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Molecular chaperones are the key instruments of bacterial protein homeostasis.
Chaperones not only facilitate folding of client proteins, but also transport them,
prevent their aggregation, dissolve aggregates and resolve misfolded states. Despite
this seemingly large variety, single chaperones can perform several of these functions even
on multiple different clients, thus suggesting a single biophysical mechanism underlying.
Numerous recently elucidated structures of bacterial chaperone–client complexes show
that dynamic interactions between chaperones and their client proteins stabilize
conformationally flexible non-native client states, which results in client protein
denaturation. Based on these findings, we propose chaotropicity as a suitable
biophysical concept to rationalize the generic activity of chaperones. We discuss the
consequences of applying this concept in the context of ATP-dependent and
-independent chaperones and their functional regulation.
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INTRODUCTION

Most proteins need to fold into a three-dimensional structure to perform their function, as encoded
in their amino acid sequence (Anfinsen et al., 1961; Haber and Anfinsen, 1962; Anfinsen, 1973).
While small proteins can fold efficiently, the vast majority of nascent protein chains needs to navigate
a rugged potential energy surface, driven by the hydrophobic collapse and constrained by the
crowded environment of the cell (Levinthal, 1968; Bryngelson and Wolynes, 1987; Wolynes et al.,
1995; Onuchic and Wolynes, 2004; Bartlett and Radford, 2009). Thus, proteins can easily become
trapped in local folding minima, from where they need to overcome free energy barriers to reach the
correct native conformation. Folding via such intermediate states is considered to be the rule for
proteins larger than 100 amino acids (Brockwell and Radford, 2007). In addition, even proteins that
are capable of spontaneously reaching their native conformation may unfold under stress conditions.
Folding intermediates or unfolded proteins are dysfunctional, prone to aggregation and may lead to
fatal conditions that are a threat to the health of the cell (Knowles et al., 2014; Tittelmeier et al., 2020).

To tackle this challenge, protein homeostasis networks have evolved in all kingdoms of life (Hipp
et al., 2019). They comprise of different molecular chaperones, as well as the ubiquitin-proteasome
system (UPS) and the autophagy system. While UPS and the autophagy system play their functional
role in degradation of expired proteins, chaperones are the key instrument of protein homeostasis.
Chaperones not only facilitate folding of proteins, but also transport them, prevent their aggregation,
dissolve aggregates or unfold misfolded proteins (Pelham, 1986; Ellis, 1987; Hemmingsen et al., 1988;
Goloubinoff et al., 1989;Walter and Buchner, 2002; Hartl and Hayer-Hartl, 2009; Balchin et al., 2016;
Goloubinoff, 2016; Wentink et al., 2019; Balchin et al., 2020; Burmann et al., 2020). Interestingly, a
single chaperone can often perform several of these functions. For example, heat shock protein 70
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(Hsp70, or DnaK in bacteria) participates in de novo protein
folding, assembly of protein complexes and translocation across
membranes to protein refolding, disaggregation, and degradation
(Mayer and Gierasch, 2019). The underlyingmechanism allowing
a single chaperone to perform functions with such drastically
different outcomes remains unclear.

Here, we develop a hypothesis addressing this question. We
start out by summarizing the main cellular functions of
chaperones and connecting them to protein folding theory.
Then, we recapitulate recent structures of chaperone–client
complexes, with a focus on bacterial systems. These connect
the functional understanding of chaperone activity with
structural insights and identify common patterns in the client
dynamics. Finally, we extrapolate from these patterns to propose
chaotropicity as a concept to describe the single biophysical
activity underlying the diverse cellular functions of chaperones
common to many or all chaperones.

CELLULAR FUNCTIONS OF CHAPERONES
AND THEIR CONNECTION TO PROTEIN
FOLDING THEORY
The traditional nomenclature to describe chaperone functions is
based on their effective functionality in the cellular context.
Depending on this context, a chaperone thus can act as a
holdase, foldase, translocase, disaggregase, or unfoldase.

