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Background: Epilepsy is a complex chronic disease of the nervous system which
influences the health of approximately 70 million patients worldwide. In the past few
decades, despite the development of novel antiepileptic drugs, around one-third of
patients with epilepsy have developed drug-resistant epilepsy. We performed a
bioinformatic analysis to explore the underlying diagnostic markers and mechanisms of
drug-resistant epilepsy.

Methods: Weighted correlation network analysis (WGCNA) was applied to genes in
epilepsy samples downloaded from the Gene Expression Omnibus database to determine
key modules. The least absolute shrinkage and selection operator (LASSO) regression and
support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to
screen the genes resistant to carbamazepine, phenytoin, and valproate, and sensitivity of
the three-class classification SVM model was verified through the receiver operator
characteristic (ROC) curve. A protein–protein interaction (PPI) network was utilized to
analyze the protein interaction relationship. Finally, ingenuity pathway analysis (IPA) was
adopted to conduct disease and function pathway and network analysis.

Results: Through WGCNA, 72 genes stood out from the key modules related to drug
resistance and were identified as candidate resistance genes. Intersection analysis of the
results of the LASSO and SVM-RFE algorithms selected 11, 4, and 5 drug-resistant genes
for carbamazepine, phenytoin, and valproate, respectively. Subsequent union analysis
obtained 17 hub resistance genes to construct a three-class classification SVM model.
ROC showed that the model could accurately predict patient resistance. Expression of 17
hub resistance genes in healthy subjects and patients was significantly different. The PPI
showed that there are six resistance genes (CD247, CTSW, IL2RB, MATK, NKG7, and
PRF1) that may play a central role in the resistance of epilepsy patients. Finally, IPA
revealed that resistance genes (PRKCH and S1PR5) were involved in “CREB signaling in
Neurons.”
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Conclusion: We obtained a three-class SVM model that can accurately predict the drug
resistance of patients with epilepsy, which provides a new theoretical basis for research
and treatment in the field of drug-resistant epilepsy. Moreover, resistance genes PRKCH
and S1PR5 may cooperate with other resistance genes to exhibit resistance effects by
regulation of the cAMP-response element-binding protein (CREB) signaling pathway.

Keywords: epilepsy, drug-resistant epilepsy, bioinformatics analysis, CREB signaling pathway, resistance gene

1 INTRODUCTION

Epilepsy is a complex chronic neurological disease characterized
by the recurrence of unprovoked seizures and has numerous
neurobiological, cognitive, and psychosocial consequences
(Fisher et al., 2014). It affects the health of over 70 million
people worldwide (Thijs et al., 2019). Epilepsy has complex
etiologies, diverse clinical symptoms and phenotypes, and high
heterogeneity, which interfere with its diagnosis as well as
treatment (Rawat et al., 2020). Moreover, approximately a
third of patients with epilepsy are refractory to antiepileptic
drugs (AEDs) when they are employed singly or even in
various combinations (Lerche, 2020). There is thus an urgent
need to find new diagnostic markers of refractory epilepsy to
ameliorate the current situation of epilepsy diagnosis and
treatment.

There are multitypes of AEDs for epilepsy treatment, among
which carbamazepine (CBZ), phenytoin (PHT), and valproate
(VPA) are the most widely used first-line drugs (Schmidt and
Schachter, 2014). CBZ is a first-line treatment for partial and
generalized convulsive seizures, trigeminal pain, and bipolar
disorder, which functions as a Na+ channel blocker (Harper and
Topol, 2012). CBZ remains the most efficacious drug for focal
and generalized seizures with focal onset (Baulac et al., 2012;
Baulac et al., 2017). PHT is also speculated to work as a Na+

channel blocker; it exhibits similar efficacy to CBZ and is the
first-line drug for focal seizures and generalized seizures with
focal onset. Unusually, PHT is mainly administered
intravenously (Mattson et al., 1985). As the first-line and
most effective intravenous drug for focal and generalized
seizures in current clinical treatment, VPA performs multiple
functions, including GABA potentiation, glutamate inhibition,
and sodium channel and T-type calcium channel blockade
(Tomson et al., 2016).

