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Background: Metaplastic or sarcomatoid carcinomas (MSCs) are rare epithelial
malignancies with heterologous histological differentiation that can occur in different
organs. The objective of the current study was to identify novel somatically mutated
genes in MSCs from different organs.

Methods: Whole-exome sequencing was performed in 16 paired MSCs originating from
the breast (n � 10), esophagus (n � 3), lung (n � 2), and kidney (n � 1). In addition, we
collected data on KMT2D mutations from eight independent cohorts (n � 195) diagnosed
with MSCs derived from the breast (n � 83), liver (n � 8), esophagus (n � 15), lung (n � 10),
and uterus or ovary (n � 79). The expression of KMT2D and its clinical significance were
evaluated in our cohort.

Results: The most frequently mutated genes were TP53 (13/16, 81%) and KMT2D (5/
16,31%). We identified seven somatic KMT2D mutations in the exploratory cohort (n � 16
tumors), including three nonsense mutations, two frameshift indels, one missense
mutation, and one splice site mutation. Interestingly, two patients showed double hits
on KMT2D with nonsense mutations and frameshift indels. In the eight validation cohorts
(n � 195), the average mutation rates for TP53 and KMT2D were 78% (152/195) and 13%
(25/195), respectively. Two or more hits on KMT2D were also present in three validation
cohorts. Furthermore, KMT2D mutations were associated with low expression of KMT2D,
large tumor size and unfavorable prognosis.

Conclusions: These findings provide clues for understanding the genetic basis of MSCs
originating from different organs and implicate KMT2D alteration as a frequent pathogenic
mutation, allowing provision of appropriate treatment for this rare malignant disease in the
future.
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INTRODUCTION

Metaplastic breast carcinoma is a rare type of breast cancer and is
characterized by the presence of malignant cells showing
squamous and/or mesenchymal differentiation (Weigelt et al.,
2014; Krings and Chen, 2018). While this disease occurs in the
lung (Liu et al., 2016), esophagus (Lu et al., 2018) and kidney
(Park et al., 2020), it is frequently designated sarcomatoid
carcinoma, which is typically defined by the presence of an
epithelial component and a sarcoma-like (mesenchymal)
component. For this tumor that occurs in the uterus or ovary,
it is called a malignant mixedMüllerian tumor or carcinosarcoma
(Jones et al., 2014; Cherniack et al., 2017). Currently, a unified
pathologic diagnosis for metaplastic or sarcomatoid carcinomas
(MSCs) from different organs is lacking, and the genetic
alterations underlying the tumorigenesis of MSCs in different
organs are still poorly understood. MSCs typically present at an
advanced stage with an aggressive and poorly differentiated
nature and do not respond well to chemotherapy or
radiotherapy. The overall prognosis is poor, and more effective
therapeutic options are needed to treat patients (McCart Reed
et al., 2019; Ersek et al., 2020).

Next-generation sequencing shows that TP53 is the most
recurrently mutated gene in MSCs (Armstrong et al., 2009;
Avigdor et al., 2017; Cherniack et al., 2017; Pécuchet et al.,
2017; Lu et al., 2018; Zhang et al., 2019), but TP53 mutations
are also frequently detected in other epithelial tumors. Molecular
studies on MSCs originating from the breast (Avigdor et al.,
2017), uterus or ovary (Gotoh et al., 2019), and liver (Zhang et al.,
2019) show that the carcinoma and sarcoma components of
MSCs are generally thought to be derived from a single-cell
clone, as they have similar genetic alterations. However, it is
unclear whether MSCs that exhibit heterologous histological
differentiation in different organs have common genetic features.