Holdase chaperones are typically ATP-independent
chaperones, that merely associate with non-native client
proteins for extended time periods to stabilize them and
prevent their aggregation (Hall, 2020). Despite the fact that
holdases do not directly fold proteins, their activity is
indispensable as they protect vulnerable non-native states from
aggregation. Studies revealing a broad clientome of holdases have
illustrated their importance in protein folding (Haslbeck et al.,
2004; Jarchow et al., 2008). Traditional representatives are the
small heat shock protein (sHsp) family (Haslbeck et al., 2019), as
well as a number of bacterial chaperones including cytosolic
trigger factor (TF) and SecB, as well as periplasmatic Spy, Skp,
and SurA (Bechtluft et al., 2010; Hoffmann et al., 2010; Goemans
et al., 2014; Mas et al., 2019). Some holdases, such as TF, associate
with ribosomes, thus comprising the first of the two chaperone
layers participating in de novo protein folding (Frydman, 2001;
Deuerling and Bukau, 2004; Kramer et al., 2004b; Kaiser et al.,
2006; Merz et al., 2008). Holdases then transfer the nascent
protein for active folding to the second layer of chaperones.

Active structural remodeling during de novo protein folding is
the domain of ATP-dependent foldases. In bacteria, these are
mainly the DnaK system and the GroEL/ES system (Hayer-Hartl
et al., 2016; Rosenzweig et al., 2019). Both systems function
similarly by cycling between ADP-bound and ATP-bound
states that differ in affinity for non-native proteins. If the
association rate of the binding to chaperone is greater than the
aggregation rate and lower than the folding rate, the chaperones
facilitate folding by kinetic partitioning (Diamond and Randall,
1997; Fedorov and Baldwin, 1997; De Los Rios and Barducci,
2014). Notably, DnaK and GroEL/ES systems differ in how they

function mechanistically. While in the case of DnaK the folding
occurs upon release, the group I chaperonin system GroEL/ES
unfolds the client protein by expansion and then traps it in a cage,
where the client protein collapses to fold (Hemmingsen et al.,
1988; Lin and Rye, 2004; Lin et al., 2008; Sharma et al., 2008).

The third group of chaperones are translocases, which shuttle
nascent proteins across membranes. Translocases are especially
important in bacteria, where about a third of all proteins is
exported from the cytoplasm and therefore needs to be
translocated across the inner membrane. The main transport
route for these proteins is the SEC pathway, using the key motor-
protein SecA (Vrontou and Economou, 2004; Tsirigotaki et al.,
2017). The molecular machine SecA converts chemical energy
into mechanical force to translocate the unfolded nascent protein
through the SecYEG membrane channel while maintaining the
proteins unfolded. Nascent proteins may find SecA
independently or be targeted to it by SecB and TF, but SecA
associates with ribosome and interacts with nascent proteins
directly as well (Huber et al., 2011; Wang et al., 2017).

The unfoldase function of chaperones is necessary to
overcome free energy barriers in the case of nascent proteins
trapped in local minima of their folding landscape or for the
turnover of irreversibly misfolded proteins. Indeed, GroEL/ES
was shown to begin its functional cycle with unfolding the client
protein by expansion (Lin and Rye, 2004; Priya et al., 2013b;
Mattoo and Goloubinoff, 2014), and similar unfolding by
expansion was also described for DnaK (Sharma et al., 2010;
Imamoglu et al., 2020). Moreover, a recent study of DnaK-
assisted refolding of firefly luciferase suggests that initial
unfolding is critical even for efficient folding of multi-domain
proteins (Imamoglu et al., 2020). Overall, most chaperones have
the capacity to destabilize protein structure (Sharma et al., 2009;
Finka et al., 2016; Hiller, 2020).

If all the aforementioned activities of chaperones fall short to
prevent proteins from aggregation, some chaperones still exhibit
disaggregase activity, which allows them to untangle aggregates
and refold the protein or target it for degradation (Sousa, 2014).
Two major bacterial chaperone systems, Clp and DnaK, are
capable of actively unraveling protein aggregates that would
otherwise be aggregated irreversibly, and refold the proteins
into their native conformation (Glover and Lindquist, 1998;
Goloubinoff et al., 1999).