In 2009, the International League Against Epilepsy (ILAE)
defined drug-resistant epilepsy as “failure of adequate trials of two
tolerated, appropriately chosen and used AED schedules” (Kwan
et al., 2010). Patients with drug-resistant epilepsy have a
significantly increased risk of psychiatric and somatic
comorbidities and adverse effects from AEDs. Furthermore,
their seizures are not well controlled and recurrent, especially
generally tonic–clonic seizures, which is the best-recognized risk
factor for sudden unexplained death in epilepsy (Ryvlin et al.,
2019). Recent research has demonstrated that after the failure of
two well-tolerated AED schedules appropriately chosen for the
seizure types, patients under long-term treatment for epilepsy
have a progressively less likely chance of success with further drug

treatment (Chen et al., 2018). Therefore, early-stage identification
of AED resistance is crucial to patient treatment outcomes.

In our study, we used weighted correlation network analysis
(WGCNA), the least absolute shrinkage and selection operator
(LASSO) algorithm, and the support vector machine-recursive
feature elimination (SVM-RFE) algorithm to analyze and select
resistance genes. All genes in epilepsy patient samples were
downloaded from the Gene Expression Omnibus (GEO)
database. We constructed a novel three-class classification
SVM model to accurately predict patient resistance, which
may provide a new strategy for the treatment and research of
drug-resistant epilepsy and also revealed that the resistance genes
PRKCH and S1PR5 may cooperate with other resistance genes
through regulation of the cAMP-response element-binding
protein (CREB) signaling pathway. The workflow is shown in
Figure 1.

2 MATERIALS AND METHODS

2.1 Data Source
The original dataset of the whole gene expression profiles was
downloaded from the GEO database. The accession number was
GSE143272, which was based on GPL10558 (Illumina
HumanHT-12 V4.0 expression beadchip). Gene sequences of a
total of 34 drug-naïve patients with epilepsy and 57 followed-up
patients showing differential response to AED monotherapy,
along with 50 healthy subjects as a control group, were
included in the study. The AED-treatment group included the
CBZ-drug-treatment group (tolerance: 9; intolerance: 10), the
PHT-drug-treatment group (tolerance: 6; intolerance: 7), and the
VPA-drug-treatment group (tolerance: 9; intolerance: 16).

2.2 Definitions of Candidate Resistance
Genes by WGCNA
In this study, we used the “WGCNA” R software package to
construct modules related to clinical features in the epilepsy
sample dataset (GSE143272) and identify candidate genes
(Langfelder and Horvath, 2008). The clinical features were
divided into eight categories: normal (health), unmedicated
epilepsy (case), CBZ tolerance, CBZ intolerance, PHT
tolerance, PHT intolerance, VPA tolerance, and VPA
intolerance. The overall clustering of the GSE143272 dataset
was found to be of relatively high quality, so no sample
removal processing was performed (Supplementary Figure
S1A). The traits of the samples are shown in Supplementary
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Figure S1B. The adjacency matrix was converted to a topological
overlap matrix (TOM) (Li et al., 2019). According to the degree of
TOM similarity, genes were divided into multiple gene modules
(Supplementary Figures S1C,D). In this analysis, the soft
threshold was set to 7 (scale-free R2 � 0.85), and the

minimum module size was 30. The correlations between the
characteristic gene of each module and clinical characteristics
were calculated. The screening of key modules was achieved by
calculating the correlation between the module genes and clinical
features. Moreover, a gene with |gene significance (GS)| >0.2 and |

FIGURE 1 | Workflow of the study.
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module membership (MM)| > 0.8 in the key modules was
considered as a candidate resistance gene.

2.3 Feature Selections by LASSO and
SVM-RFE Algorithms
LASSO logistic regression and SVM-RFE were performed on the
candidate resistance genes obtained in WGCNA to screen
characteristic genes. LASSO is a regression analysis algorithm
that uses regularization to improve the prediction accuracy. The
penalty parameter (λ) of the LASSO regression model was
determined by following a 10-fold cross-validation of the
minimum criterion (i.e., the value of λ corresponding to the
lowest partial likelihood deviation). The LASSO regression
algorithm using the “glmnet” package (Friedman et al., 2010)
in R was performed to identify genes significantly associated
with the distinctions between CBZ-resistant and PHT + VPA-
resistant samples, PHT-resistant and CBZ + VPA-resistant
samples, and VPA-resistant and CBZ + PHT-resistant
samples. Furthermore, SVM-RFE is an effective feature
selection technique that finds the best variables by deleting
the feature vector generated by SVM (Wang and Liu, 2015).
In this study, the SVM-RFE algorithm screened the best
variables based on a minimum 10 × CV error value. The
performances of CBZ/PHT/VPA resistance LASSO and SVM
models are shown in Supplementary Table S1. For each drug,
resistance genes were defined as the common genes identified by
the LASSO and SVM-RFE algorithms. Ultimately, we combined
the resistance genes of CBZ, PHT, and VPA as hub resistance
genes for further analysis. A three-class classification SVM
module was established using the “e1071” software package
in R (Supplementary Figure S2) (Cinelli et al., 2017), and
the receiver operating characteristic (ROC) curve was used to
further determine the diagnostic value of the hub resistance
genes in epilepsy.