In this study, we performed whole-exome analyses of 16 cases
to determine the genomics of MSCs from different organs. In
addition to common mutations in TP53, we found a previously
unknown recurrently mutated gene, KMT2D (also known as
KMT2B, MLL2 and MLL4), which functions as a major enhancer
regulator in various biological processes, including in the
regulation of development, differentiation, metabolism, and
tumor suppression (Froimchuk et al., 2017). Due to the rarity
of these diseases, eight cohorts (n � 195) containing KMT2D
mutation information were analyzed. The expression of KMT2D
and its clinical significance were further evaluated in our cohort.
The findings contribute to our understanding of the basic
genomics of MSCs that originate from different sites and
highlight the histone methyltransferase KMT2D mutation in
rare aggressive tumors.

MATERIALS AND METHODS

Patients
Using a database of fresh tissues banked in a period spanning
from 2010 to 2018, 16 patient samples diagnosed withMSCs were
reviewed by two board-certified pathologists according to the

criteria that the neoplasms exhibit heterologous differentiation in
histology. Overall survival was defined as the time from surgery to
death (June 2020). Signed informed consent was obtained from
all patients, and the study was approved by the Clinical Research
Ethics Committee of Fudan University Shanghai Cancer Center
(Number: 050432-4-1805C).

Whole–Exome Sequencing
Genomic DNA of each tumor component and matched
adjacent normal tissue was extracted separately using a
QIAamp DNA Mini Kit (Qiagen) according to the
manufacturer’s protocols. DNA from the tumor and
matched tissue of the 16 cases was subjected to whole-
exome capture using the SureSelect Human All Exon v5
(Agilent) platform and to sequencing on a HiSeq 2000
Genome Analyzer (Illumina). Low-quality reads were
excluded by Trimmomatic, the high-quality reads were
mapped to the UCSC hg19 reference sequence with BWA
(version 0.7.9a). PCR duplicates were removed using Picard
(http://picard.sourceforge.net). Somatic variants were detected
by Mutect (version 2), and the resulting sequences were
analyzed for genomic alterations compared with normal
genomic DNA. Annotation of variants was performed using
Annovar (version 2017).

Sanger Sequencing
The primers used for PCR amplification are listed in
Supplementary Table 1. PCR amplification was performed
using PrimeSTAR Max DNA Polymerase (Takara). PCR
products were analyzed by Sanger sequencing. BLAST (http://
blast.ncbi.nlm.nih.gov/Blast.cgi) was used for the analysis of
sequence data.

Immunohistochemistry Analysis
Immunohistochemistry (IHC) was performed on 4 μm FFPE
tumor slides according to standard procedures. The slides
were deparaffinized in xylene and rehydrated. A heat-induced
antigen retrieval step was employed using citrate buffer at pH 6.0.
Endogenous peroxidase activity was blocked by hydrogen
peroxide treatment. Following incubation with protein
blocking solution, slides were incubated at 4°C overnight with
a KMT2D antibody (1:500, against the KMT2D C-terminus,
HPA035977; Sigma-Aldrich). Signal amplification was
performed using an IHC detection kit (KIT-5920; Fuzhou
Maixin Biotechnology, Fujian, China). Staining was scored for
intensity (no staining; weak staining; strong staining).

Statistical Analyses
Statistical tests were performed using GraphPad Prism 5
(Graphpad Software, La Jolla, CA, United States). Student’s
independent sample t-tests were used for comparisons between
groups. Fisher’s exact test was used to assess the relationship
between KMT2D mutation status and protein expression. The
Kaplan-Meier method was used to estimate overall survival
curves, and group differences were analyzed by the log-rank
test. p values were two-tailed, and p < 0.05 was considered
significant.
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RESULTS