Two important observations support the notion that a single
activity might underlie this large variety of chaperone functions in
the cellular context. Firstly, for many chaperones with little client
specificity – so-called general chaperones (Bose and Chakrabarti,
2017) - the major variable changing between particular cellular
functions is modulation of client specificity by a co-chaperone or
by subcellular localization. This implies that these general
chaperones may use a single activity to perform their different
cellular functions.

Secondly, functional studies indicate that different chaperones
including DnaK, GroEL/ES, and Hsp90, unfold their client by
expanding prior to facilitating their folding (Shtilerman et al.,
1999; Ben-Zvi et al., 2004; Lin et al., 2008; Sharma et al., 2010;
Walerych et al., 2010; Priya et al., 2013b; Mas et al., 2018), and
some degree of unfolding is now emerging as the core aspect of
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the activity of many chaperones (Priya et al., 2013a; Finka et al.,
2016; Jo et al., 2019). Such a chaperone activity is applicable to
any of the cellular functions as unfolding the client gives it a
chance to undergo renewed hydrophobic collapse.

The cellular functions of chaperones can thus be recast
from the perspective of protein folding theory. Protein
folding has been formulated as the problem of a nascent
protein chain navigating in its conformational space on a
funnel-shaped, rugged potential energy surface, with the
eventual goal to attain its native conformation, a local
minimum (Dill and MacCallum, 2012). Thereby, the
ruggedness offers several local minima, which correspond
to alternative structural states (Figure 1). From the
perspective of protein folding, chaperones function in
cellular folding processes by regulating transitions of the
client protein between structural states on the potential
energy surface. Since all cellular chaperone activities can
be connected on a single folding landscape, chaperones in
principle only need a single generic activity, that increases the
free energy of the client. Each cellular chaperone function can

then be viewed as the generic chaperone activity acting at
specific positions of the potential energy surface to achieve
the observed outcome.

LESSONS LEARNT FROM STRUCTURES
OF BACTERIAL CHAPERONE-CLIENT
COMPLEXES
In order to understand the cellular functions of chaperones
mechanistically, it is crucial to employ biophysical descriptions
of chaperone activity that regulate the transitions of proteins
along the potential energy surface. The ideal starting point of
such investigations are detailed structural descriptions of
chaperone-client complexes as they provide direct snapshots
of chaperones in action. Recent technological advances,
particularly in solution NMR spectroscopy, have provided
atomic resolution insights such complexes. In the following,
we summarize such structural descriptions, including ATP-
independent and ATP-dependent chaperones in order to

FIGURE 1 | Cellular functions of chaperones in the context of a protein folding landscape. The protein polypeptide chain is shown yellow, with different secondary
structure elements highlighted in purple and blue. The protein navigates a rugged free energy surface. The native conformation is one out of several local minima,
representing different conformational states that are shown below the surface. Chaperones participate in a broad range of cellular processes which define a range of
functions listed in italics. These navigate the protein along the energy landscape. Blue arrows indicate transitions that chaperones facilitate, whereas black arrows
with red inversed T indicate transitions chaperones prevent. Figure modified from Jahn and Radford (2005).
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reveal common features (Figure 2). We thereby focus on
bacterial systems, because the most detailed descriptions are
available for these, and because it can be assumed that the
resulting conclusion can be generalized.

