm1. We postulated that Rbs1 binds to the
RNAPIII complex or subcomplex and facilitates its translocation
to the nucleus. Following dissociation from RNAPIII in the
nucleus, Rbs1 is exported back to the cytoplasm in complex with
Crm1 (Cieśla et al., 2015).

It is reasonable that the Rbs1 function in RNAP assembly
is not limited to RNAPIII. Rbs1 interacts with Rpc19 and
Rpc40 subunits common to RNAP I and RNAPIII and Rpb5, a
component of all three RNAPs (Cieśla et al., 2015). Moreover,
Rpb5 participates in the assembly of all three polymerases
mediated by Bud27 (Mirón-García et al., 2013).

Genetic and functional suppression of the RNAPIII assembly
defect by Rbs1 correlated with higher levels of RPB10 mRNA
and Rpb10 protein. This regulatory mechanism, however, relies
on the control of steady-state levels of RPB10 mRNA by Rbs1
protein, which interacts with the 3′-untranslated region (UTR)
of this transcript (Cieśla et al., 2020).

By exploring specific features of the Rbs1 protein sequence,
we identified two regions: a highly ordered N-terminal region
that comprises two RNA-interacting domains (R3H and SUZ)
and a mostly disordered C-terminal region with a prionogenic
(aggregation-promoting) sequence. Investigations of possible
roles of these regions in RBS1 led to the conclusion that the R3H
domain was essential for suppressing both genetic and molecular
phenotypes of the rpc128-1007 mutation and function of Rbs1
protein in RNAPIII assembly, whereas the role of the prionogenic
domain remains unknown (Cieśla et al., 2020).

By applying ultraviolet crosslinking, we identified the
transcriptome-wide binding of Rbs1, which predominately
targets 3′-UTRs of mRNAs. The list of high-confidence Rbs1
targets included RPB10 mRNA and RPC19 mRNA, which
encodes Rpc19, another subunit involved in formation of the
assembly platform for RNAPIII (Cieśla et al., 2020).

Notably, homologs of Rbs1 have been identified in other
eukaryotes, including the human proteins R3H domain protein
2 (R3HDM2) and cyclic adenosine monophosphate-regulated
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phosphoprotein 21 (ARPP21), which are also known to interact
with mRNA (Castello et al., 2012; Rehfeld et al., 2018).

MODEL OF CO-TRANSLATIONAL
FORMATION OF THE
RPC40-RPC19-RPB12-RPB10
ASSEMBLY PLATFORM

Based on established interactions between Rbs1 and the subunits
of RNAPIII (Cieśla et al., 2015, 2020), we propose a co-
translational mechanism of formation of the early-stage assembly
intermediate of the RNAPIII complex and potentially also RNAPI
(Figure 2). According to our hypothesis, RNAPIII assembly
might be seeded while the Rpb10 subunit of the enzyme core

is being synthesized by cytoplasmic ribosome machinery. This
assembly pathway would be proceeded by the co-translational
association of other subunits, including Rpc19 and Rpc40
(Figure 2), to build an initial assembly subcomplex that is
common to RNAPI and RNAPIII. Currently unknown, however,
is how the Rpc40-Rpc19-Rpb10 complex discriminates among
Rpc128 and Rpa135 proteins to proceed with formation of the
RNAPIII and RNAPI assembly platform.

Co-translational assembly has been reported for several
multisubunit complexes (e.g., TFIID, TREX-2, SAGA, and fatty
acid synthase; Kamenova et al., 2019; Schwarz and Beck, 2019;
Shiber et al., 2018) but has not yet been considered for RNA
polymerases. Our hypothesis is in line with the idea that that co-
translational subunit association is likely to be a general principle
in yeast and mammalian cells as an efficient assembly pathway in
eukaryotes (Shiber et al., 2018).

FIGURE 2 | Model of RNAPIII biogenesis in the yeast Saccharomyces cerevisiae. The control of Rpb10 expression and role of Rpb10 in assembly of the RNAP III
complex are connected via a regulatory loop that involves Rbs1 protein. Possible ways in which subunits of the RNAPIII intermediate complex are brought together
for co-translational assembly are shown. The initial step of RNAPIII assembly in Saccharomyces cerevisiae occurs in the cytoplasm. Formation of the intermediate
Rpc128-Rpc40-Rpc19-Rpb12-Rpb10 subcomplex is seeded co-translationally while the Rpb10 subunit is being synthesized by cytoplasmic ribosomes. Rbs1 is an
RNA binding protein that stimulates the translation of Rpb10 protein through an interaction of the R3H domain with the 3′-UTR in RPB10 mRNA. Rpb10 brings
together the Rpc19 and Rpc40 subunits to form the α-like heterodimer. One possibility is that Rbs1 binds and recruits the mature Rpc40 subunit to the 3′-UTR of
RPB10 mRNA, which undergoes translation. The Rpc40-Rbs1 interaction has been previously demonstrated by co-immunoprecipitation. Alternatively, Rbs1 protein
directly bridges RPB10 mRNA and RPC19 mRNA. A fully folded subunit that formed on one mRNA was recently shown to detach from its ribosome and interact
with a nascent protein on another mRNA (Cieśla et al., 2015, 2020).
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For RNAPIII, we propose two plausible models that are
not necessarily mutually exclusive and could be applicable to
RNAPI (Figure 2). In the first model, the long 3′-UTR of
RPB10 acts as a scaffold to recruit Rbs1 that is associated with
another RNAPIII subunit (e.g., Rpc40) that interacts with Rbs1
through co-immunoprecipitation (Cieśla et al., 2015) to the
site of Rpb10 translation. This facilitates the association of this
subunit with the newly translated Rpb10 to form the RNAP
assembly platform subcomplex. Such a scenario corresponds to
a sequential assembly model, in which RNA-binding protein
recruits a fully folded subunit to the 3′-UTR of mRNA that
encodes the second subunit that undergoes translation. The 3′-
UTR regions can act as scaffolds for RNA binding proteins that
serve as adaptors to deliver preferred proteins to the site of
translation (Berkovits and Mayr, 2015). The sequential assembly
pathway has been proposed for the co-translational assembly of
TAF8-TAF10 subunits of TFIID and TAF1-TBP assembly. TAF10
binds the nascent TAF8 subunit, and TAF10 protein co-localizes
with TAF8 mRNA in cytoplasmic foci (Kamenova et al., 2019).