Whole-Exome Sequencing Was Used to
Identify Novel Recurrent KMT2D Mutations
in MSCs Originating From Different Organs
MSCs constitute a rare tumor type that has been diagnosed in
various organs, including the uterus (Cherniack et al., 2017),
breast (Avigdor et al., 2017), lung (Liu et al., 2016), esophagus (Lu
et al., 2018), and liver (Zhang et al., 2019). Next-generation
sequencing from each study showed that TP53 is the most
recurrent mutation gene. Interestingly, MSCs from different
organs all exhibited heterologous histological differentiation;
therefore, we postulated that specific genetic features might
contribute to the tumorigenesis of MSCs. In this study, to
define the somatic genetic alterations in MSCs from different
sites, 16 paired tumor and matched normal samples (Table 1, 10
pairs from the breast, three pairs from the esophagus, two pairs
from the lung, and one pair from the kidney) were subjected to
whole-exome sequencing (WES). The mutated genes in 16 MSCs
were listed in Supplementary Table 2. Among the 16 tumors, the
most frequently mutated genes were TP53 (13/16), KMT2D (5/
16), MUC16 (4/16), and PIK3CA (4/16) (Supplementary
Figure 1). Consistent with the current studies (Avigdor et al.,
2017; Cherniack et al., 2017; Lu et al., 2018; Zhang et al., 2019) in
the genomics of MSCs, TP53 mutation was the most common
genetic alteration. In addition to TP53, other recurrently mutated
genes in breast MSCs were PIK3CA (4/10) and PTEN (2/10);
however, in other MSCs, we observed mutations in KMT2D (4/
6), MUC16 (3/6), BCLAF1 (2/6), BIRC6 (2/6), and CREBBP (2/
6). Additionally, we further searched for common mutations in
MSCS from different organs, which may be driver mutations in
the tumorigenesis of MSCs. As shown in Figure 1, gene
mutations occurring in at least two organs (breast, esophageal,
lung, and kidney) were found, and the results also showed that
TP53 and KMT2D were the most frequently mutated genes. For

KMT2D, which is rarely reported to be associated with MSCs, we
further confirmed that the KMT2D gene was specifically mutated
in tumors, not in paired normal tissues, by PCR and Sanger
sequencing (Supplementary Figure 2). We identified seven
somatic KMT2D mutations in the exploratory cohort (n � 16),
including three nonsense mutations, two frameshift indels, one
missense mutation, and one splice site mutation (Figure 2A,
Table 1).

KMT2D Mutations in the Eight Validation
Cohorts
MSCs exhibited frequent KMT2D mutations in the exploratory
cohort (n � 16 tumors). Due to the rarity of these diseases, we
sought to determine whether KMT2D mutations existed in
expanded cohorts. We searched the literature and cBioPortal
database with information on KMT2D mutation in MSCs from
different organs. As listed in Table 2, six studies and two uterine
carcinosarcoma datasets (http://cbioportal.org) containing
KMT2D mutation information were available for analysis. The
eight cohorts (n � 195) included three cohorts derived from the
breast (n � 35 (Ng et al., 2017), n � 28 [2], n � 20 (Ross et al.,
2015)), one cohort (Zhang et al., 2019) derived from the liver (n �
8), one cohort (Lu et al., 2018) derived from the esophagus (n �
15), one cohort (Liu et al., 2016) derived from the lung (n � 10),
and two cohorts derived from the uterus or ovary [n � 57
(Cherniack et al., 2017), n � 22 (Jones et al., 2014)].
Consistent with our studies, the eight validation cohorts
(Table 2) showed that MSCs harbored high TP53 mutations
(from 60 to 100%, average, 78%). For KMT2D (Table 2), the
mutation rate ranged from 6 to 30% (average, 13%), and the
mutation type contained truncation, frameshift, splice and
missense mutations. Interestingly, some patients
simultaneously showed two or more mutations in KMT2D. In
our study, two patients (ID8 and ID 16) showed two mutations in
KMT2D with nonsense mutations and frameshift indels

TABLE 1 | Characteristics of patients.