2.4 Construction of the Protein–Protein
Interaction Network
To interpret the molecular mechanisms of hub resistance genes in
epilepsy, the online tool, the Search Tool for the Retrieval of
Interacting Genes (STRING) database, was used to construct the
protein–protein interaction (PPI) network of 72 modular genes
(Szklarczyk et al., 2015). The PPI was visualized with a confidence
score >0.15 (Assenov et al., 2008).

2.5 Ingenuity Pathway Analysis for the
Identification of Diseases and Function
Pathways Involved
Ingenuity pathway analysis (IPA) is a web-based bioinformatic
application for functional analysis, aggregation, and further
understanding of data analysis results (Khan et al., 2016).
Briefly, IPA was performed to identify diseases and functions
and gene networks that were most significant to hub resistance
genes. The Z-scores of significantly involved diseases and
function pathways were also determined.

2.6 Statistical Analysis
All statistical analyses were performed using R version 3.4.1.
The Wilcox test was used to analyze the relationship between
drug resistance and clinicopathological characteristics. Pearson
correlation analysis was adopted to understand the relevance
of the 17 hub resistance genes. The area under the curve
(AUC) was calculated to evaluate the property of the
models. p < 0.05 was envisaged to indicate a statistically
significant difference.

3 RESULTS

3.1 Determination of the Most Relevant
Module Genes for Drug Tolerance in
Epilepsy Treatment
We first clustered all the samples in the GSE143272 dataset to
ensure the accuracy of the analysis (Supplementary Figure
S1A). The coexpression network was constructed through
coexpression analysis. A total of 27 modules (including gray
modules) were identified via the average linkage hierarchical
clustering. To ensure that the interaction between genes in the
coexpression network could conform to the scale-free
distribution to the greatest extent, the power of β � 7 was
selected; to merge the highly similar modules, we chose a cutoff
<0.25 and a minimum module size of 30 using the dynamic
hybrid tree cut method. In this study, we focused on the drug-
resistant traits of disease samples. Therefore, we included the
two traits of the case and drug tolerance as reference factors to
screen key modules. It was found that the MElightcyan module
had the highest correlation with CBZ-tolerance traits (module-
trait relationships � −0.27 and −0.12, respectively) and VPA-
tolerance traits (module-trait relationships � −0.27 and 0.2,
respectively) of cases. The MEyellow module (module-trait
relationships � −0.19 and −0.12, respectively) was found to
have the highest association with the PHT-tolerance status of
the case (Figure 2). Hence, 1,016 genes in the two modules
(MElightcyan: 206 and MEyellow: 810) were considered to be
significant module genes for further intramodular analysis.
Based on the candidate gene screening criteria in the key
module (|GS| > 0.2 and |MM| > 0.8), a total of 72 candidate
genes from the MElightcyan (25 genes) and MEyellow (47
genes) modules were chosen for further analysis (Figures
2E,F; Supplementary Tables S2, S3).

3.2 Identification of Hub Resistance Genes
in Patients With Epilepsy
In this study, two distinct algorithms, LASSO and SVM-RFE,
were utilized for screening potential resistance genes against CBZ,
PHT, and VPA. For each drug, resistance genes were defined by
the common signature genes identified by LASSO and SVM-RFE.
Ultimately, the resistance genes of all three drugs were collectively
termed as hub resistance genes in our research.