The earliest atomic-resolution characterization of a bacterial
chaperone in complex with a full-length client protein was the
study of bacterial chaperone Skp and the outer membrane
proteins (OMPs) tOmpA and OmpX (Burmann et al., 2013).
Skp is a holdase chaperone in one of two alternative pathways to
transport OMPs in the periplasm to the outer membrane (Sklar
et al., 2007). It is a 3 × 17 kDa trimer, that resembles a jellyfish
(Kramer et al., 2004a; Walton and Sousa, 2004). Each monomer
consists of a β-strand domain, which forms the body, and an
extended coiled-coil domain, which forms the tentacles. The
trimerization interface is located in the body of the trimer,
whereas the α-helical tentacles define a central cavity that
creates a protective environment for the client proteins
(Burmann et al., 2013; Callon et al., 2014). The structural
characterization of the Skp-OMP complexes revealed that the
client binds as compact, but structurally disordered and highly
conformationally flexible ensemble, in which the individual
conformations interconvert within 1 ms (Figure 2A).
Individual contacts between the client and the chaperone are
weak and unspecific, but their avidity results in a high-affinity
complex with a lifetime of more than 2 h. Upon binding to Skp,
the clients remain in a highly conformationally flexible state,
which allows them to sample more than 107 conformations before
their release from the chaperone (Burmann et al., 2013).

SurA is the principal chaperone in the second of the pathways
to transport OMPs in the periplasm and its complexes with
various OMPs have been recently structurally characterized
(Marx et al., 2020). SurA is a ∼47 kDa chaperone consisting of
three domains: the N and C-termini of the protein make up the
core domain, while two peptidyl-prolyl isomerase domains (P1
and P2) comprise of the middle of segment of the protein chain
(Bitto and McKay, 2002). The core domain and P1 form a
platform connected to P2 by two flexible linkers, which allow
the protein to alternate between multiple conformations
(Calabrese et al., 2020). Characterization of the bound client-
proteins revealed that similarly to Skp, SurA binds to the OMP in
a disordered state (Calabrese et al., 2020; Marx et al., 2020).

The complex of TF and alkaline phosphatase (PhoA) is
another complex that has been characterized at atomic
resolution (Saio et al., 2014). PhoA is a ∼50 kDa periplasmatic
enzyme, which can be unfolded and aggregation-prone in the
cytosol (Valent et al., 1995). TF is a bacterial ribosome-associated
holdase chaperone, that has a general function of protecting
unfolded nascent proteins against aggregation (Hoffmann
et al., 2010). It is a 48 kDa protein consisting of three domains
adopting a dragon-like shape (Ferbitz et al., 2004). The
N-terminal ribosome-binding domain (RBD) mediates
ribosome interaction (Hesterkamp et al., 1997), the middle
domain (PPD) has a peptidyl–prolyl isomerase activity
(Hesterkamp and Bukau, 1996) and the C-terminal substrate-
binding domain (SBD) carries the chaperone activity (Merz et al.,
2006). TF exists in a fast monomer-dimer equilibrium, where the
monomeric form is the active chaperone and the dynamic dimer

is the storage form (Patzelt et al., 2002; Morgado et al., 2017). The
interaction with the client PhoA causes a dissociation of the
dimer, but full-length PhoA is too large for a single molecule of
TF (Saio et al., 2014). On this basis, the structure of the TF–PhoA
complex was determined as three individual TF bound to three
fragments of PhoA (Saio et al., 2014). In the complexes, PhoA
interacts predominantly with the SBD and to a lesser extent with
the PPD. Each complex structure shows that a particular PhoA
fragment binds in a unique conformation (Figure 2B). However,
the same site of TF binds each of the PhoA fragments and NMR
relaxation dispersion measurements show that the lifetime of a
complex of TF and a single PhoA fragment is only ∼20 ms (Saio
et al., 2014). Therefore, the TF-PhoA interaction is highly
dynamic with the fragment of PhoA bound to a given
molecule of TF constantly alternating.