Case ID Gender Age Organ Differentiation Size KMT2D mutation

1 Female 46 Breast Spindle 3.5 No
2 Female 48 Breast Spindle 3.7 No
3 Female 46 Breast Spindle 3.5 No
4 Female 63 Breast Spindle 2.0 No
5 Female 67 Breast Spindle 2.0 No
6 Female 66 Breast Osseous 6.0 No
7 Female 64 Breast Spindle 2.2 No
8 Female 44 Breast Osseous 12.0 c.10229delC (f.d), c.G410A (stop-gain)
9 Female 42 Breast Spindle 3.3 No
10 Female 43 Breast Squamous 3.0 No
11 Male 66 Esophagus Spindle 7.0 No
12 Male 66 Esophagus Spindle 8.0 c.5533+1G>A (splicing)
13 Male 58 Esophagus Spindle 4.0 c.C11713T (stop-gain)
14 Male 49 Lung Spindle 6.0 c.G839T (nonsynonymous)
15 Male 71 Lung Spindle 6.0 No
16 Male 69 Kidney Spindle 13.0 c.G3259T (stop-gain), c.2803delC (f.d)

Size: tumor diameter (cm); f.d, frameshift deletion.
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(Figure 2A). Consistent with our study, two or more hits on
KMT2D were also present in the other three independent cohorts
(Figure 2B).

KMT2D Mutations Are Negatively
Associated With KMT2D Expression
To establish the relationship between KMT2D mutation status and
protein expression, we examined KMT2D expression in the
exploratory cohort (n � 16 tumors) by IHC. Interestingly,
KMT2D showed robust nuclear expression in patients with no
KMT2D mutation (n � 11) (Figures 3A,B), whereas a weak
KMT2D signal was detected in patients with a single mutation in
KMT2D (n� 3) (Figures 3C,D);moreover, the two cases with double
mutations in KMT2D exhibited loss of nuclear KMT2D expression

(Figures 3E,F). Our results showed that KMT2D mutations were
significantly associated with low expression of KMT2D (Figure 3G).

Association Between KMT2D Mutation and
Prognosis
The tumor mutation burden (TMB) was defined as the number of
nonsynonymous and indel mutations per megabase (Mb). The
patients with MSC showed high TMB, ranging from 19 to 257,
with a median of 80 (Figure 4A). Notably, there was a tendency
for patients with KMT2Dmutations to show high TMB, although
in this study the difference was not significant (Figure 4A). We
further analyzed the relationships between KMT2D and tumor
size and prognosis. The results showed that the tumor size in
MSC patients with KMT2D mutations was significantly higher

FIGURE 1 | Genomic alterations in MSC from different organs. The matrix represents individual mutations in 16 patient samples originating from four organs (the
breast, esophagus, lung and kidney), and the genes with mutations detected in at least two organs are displayed.
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FIGURE 2 | Assessment of the KMT2Dmutations. (A)Mutation positions in the amino acids of KMT2D. (B) The distribution of two or more mutations on KMT2D in
our cohort and three other independent cohorts.

TABLE 2 | The mutations of TP53 and KMT2D in the eight cohorts.

Organ Sequencing Total
cases

TP53
Cases

Mutations for KMT2D Literature

Cases Truncation
(No.)

Frame-shift
(No.)

Splice
(No.)

Missense
(No.)

Breast Whole-exome 35 24 (69%) 2 (6%) 1 1 0 0 Ng et al.
Breast panel 28 18 (64%) 3 (11%) 2 2 0 0 Krings et al.
Breast panel 20 15 (75%) 6 (30%) 6 0 0 0 Ross et al.
Liver panel 8 6 (75%) 1 (13%) 0 0 1 0 Zhang et al.
Esophagus panel 15 15 (100%) 2 (13%) 0 0 0 2 Lu et al.
Lung Whole-exome 10 6 (60%) 1 (10%) 0 0 0 1 Liu et al.
Uterus Whole-exome 57 52 (91%) 6 (11%) 0 2 0 6 Cherniack

et al.
Uterus and ovary Whole-exome 22 16 (73%) 4 (18%) 2 2 1 6 Jones et al.
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than that in patients without KMT2D mutations (p � 0.0035)
(Figure 4B). Furthermore, KMT2D mutations were associated
with shorter overall survival times (p � 0.0321) (Figure 4C).