For the identification of potential resistance genes to CBZ, we
built classifiers capable of distinguishing between CBZ-resistant
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FIGURE 2 | Weighted gene co-expression network analysis of the potential resistance genes. (A) Weighted value β of scale-free networks. The relationship
between the soft threshold and scale-free R2 is exhibited on the left. On the right, the relationship between the soft threshold and mean connectivity is shown. (B)Cluster
dendrogram. Each branch in the figure represents the genes, which are divided into module colors based on the cluster analysis results. The oligogenics are assigned in
the gray module. (C) Heatmap of the correlation analysis between modules and clinical characteristics. The vertical axis represents the different modules; the
horizontal axis represents the different traits. The number in each cell represents the correlation coefficient and significance (p-value) between a module and a trait. (D,E)
Scatter diagrams of MElightcyan andMEyellowmodules. Using the criteria |GS| > 0.2 and |MM| > 0.8, we selected the key genes of eachmodule in the upper right corner
of the figure. Twenty-five key genes were screened from the MElightcyan module, a resistance module common to both CBZ and VPA drugs.

Frontiers in Molecular Biosciences | www.frontiersin.org November 2021 | Volume 8 | Article 6830325

Han et al. Drug-Resistant Epilepsy Model Construction

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


FIGURE 3 | LASSO and SVM-RFE algorithms were used for characteristic gene selection. (A, C, E) LASSO algorithm. Using the LASSO algorithm, we identified 12
potential resistance genes in the CBZ-resistance gene set, 4 in the PHT-resistance gene set, and 6 in the VPA-resistance gene set. (B, D, F) SVM-RFE algorithm. SVM-
RFE algorithm separately indicated the resistance genes most closely corresponding with the lowest error rates in patients treated with CBZ (B), PHT (D), and VPA (F).
(G–I) Venn diagram of the characteristic genes for CBZ (G), PHT (H), and VPA (I), which were selected from the LASSO or SVM-RFE algorithms. (J)We unified the
LASSO + SVM characteristic resistance genes of CBZ, PHT, and VPA and obtained 17 characteristic genes.
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FIGURE 4 | Assessment of the predictive value of the three-class classification SVMmodel. (A)Boxplot shows the expression patterns of 17 drug resistance genes
in case and control samples from the GSE143272 dataset. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (B)ROC curve based on every two drugs in the model.
Blue represents CBZ vs. PHT, green represents CBZ vs. VPA, and red represents PHT vs. VPA. Since all AUCs are 1.000, only one color is shown in the figure (other
ROC curves are covered). (C,D) By using the Wilcox test, we analyzed the correlation between three clinical traits (age, gender, and pathological classification) and
drug resistance. A heatmap of resistance genes and clinical traits is plotted (C). Clinical traits and drug resistance were significantly correlated (p < 0.05) (D).
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samples (n � 9) and PHT + VPA-resistant samples (n � 15) using
the LASSO and SVM-RFE algorithms. Specifically, the LASSO
regression was performed to remove candidate genes that were
related to each other to prevent overfitting of the model
(Figure 3A). A total of 12 LASSO signature genes were
obtained at λ min � 0.0116; they were CCDC102A, CEP78,
CLDND2, FGFBP2, GPR56, KLRD1, NCALD, PRKCH, RUNX3,
S1PR5, SBK1, and SKAP1. Meanwhile, based on the SVM-RFE
algorithm (Figure 3B), 18 SVM-RFE signature genes were
identified at a minimum 10-fold CV error (0.153), namely,
NCALD, FGFBP2, CCDC102A, KLRD1, S1PR5, SKAP1, TTC38,
CLDND2, PRKCH, SBK1, CD247, RUNX3, ENPP4, TSEN54,
NKG7, PRR5, GPR56, and HOPX. Subsequently, a total of 11
genes (CCDC102A, CLDND2, FGFBP2, GPR56, KLRD1, NCALD,
PRKCH, RUNX3, S1PR5, SBK1, and SKAP1) were identified by
overlap analysis as common to both the LASSO signature gene set
and the SVM-RFE signature gene set; these genes were defined as
resistance genes for CBZ (Figure 3G).

Before identifying potential resistance genes to PHT, we
divided all drug-resistant samples into PHT-resistant (n � 6)
and CBZ + VPA-resistant (n � 18) groups. The 72 candidate
genes previously identified were narrowed down using the
LASSO regression algorithm, resulting in the identification of
four variables (LOC388621, LOC441154, LOC645157, and
LOC649548) as potential resistance genes for PHT at λ min �
0.0784 (Figure 3C). Based on the best point (10 × CV error �
0.171), the SVM-RFE algorithm obtained 41 eigenvalues
(Figure 3D; Supplementary Table S4). By overlapping the
genes from the two algorithms, we identified the four genes
(LOC388621, LOC441154, LOC645157, and LOC649548) as
resistance genes in patients treated with PHT (Figure 3H).