A further milestone in our understanding of chaperone-client
interactions came from the characterization of the complex of
chaperone Spy and client protein colicin immunity protein 7
(Im7). Im7 is a bacterial immunity protein, which binds colicin
E7 to inhibit its toxicity (James et al., 1996). Spy is a bacterial
periplasmatic ATP-independent chaperone, which was identified
in a screen for proteins that stabilize a mutant of Im7 (Quan et al.,
2011). It is a ∼16 kDa protein that forms a cradle-shaped dimer
(Kwon et al., 2010; Quan et al., 2011). Im7 binds the concave
surface of Spy dimer, but determining a crystal structure of the
complex did not reveal the structure of chaperone-bound Im7,
because the electron density of Im7 was of insufficient quality
(Horowitz et al., 2016). Subsequently, NMR spectroscopy
confirmed the conformational flexibility of bound Im7 and
revealed its interaction site on the concave surface of Spy (He
et al., 2016). Additionally, the same binding mode was observed
in the complex of Spy with the Fyn SH3 domain (He and Hiller,
2018). Spy supports the conformational flexibility of the bound
client to such an extent that folding of Im7 while bound to Spy
was reported (Stull et al., 2016), despite the fact that Spy is an
ATP-independent chaperone that does not undergo any large
conformational changes. The key aspect of Spy facilitated folding
of Im7 is that the folding rate is significantly decelerated
compared to the folding of free Im7 (Figure 2C).

The largest structurally well-characterized chaperone–client
complex is the complex of the chaperone SecB with PhoA. SecB is
a bacterial cytosolic ATP-independent holdase chaperone
responsible for maintaining bacterial secretory proteins in
unfolded state and delivering them to SecA in the SEC
translocation pathway (Hartl et al., 1990). Additionally, SecB is
also a general holdase chaperone like TF (Ullers et al., 2004). SecB
exists as dimer of a dimers, where each monomer is a single-
domain α/β fold protein with a molecular weight of 17.5 kDa
(Hartl et al., 1990; Xu et al., 2000; Dekker et al., 2003). Dimer of
dimers means that in each dimer one monomer is always
equivalent to a monomer in the other dimer. In the NMR
spectra of SecB, this property results in doubling of the peaks
for each amino acid of the monomer (Huang et al., 2016). In
contrast to TF, client binding does not induce dissociation of the
SecB tetramer and so, a single molecule of PhoA binds one
tetramer of SecB. In the complex, PhoA wraps around the
SecB tetramer in an elongated conformation. Like in complex

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6831324
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FIGURE 2 | Structural models of bacterial chaperone-client complexes reveal dynamic interactions. (A) The Skp-OMP complex. The client binds as compact,
flexible ensemble, which interconverts between individual conformations within 1 ms (Burmann et al., 2013). (B) The trigger factor–PhoA complex. A single molecule of
PhoA interacts with three molecules of TF with short-lived interaction lifetimes of ∼1 ms (Saio et al., 2014). The kinetics reveal that the complex is also globally short-lived
with a dissociation rate of ∼50 s−1. (C) The Spy-Im7 complex. The chaperone Spy binds its client Im7 as a dynamic ensemble of diverse conformations (He et al.,
2016; Stull et al., 2016; Horowitz et al., 2018). The representative unfolded state (on the left), folding intermediate state (in the middle) and native state (on the right)
interconvert with ms rates. However, the rates are slower for Spy-bound Im7 than for free Im7. (D) The SecB-MBP complex. One molecule of the client binds one SecB
tetramer (Huang et al., 2016). No symmetry breaking of the SecB tetramer is observed upon binding of the full-length clients, which indicates that the resulting complex
must be dynamic with the client rearranging on SecB surface on a very fast timescale. (E) The DnaK–hTRF1 complex. DnaK binds the client in an ensemble of globally
unfolded conformations at various stoichiometric ratios (Lee et al., 2015; Sekhar et al., 2016; Rosenzweig et al., 2017).
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with TF, each PhoA binding site interacts with SecB in a unique
conformation. However, different fragments of PhoA may
interact with the same site of SecB and the authors do not
note any further symmetry breaking in the complex of SecB
with full length PhoA as well as they state that in the complex
each PhoA site can bind any SecB site (Huang et al., 2016). This
means that the SecB-PhoA interaction is highly dynamic with
individual PhoA sites constantly alternating between the same
binding sites on SecB, like PhoA sites between different molecules
of TF in the TF-PhoA complex. Besides the PhoA-SecB complex
the authors also characterized MBP-SecB complex, which
revealed the same binding mode (Figure 2D).