DISCUSSION

MSCs are rare neoplasms with heterologous histological
differentiation that can occur in different organs (Weigelt
et al., 2014; Liu et al., 2016; Cherniack et al., 2017; Krings and
Chen, 2018; Lu et al., 2018; Park et al., 2020). To identify novel
somatically mutated genes in MSCs from different organs, we
performed WES on 16 primary MSCs and paired normal DNA.
The results showed that in addition to TP53 (13/16), KMT2D (5/
16) was a frequently mutated gene. Another eight cohorts (n �
195) diagnosed with MSCs originating from six organs also
showed high mutations in KMT2D (6–30%, with an average
of 13%). Our finding that KMT2D is somatically mutated in 31%
of MSCs and is partially displayed by frameshift, nonsense
mutations, and dual mutations strongly implicates KMT2D as
a novel pathogenic driver gene in MSCs.

Exome sequencing of 10 cases with breast MSCs confirmed
enrichment of TP53 (7/10) and PIK3CA (4/10) (Supplementary
Figure 1). Consistent with our results, breast MSCs harbored
high TP53 mutations in three independent cohorts (69, 64, and
75%; Table 2). Interestingly, TP53 was more frequently mutated
in breast MSCs than in breast cancers. Pereira et al. (Pereira et al.,
2016) sequenced 173 genes in 2,433 primary breast tumors, and
PIK3CA and TP53 dominated the mutation landscape (40.1 and
35.4%, respectively). Similar results were also described in
another cohort (n � 1918, http://cbioportal.org) (Razavi et al.,
2018). These results raise the possibility that the mutation of
TP53 may be strongly associated with the tumorigenesis of MSCs.
In addition to breast MSCs, we found that TP53 and KMT2D
were the most frequently mutated genes (6/6 and 4/6,
respectively) in MSCs originating from the other three organs
(esophagus, lung and kidney) (Figure 1); specifically, each tumor
(n � 6) exhibited a TP53 mutation. Moreover, we also found that
TP53 in the liver, esophageal, lung, uterine and ovarianMSCs was
prone to mutation, and the mutation rate ranged from 60 to 100%
(average 84.8%) (Table 2). The KMT2Dmutation, which is rarely
reported to be involved in MSCs, was frequently detected in our

FIGURE 3 | KMT2Dmutations are negatively associated with KMT2D expression. Strong staining of KMT2D in MSCs with no KMT2Dmutation originating from the
breast (A, Patient ID 2) and esophagus (B, Patient ID 11). Week staining of MSCs with a single mutation in KMT2D originating from the lung (C, Patient ID 14) and
esophagus (D, Patient ID 13). Loss of KMT2D expression in MSCs with double mutations in KMT2D originating from the breast (E, Patient ID 8) and kidney (F, Patient ID
16). (G) The relationship between KMT2D mutation status and protein expression.
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study (5/16) (Table 1). To our knowledge, our study is the first to
report that KMT2D is a recurrently mutated gene in MSCs from
different organs. Notably, small cell lung cancer exhibits high
mutation rates of TP53 and KMT2D. Ross et al. showed that the
genomic alteration rates in TP53 and KMT2D were 86 and 17%,
respectively, in 98 cases (Ross et al., 2014); in the Hu study, the
mutation frequencies for TP53 and KMT2Dwere 93.4 and 15.6%,
respectively, in 122 patients with small cell lung cancer (Hu et al.,
2019). TP53 mutants engage in direct cross talk with chromatin
regulatory genes (KMT2A, KMT2D and KAT6A), resulting in
genome-wide transcription programs (Zhu et al., 2015). Together
with our findings, these results indicate that both MSCs and small
cell lung cancer have similar mutation rates for TP53 and
KMT2D, and the mutation of KMT2D may cooperate with
TP53 mutation to drive tumorigenesis in MSCs and small cell
lung cancer.