Based on 9 VPA-resistant samples and 15 CBZ + PHT-
resistant samples, the LASSO regression algorithm identified
IL2RB, NCALD, PRKCH, PRR5, PRSS23, and RUNX3 as
potential resistance genes to VPA based on λ min � 0.0272
from 72 candidate genes (Figure 3E). A subset of 16 features
among the candidate genes was determined using the SVM-RFE
algorithm (10 × CV error � 0.199; Figure 3F). The five
overlapping features (NCALD, PRKCH, PRR5, PRSS23, and
RUNX3) between these two algorithms were ultimately
selected as the resistance genes in patients treated with VPA
(Figure 3I).

Collectively, we obtained a total of 11 CBZ-resistant genes,
4 PHT-resistant genes, and 5 VPA-resistant genes
(Supplementary Table S5). Overlap analysis revealed that
NCALD, RUNX3, and PRKCH were the common resistance
genes for CBZ and VPA (Figure 3J). Thus, a total of 17 hub
resistance genes were obtained and included for further analysis.

3.3 Evaluation of the Three-Class
Classification SVM Model
The 17 resistance genes were significantly different in control
and case samples; i.e., compared with the control group, their
expression in case samples was generally lower (Figure 4A).
Then, the library (“e1071”) package was used in the R software
to construct a three-class classification SVM model for the 17

hub resistance genes obtained from the above analysis, and its
prediction performance was evaluated in the GSE143272
dataset. The ROC curve was drawn based on the true and
predicted values of each two drugs in the model. The results
demonstrated that the three-class classification SVM
model could distinguish the patient’s tolerance to the three
drugs (all AUC � 1.000), indicating that the resistance genes
may be clinically useful (Figure 4B). We then compared the
clinical characteristics of the three subgroups, namely, CBZ
tolerance, PHT tolerance, and VPA tolerance. Subgroup
analysis of clinical characteristics showed that the
cryptogenic epilepsy type was characterized by significant
differences (Figures 4C,D). Other clinical characteristics like
gender, age, and idiopathic epilepsy type had no statistical
significance.

3.4 Correlation Analysis of Resistance
Genes
Pearson analysis was used to explore the correlation between 17
resistance genes. Studies have shown that all resistance genes have
a strong positive correlation; as shown in Figure 5A, SKAP1 has
the highest correlation with SBK1 and NCALD (r � 0.88). The
relationship between some other resistance genes does not seem
to be as close. For example, the correlation between LOC645157
and PRR5/S1PR5 (r � 0.13 and r � 0.18, respectively) and the
correlation between GPR56 and LOC441154 were not
considerable (r � 0.18).

Next, we used the STRING online tool to construct a PPI
network for 72 modular genes. This was to show the maximum
possible additional modular genes that interacted with the 17
resistance genes. We set the confidence level to 0.15. After
removing discrete proteins, we obtained a PPI network with 23
proteins. The PPI network is illustrated in Figure 5B. The
results showed that 6 of the 17 resistance genes were at the
center of the network, indicating that they were associated with
a higher number of genes. Therefore, we speculated that these
genes played a major role in the corresponding drug-tolerance
modules. Judging from the analysis of the degree of binding
(combined score), we found that CD247-IL3RB-PRF1-NKG7/
KLRD1/CD274 may form a complete closed loop of tolerance
and promote the patient’s body to develop resistance. Also,
although RPL14, RPS28, and FBL were out of the core of the
PPI, these three resistance genes could form a complete closed
chain of action and exert a powerful resistance effect
(Supplementary Table S6). Regardless of the fact that only
10 resistance genes were displayed in the network, the
remaining 7 resistance genes seem to have a unique
relationship network that was not yet known to play their
corresponding roles.