In the second model, RPB10 and RPC19 mRNAs are bridged
together by Rbs1, which interacts with 3′-regulatory regions of
both transcripts (Cieśla et al., 2020). Additionally, unstructured
parts of Rbs1 may facilitate interaction among Rbs1 molecules
allowing the Rpb10 and Rpc19 subunits to be translated in
proximity to each other, thereby enabling their co-translational
interaction (Figure 2). A simultaneous model has been proposed
for the co-translational assembly of TAF6 and TAF9 subunits of
the transcription factor TFIID (Kamenova et al., 2019). Physical
linkage of the two mRNAs could also be accomplished by
their co-localization in phase-separated compartments that allow
translation at defined subcellular locations (Mayr, 2018).

Rbs1 exhibits all characteristics of the postulated protein that
bridges mRNA. The two RNA-interacting domains, R3H and
SUZ, have been identified in the sequence of Rbs1 protein, and
this sequence also contains a prionogenic, disordered region. The
specific mRNA motifs and potential effect of Rbs1 binding on
the translation of these targets need to be determined. R3H likely
cooperates with the SUZ domain in the recognition of specific
mRNA targets and bridging them into proximity with each other.
A disordered region of Rbs1 may be involved in multivalent
interactions that bring Rbs1-associated mRNAs together. Such an
Rbs1-mediated co-localization of mRNAs would allow them to be
translated at defined subcellular locations.

STOICHIOMETRY OF SUBUNITS OF
SPECIALIZED RNAPS

The assembly platform Rpc40-Rpc19-Rpb10-Rpb12 is shared
between yeast RNAPI and III what arises question about the
stoichiometry of RNAPs subunits during the assembly pathway.
The absolute quantification of yeast proteins indicated that
RNAPI and RNAPII are present in 5,000 copies per cell, whereas
RNAPIII is present in 2,500 copies (Turowski et al., 2020).
Consequently, common subunits are shared between RNAPI,
RNAPII, and RNAPIII in a 2:2:1 ratio. RNAPI and RNAPIII share
an assembly platform that contains the Rpc19 and Rpc40 subunits

and two additional subunits (Rpb10 and Rpb12) among the five
common subunits. Both specialized RNAPs utilize the assembly
platform, sharing RNAPI:RNAPIII in a 2:1 ratio. The platform is
attached via the second largest subunit Rpa135 to RNAPI and via
Rpc128 to RNAPIII. Limited data suggest a difference in binding
strength at this stage. A biochemical disassembly approach
demonstrated that RNAPI disassembles the platform from the
dimer of the two largest subunits, Rpa135 and Rpa190, whereas
RNAPIII disassembles the interface between the two largest
subunits before detachment of the assembly platform (Lane
et al., 2011). This suggests that the Rpc128-platform interaction
might be stronger than the interaction between the two largest
subunits. This would be in contrast to RNAPI, in which the
interaction with the two largest subunits would be stronger than
the interaction with the platform. In the consequence, a common
assembly platform could be preferentially incorporated by less
abundant RNAPIII.

DISCUSSION

Despite recent progress, the RNAP assembly process remains
poorly described. Knowledge about its basic mechanism is
necessary to ask more detailed questions about disease and
developmental biology. The structure of human RNAPI awaits to
be determined. Recently published structures of human RNAPIII
revealed a high level of conservation (Ramsay et al., 2020; Li
et al., 2021; Wang et al., 2021). Moreover, mutations of specialized
RNAPs lead to genetic disorders, such as Treacher-Collins
syndrome and hypomyelinating leukodystrophy (Ramsay et al.,
2020; Girbig et al., 2021), demonstrating the requirement for
precise coordination among all three RNAPs and their assembly.
Research on RNAPIII assembly in yeast focused on rpc128-
1007 mutations that disturbed the interface between the Rpc128
and Rpc40 subunits. Interestingly, multiple disease-associated
mutations of human RNAPIII subunits tend to cluster within the
region of the RNAPIII assembly platform, suggesting that defects
in RNAPIII biogenesis may have severe health consequences
(Ramsay et al., 2020; Girbig et al., 2021). Further studies of RNAP
assembly should reveal additional factors that are involved in this
process and improve our understanding of this vital pathway.
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