DnaK (Hsp70 in eukaryotes) is one of the key general foldase
chaperones in all kingdoms of life (Rosenzweig et al., 2019). To
function in a large variety of cellular processes, DnaK associates
with numerous nucleotide exchange factors (NEFs) and diverse
co-chaperones from the Hsp40 protein family known as J
domain proteins (JDPs). DnaK consists of two domains – the
nucleotide binding domain (NBD), which harbors its ATPase
activity (Flaherty et al., 1990), and the SBD, which consists of a
β-sheet sandwich (SBDβ) and an α-helical lid (SBDα) (Zhu et al.,
1996). Nucleotide binding controls the allosteric cycle of DnaK,
which alternates between an open and a closed conformation of
the SBD. In the ATP-bound state, SBDα is dissociated from
SBDβ and both are docked on the NBD, resulting in lower
affinity of SBD toward clients (Takeda and McKay, 1996; Swain
et al., 2007; Zhuravleva and Gierasch, 2011; Kityk et al., 2012; Qi
et al., 2013). Upon ATP hydrolysis, DnaK transitions to the
ADP-bound state in which SBDα encloses the client in the cleft
of SBDβ and has high affinity toward clients (McCarty et al.,
1995; Zhuravleva et al., 2012). In this state SBD and NBD do not
interact and tumble as independently as their connecting linker
allows (Bertelsen et al., 2009). The first chaperone-client
complex of DnaK, which was characterized structurally in
detail was the complex of DnaK with the SH3 domain of
drkN (Lee et al., 2015). Although the characterization did
not result in a structural model of the chaperone–client
complex, it provides the crucial observation that the SH3
domain interacts with DnaK in a dynamic ensemble of
multiple globally unfolded states (Figure 2E). The interaction
resembles the Skp-OMP complexes and Spy–Im7 complex, but
SH3 alternates between the individual conformations on a
timescale slower than for the Skp-OMP complexes
(>>20 ms). Subsequently, the characterization of DnaK in
complex with hTRF1 painted a similar picture (Sekhar et al.,
2015; Sekhar et al., 2016; Rosenzweig et al., 2017). hTRF1 also
binds DnaK in a dynamic ensemble of multiple globally
unfolded states, that exchange on a slower timescale
comparing to the Skp-OMP complexes. Additionally, the
characterization of the DnaK-hTRF1 complex provides three
more important insights. Firstly, hTRF1 binds DnaK as an
ensemble regardless of the nucleotide state of DnaK,
secondly, DnaK binds the client at 1:1, 1:2, and 1:3 client:
DnaK stoichiometric ratios and thirdly, the DnaK residues
involved in the interaction with hTRF1 are also
conformationally flexible (Sekhar et al., 2015; Sekhar et al.,
2016; Rosenzweig et al., 2017).

Taken together, these bacterial chaperone-client complexes
characterized at atomic resolution make up a comprehensive
dataset (Figure 2), which provides three key conclusions: (i)
chaperone-client interactions are generally highly dynamic, with
fast dissociation constants, both globally and locally, (ii)
chaperone-bound clients are conformationally highly dynamic
and populate interconverting conformational ensemble states on
the chaperone surface. (iii) although chaperone-client
interactions are widely believed to be mediated by
hydrophobic contacts, this cannot be generalized from the
complexes discussed above. While the complexes of SecB and
TF appear dominated by hydrophobic interactions, Spy–Im7 and
Skp–OMP feature both electrostatic contacts as well as
hydrophobic interactions (Qu et al., 2007; Saio et al., 2014;
Huang et al., 2016; Koldewey et al., 2016). The importance of
both hydrophobic and electrostatic interactions in
chaperone–client complexes has also been shown in a
eukaryotic chaperone (Sučec et al., 2020).