3.5 IPA of the Hub Resistance Genes
The complete list of enriched disease and function pathway
analysis is included in Supplementary Table S7. A total of 27
enriched disease and function pathways were identified by
applying the −log (p-value) > 1.3 threshold. All the 27
representative pathways that were found to associate tightly
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with the tolerance module genes and resistance genes are shown
in Figure 6A, ranked according to their −log (p-value). The “Th1
and Th2 activation pathway” was the highest-ranking signaling
pathway with a −log (p-value) of 5.71. Although none of the
detected signaling pathways had a Z-score > 2 (significant
activation), one of the enriched signaling pathways, “CREB
signaling in neurons,” had a Z-score � −2. Of note, the
involvement of CREB in the occurrence and development of
epilepsy is well recognized (Sharma et al., 2019). These results
suggest that these resistance genes (PRKCH and S1PR5) may
induce resistance in patients with drug-treated epilepsy by
regulation of the CREB pathway. Moreover, Figure 6B shows
the interaction network between 72modular genes. Among them,
we found that RUNX3 could directly interact with S1PR5 and
PPR5 by acting on Akt. However, CCD102A, FGFBP2, NCALD,
PRSS23, and SRSS23 were intertwined into an intricate network
through their direct or indirect interaction with beta-estradiol.

4 DISCUSSION

Epilepsy is one of the most common chronic diseases of the
nervous system and extensively affects people of all ages, genders,
and races worldwide (Fiest et al., 2017; Devinsky et al., 2018).
Pharmacological treatment is widely recognized as the mainstay
of the therapy approach for people with epilepsy. However,
previous studies have indicated that more than one-third of
the patients are likely to develop refractory epilepsy in the
process of AED treatment (Kwan and Brodie, 2000; Löscher
et al., 2020). The complex resistance mechanisms of AEDs are still
not entirely clear. Recent studies have demonstrated that the
application of bioinformatic analysis could provide a chance to

explore the underlying mechanisms of drug resistance (Zhang
et al., 2019; Zhu et al., 2019). Therefore, we utilized bioinformatic
analysis techniques to construct a three-class SVM model to
precisely predict the drug resistance of patients with epilepsy and
explored the potential mechanisms of drug-resistant epilepsy.

In this study, we included 50 healthy patients, 34 patients with
epilepsy untreated by medication, and 57 patients with epilepsy
with three different AED treatments (CBZ, PHT, or VPA) from
the GEO database (GSE143272 dataset). Then, 72 candidate
resistance genes were identified by WGCNA. IPA revealed a
total of 27 disease and functional associations of candidate
resistance genes. The highest-ranked signaling pathway was
the Th1 and Th2 activation pathway, indicating that candidate
resistance genes were potentially involved in the regulation of
immune response in patients. Subsequently, by employing the
LASSO + SVM-RFE algorithm, we constructed a three-class
classification SVM model based on 17 hub resistance genes
(CCDC102A, CLDND2, FGFBP2, GPR56, KLRD1, NCALD,
PRKCH, PRR5, PRSS23, RUNX3, S1PR5, SBK1, SKAP1,
LOC388621, LOC441154, LOC645157, and LOC649548) from
CBZ-resistant, PHT-resistant, and VPA-resistant gene sets.
The model possessed a strong ability to predict drug tolerance
in patients (AUC � 1.000). Furthermore, these genes displayed a
significant Pearson correlation with each other. The PPI network
analysis revealed that CD247, CTSW, IL2RB, MATK, NKG7, and
PRF1 were at the center of the network and may play essential
roles in the development of drug resistance.

Our study screened 17 novel resistance genes and built a highly
effective model to accurately predict the drug resistance of
patients with epilepsy. Among the 17 hub resistance genes, we
found that NCALD and GPR56 were verified to be directly
relevant to epilepsy in previous studies. Recent studies have

FIGURE 5 |Correlation analysis of resistance genes and the PPI network. (A)Correlation matrix of 17 resistance genes. The upper right half is the correlation score,
where red represents positive correlation and purple indicates negative correlation. The lower left section shows scattered plots of correlations between each of the two
genes. (B) PPI network. The red proteins are resistance genes, while the blue proteins are the remaining module genes. Based on the combined score, the lines
represented the interaction between them, and the degree of thickness represented the degree of their combination.
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reported that intellectual disability and epilepsy were detected in
patients withNCALD deletion, indicating thatNCALD could be a
crucial gene in epilepsy (Kuechler et al., 2011; Kuroda et al., 2014).
Additionally, studies have demonstrated that GPR56 mutations
may cause malformations of cortical development, which could
further result in epileptogenesis (Guerrini and Dobyns, 2014;
Kuzniecky, 2015). However, the underlying mechanisms of
NCALD and GPR56 in AED resistance have not yet been
reported and left a wide scope for further research.