Studies in mouse models highlight the importance of KMT2D
in regulating a wide range of biological processes, including
embryonic development, cell differentiation, metabolic
homeostasis, and cancer (Froimchuk et al., 2017). Pathogenic
variants in KMT2D cause autosomal dominant Kabuki
syndrome, a disorder characterized by distinctive facial
features, intellectual disability, and abnormalities affecting
other parts of the body (Cocciadiferro et al., 2018). KMT2D
mutations result in an abnormal and nonfunctional lysine-
specific methyltransferase 2D enzyme that disrupts its role in
histone methylation and impairs proper activation of certain

genes, resulting in abnormalities in many of the body’s organs
and tissues (Froimchuk et al., 2017). Mutations in the KMT2D
gene have been implicated in certain cancers, including
medulloblastomas (Dhar et al., 2018), lymphomas (Zhang
et al., 2015) and lung cancer (Alam et al., 2020). With this
study, we are the first to report that KMT2D is one of the
most recurrently mutated genes (5/16) in MSCs originating
from different organs (Figure 1). The KMT2D mutations were
represented by three nonsense mutations, two frameshift indels,
one missense mutation, and one splice site mutation in the
exploratory cohort (n � 16 tumors) (Table 1). Interestingly,
two patients (ID 8 and ID 16) each showed two mutations in
KMT2D, a nonsense mutation and frameshift indel (Figure 2A).
Consistent with our results, the eight validation cohorts showed
that MSCs harbored frequent KMT2D mutations ranging from 6
to 30% (average of 13%) (Table 2). Two or more mutations of
KMT2D in one patient were simultaneously detected in three
independent cohorts (Figure 2B). Moreover, we found that
KMT2D mutations were negatively associated with KMT2D
expression (Figure 3). Frequent KMT2D mutations in MSCs
point to their loss of function in pathogenesis and suggest their
roles as tumor suppressors. KMT2D loss led to increased DNA
damage and mutation burden, chromatin remodeling, intron
retention, activation of transposable elements and overall
instability at the chromosomal level (Kantidakis et al., 2016).
This type of stress can have catastrophic consequences and lead to
the formation of cancerous tumors. Consistent with these

FIGURE 4 | KMT2D mutations are associated with large tumor size and unfavorable prognosis. (A) Comparison of TMB (mutations/MB) between the KMT2D
wild-type group and mutant-type group. (B) Comparison of tumor diameter between the KMT2D wild-type group and mutant-type group. (C) Survival analysis for
patients between the KMT2D wild-type group and mutant-type group.
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outcomes, lung-specific loss of KMT2D promotes lung
tumorigenesis in mice and upregulates the glycolysis program
(Alam et al., 2020). Interestingly, KMT2D-mutant tumors exhibit
enhanced immune infiltration in the tumor microenvironment,
and KMT2D deficiency sensitizes multiple cancer types to anti-
PD1 therapy by augmenting tumor immunogenicity (Wang et al.,
2020). In summary, KMT2D is frequently mutated in MSCs from
different organs, and KMT2D alteration may act as a driver
mutation and provide a basis for anti-PD1 therapy in this rare
malignant disease.

To our knowledge, this is the first study to specifically
investigate genomic alterations in MSCs derived from different
organs. We found that TP53 and KMT2D were the most
recurrently mutated genes. In addition, KMT2D alterations
presented with nonsense mutations, frameshift indels, missense
mutations, and splice site mutations, and some patients harbored
double hits on KMT2D. Similar results were also seen in eight
validation cohort studies. Furthermore, KMT2D mutations were
associated with low expression of KMT2D, large tumor size and
unfavorable prognosis. Collectively, these findings lead us to
identify KMT2D as a pathogenic driver gene in MSCs derived
from different organs, which may lead to appropriate treatments
for this rare malignant disease in the future.
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