The chaperone-client complexes thus demonstrate how
chaperones destabilize the structure of clients by highly
dynamic interactions, in line with data from functional studies
(Finka et al., 2016). As seen on the examples of DnaK and Spy, the
interaction is often selective for unfolded and non-native client
states, which are thus stabilized relative to the native state.
Notably, the binding of a chaperone to a client leads to an
overall increase in stability for the resulting client – chaperone
complex relative to the client alone, but this does not
automatically indicate that the partially folded client is itself
stabilized. Therefore, experiments that probe the result
complexes tend to observe a stabilization (Mashaghi et al.,
2016), while in experiments that monitor the clients selectively
a destabilization is detected. In the case of Spy, which allows its
client Im7 to fold while chaperone-bound, the folding rates of
Im7 are significantly reduced as a result of the stabilization of the
non-native states (Stull et al., 2016). Collectively, these structural
and functional studies reveal as a putative general mechanism
that chaperones thermodynamically destabilize protein structure
by stabilizing non-native states.

TOWARD A UNIFYING BIOPHYSICAL
PRINCIPLE UNDERLYING CHAPERONE
FUNCTION
During the folding process, proteins need to sample
conformationally highly flexible states in order to reach a
distant minimum corresponding to the native conformation
on the potential energy surface. These folding transition states
are thermodynamically unfavorable, because they expose
hydrophobic residues to the solvent which requires ordering of
the surrounding solvent molecules. Upon folding according to the
hydrophobic collapse model, hydrophobic residues gather in the
protein core and reduce their exposure to the solvent. The
entropy of the polypeptide chain decreases upon folding,
which limits its opportunity to explore its conformational
space, but the overall entropy of the system increases due to
the release of the solvent making hydrophobic collapse
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thermodynamically favorable. Chaperones provide interaction
surfaces that can thermodynamically stabilize proteins in
highly flexible transition states, thus delaying the hydrophobic
collapse and allowing the protein to explore its conformational
space better. In the characterized chaperone-client complexes
(Figure 2), the interaction with chaperones selectively stabilizes
conformationally flexible non-native states of the client-protein,
which in turn destabilizes the highly structured states, including
the native conformation or aggregated states.

Importantly, such an effect of chaperones bears a striking
resemblance to the well-characterized effect of chemical
chaotropes (Hiller, 2020). Urea and other small co-solutes
potently disrupt native structures of biomolecules (Hamaguchi
and Geiduschek, 1962). Chaotropes counteract the hydrophobic
collapse by directly or indirectly increasing the solubility of the
hydrophobic residues, thus destabilizing protein native structure
as well as protein aggregates. Proteins dissolved in chaotropes
display large conformational flexibility with high conformational
entropy (Ball and Hallsworth, 2015). This entropy increase
counteracts the entropy decrease from the ordering of the
solvent molecules caused by solvent exposure of the
hydrophobic residues. The exact mechanism of chaotropic
denaturation is likely a combination of direct interactions of
the chaotrope with the hydrophobic regions and tight
interactions of the chaotrope with water molecules in bulk
solvent, reducing the amount of available water molecules for
the solvation of the protein (Bennion and Daggett, 2003; Ball and
Hallsworth, 2015).

Several indications in the experimental data of chaperone-
client complexes suggest that chemical chaotropes and
chaperones could indeed share similar mechanisms of action.
Chaperones have been shown a source of entropy to their client
protein in the Im7-Spy and Skp-OMP complexes, where binding
of the client increased the client’s conformational flexibility
(Burmann et al., 2013; He et al., 2016). The chaperone Spy
supports the conformational flexibility of the bound client,
allowing it to explore the conformational space sufficiently
enough to fold while bound (Stull et al., 2016) and ITC
measurement of the Im7–Spy interaction clearly show that the
binding is driven by entropy increase (He et al., 2016).
Furthermore, the client binding site of DnaK is
conformationally flexible, suggesting that DnaK may also
increase conformational flexibility of the client upon binding
(Rosenzweig et al., 2017; Yang et al., 2017). The chaperones can
thus increase the entropy of the client, shifting the client’s
equilibrium away from the native state.