Considering the above result of the IPA, we found that the
CREB signaling pathway in neurons appeared to be closely
associated with the tolerance module and resistance genes.
Recent research has demonstrated that the CREB signaling
pathway plays an essential role in mossy fiber sprouting, which
is generally known to be a pathological result of recurrent epilepsy.
CREB upregulation boosts the transcription of its target genes,

which results in the enhancement of mossy fiber sprouting and an
increase in the number of dysfunctional synapses in neural circuits,
resulting in poor AED treatment outcomes for patients with
epilepsy and ultimately developing into refractory epilepsy
(Redmond et al., 2002; Finsterwald et al., 2010). Additionally,
according to our results, two hub resistance genes (PRKCH and
S1PR5) were closely involved in the CREB pathway, which is
consistent with previous research. PRKCH encodes a protein
kinase subtype, which is widely involved in brain functions
(Boehm et al., 2006; Schwenk et al., 2013). Through pathway
analysis on the identified single-nucleotide polymorphism
component, researchers have found that PRKCH is strongly
associated with the CREB signaling pathway (Chen et al., 2015).
S1PR5 encodes a G-protein-coupled receptor which is reported to
be highly relevant to CREB activation (Rivera et al., 2008; Wang
et al., 2020). Moreover, PRKCH was proved to be the joint gene

FIGURE 6 | IPA of module genes. (A) Diseases and functional pathway analysis of module genes. While the Y-axis is the pathway terms, the X-axis is the log
(p-value). (B) Interaction network was constructed between modules of genes and the chemical/drug and other substances by using IPA. Green represents resistance
genes, including KLRD1, PRR5, RUNX3, S1PR5, SKAP1, CCDC102A, FGFBP2, NCALD, PRSS23, and SBK1. Solid lines of the arrows indicate direct interactions
between genes, while dotted lines indicate indirect interactions.
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among CBZ-resistant and VPA-resistant gene sets in our findings.
Integrating this evidence, we speculate that PRKCH and S1PR5
may induce resistance in patients with drug-treated epilepsy
through the CREB pathway.

Intriguingly, emerging evidence has demonstrated that PRKCH
and PPR5 are associated with the mTOR signaling pathway. The
mTOR pathway regulates a variety of neuronal functions, including
cell proliferation, survival, growth, metabolism, and plasticity.
Compelling evidence has indicated that abnormal activity of the
mTOR pathway plays an irreplaceable role in epileptogenesis (Lim
et al., 2015; Curatolo et al., 2018). Moreover, recent studies have
further confirmed the substantial therapeutic potential of targeting
themTOR signaling pathway in drug-resistant epilepsy (Hodges and
Lugo, 2020). This implies that PRKCH and PPR5 could be potential
targets for the treatment of refractory epilepsy.

Additionally, other than the 5 hub genes mentioned above, we
also identified 12 novel drug resistance genes, herein first reported
to be related to refractory epilepsy. According to the correlation
analysis, all 17 resistance genes have a strong positive relation, and
SKAP1 has the highest correlation, with SBK1 and NCALD.
Moreover, among the 12 novel resistance genes, CCDC102A,
FGFBP2, RUNX3, SKAP1, KLRD1, and PRSS23 were intertwined
into a complex PPI network. LOC388621, LOC441154, LOC645157,
and LOC649548 were first screened out to be PHT-resistant genes,
and their structure and function deserve to be further studied.
Integrating the results above, we inferred that the 17 hub genes have
intricate direct or indirect interactions in drug-resistant epilepsy.

Nevertheless, there were several limitations in this study. First,
our research is based on a publicly available dataset. Prospective
real-world data should be incorporated to validate the clinical
utility of our model. Subsequently, further in vitro and in vivo
experiments should be performed to confirm the mechanisms of
the 17 hub genes in drug-resistant epilepsy.

5 CONCLUSION

Through this study, we have offered novel insights into the
research and treatment of drug-resistant epilepsy and created a
novel three-class SVM model with high prediction values. This is
also the first study that has elucidated that the resistance genes
PRKCH and S1PR5 may work in coordination with other
resistance genes to exhibit their resistance effects through
regulation of the CREB signaling pathway.
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