Besides these similarities, we also expect functional differences
between small molecule chaotropes and chaperones. Small
molecule chaotropes achieve chaotropicity by modulating the
entire volume of a bulk solution due to their high molar
concentrations. The same effect is inconceivable for
chaperones as they function at orders of magnitude lower
concentrations. Chaperones form pockets and grooves in
which the solution may have drastically altered
physicochemical properties in comparison to the bulk solution.
It is thus conceivable to imagine a pocket with chaotropic
properties. The formation of chaotropicity pockets at the

chaperone surface thus allows them to create highly
concentrated chaotropic environment even at stoichiometric
concentrations. The residues comprising the inner surface of
the pockets are pivotal to formation of chaotropic pockets and the
chaotropicity of these pockets could be modulated by
conformational changes. Mechanisms to regulate the activation
of chaperones pockets have been shown for ATP-independent
chaperones, such as regulation by different transition
mechanisms such as oligomer disassembly, order-to-disorder
transition or coupled folding/oligomerization (Reichmann
et al., 2012; Haslbeck and Vierling, 2015; Suss and Reichmann,
2015; Mas et al., 2020). Such transitions drastically modulate the
surface accessibility to the client proteins, providing a potential
mechanism for the regulation of chaotropicity in ATP-
independent chaperones.

From these considerations, a direct step leads to chaperones
that couple chaperone activity to ATP binding and hydrolysis.
There are several conceivable mechanisms in which ATP
hydrolysis could regulate chaotropicity of chaperones. Hsp90
is an ATP-dependent dimeric chaperone with a clamp-like
structure and may provide the first example. ATP triggers
large-scale conformational changes of Hsp90, which result in
closing of the clamp, but interestingly that does not encapsulate
the client protein, rather it creates a larger continuous bipartite
binding surface (Ali et al., 2006; Street et al., 2011). Similarly, in
GroEL ATP induces conformational changes that alter the client
interaction surface, although not by dividing it, rather by
changing the properties of the surface as a result of
exchanging the residues exposed on the inner surface of the
barrel due to the rotation of the chaperone monomers (Tang
et al., 2006; Horwich et al., 2007; Villebeck et al., 2007; Tang et al.,
2008; Horwich et al., 2009; Jewett and Shea, 2010). Thus, ATP-
induced conformational changes may offer a way to directly
regulate chaotropicity by perturbing the surface of the pocket
where the client docks. Additionally, modular assembly of the
pocket as outlined on the example of Hsp90 allows for residual
chaperone activity in absence of ATP as each module would
retain its chaotropicity (Figure 3). Such a residual activity in the
absence of ATP was observed for many ATP-dependent
chaperones (Wiech et al., 1992; Cho and Bae, 2007; Rao et al.,
2010; Priya et al., 2013c; Mas et al., 2018).

In the cases of Hsp70 and Hsp90, the ATP cycle is regulated by
numerous co-chaperones, which present a potential to further
regulate chaperone chaotropicity. Co-chaperones are the key
element in chaperone specificity (Bose and Chakrabarti, 2017),
thus providing a possibility for function-dependent regulation of
chaotropicity. Chaperones such as Hsp90 are commonly found in
multiple organelles as well, which may mean different
physicochemical properties of the surrounding solution that
would inherently alter the chaotropicity of the chaperone.
Indirect regulation of chaotropicity by co-chaperones could be
a potent way to regulate chaperone chaotropicity to achieve the
same effect in different environments.

In summary, chaperone chaotropicity provides a theoretical
framework to explain previous experimental data as well as a
thermodynamic description of generic chaperone activity for
ATP-dependent and -independent chaperones. In contrast to
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existing models explaining the mechanism of chaperone
functions, chaotropicity by default describes client proteins as
multistate ensembles, which reflects more accurately the dynamic
nature of chaperone–client complexes. The hypothesis presumes
a similarity in the molecular mechanism of chaotropicity between
small molecule chaotropes and chaperones and the extent of this
similarity needs to be tested experimentally. Nevertheless, due to
differences in complexity and effective range of concentration
between chemical chaotropes and chaperones, the chaperone
chaotropicity model also postulates that chaperones exert
chaotropicity in a unique form of chaotropic pockets that can
be tuned upon conformational change. Considering the crucial
roles of chaperones for the health of any organism, a full rationale
for their biophysical principles will advance our understanding of
homeostasis as well as open new avenues for translational
research.
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