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Type 1 diabetes is a chronic disease of the pancreas characterized by the loss of insulin-
producing beta cells. Access to human pancreas samples for research purposes has been
historically limited, restricting pathological analyses to animal models. However, intrinsic
differences between animals and humans have made clinical translation very challenging.
Recently, human pancreas samples have become available through several biobanks
worldwide, and this has opened numerous opportunities for scientific discovery. In
addition, the use of new imaging technologies has unraveled many mysteries of the
human pancreas not merely in the presence of disease, but also in physiological
conditions. Nowadays, multiplex immunofluorescence protocols as well as
sophisticated image analysis tools can be employed. Here, we described the use of
QuPath—an open-source platform for image analysis—for the investigation of human
pancreas samples. We demonstrate that QuPath can be adequately used to analyze
whole-slide images with the aim of identifying the islets of Langerhans and define their
cellular composition as well as other basic morphological characteristics. In addition, we
show that QuPath can identify immune cell populations in the exocrine tissue and islets of
Langerhans, accurately localizing and quantifying immune infiltrates in the pancreas.
Therefore, we present a tool and analysis pipeline that allows for the accurate
characterization of the human pancreas, enabling the study of the anatomical and
physiological changes underlying pancreatic diseases such as type 1 diabetes. The
standardization and implementation of these analysis tools is of critical importance to
understand disease pathogenesis, and may be informative for the design of new therapies
aimed at preserving beta cell function and halting the inflammation caused by the immune
attack.
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INTRODUCTION

The pancreas is mainly divided into exocrine and endocrine
tissue. The islets of Langerhans, which account for 1–4% of
the total pancreatic volume, form the endocrine portion and
contain several cell populations (secreting distinct proteins):
alpha cells (glucagon), beta cells (insulin), delta cells
(somatostatin), epsilon cells (ghrelin), and pancreatic
polypeptide cells (PP) (Dolenšek et al., 2015; Noguchi and
Huising, 2019). In physiological conditions, beta cells
constitute approximately 50–70% of the total endocrine cells,
followed by alpha cells (20–40%), delta cells (<10%), and a few
epsilon and PP cells (Steiner et al., 2010); however these
proportions vary from region to region (e.g., PP cells can
reach 80% in the pancreatic head, whereas beta cells are <20%
in the same region) or with disease stage (Rahier et al., 1983;
Steiner et al., 2010). The exocrine pancreas accounts for 96–99%
of the total volume and is organized into lobes, lobules, and acini
(dome-like structures consisting of acinar cells); single endocrine
cells can be found throughout the acinar and ductal tissue
(Dolenšek et al., 2015). Both endocrine and exocrine tissue are
affected in type 1 diabetes (T1D) (Rodriguez-Calvo et al., 2014;
Campbell-Thompson et al., 2015; Alexandre-Heymann et al.,
2019; Bender et al., 2020), but the disease is characterized by a
chronic autoimmune destruction of insulin-producing beta cells
(Rowe et al., 2011). Recently, in individuals with recent onset
T1D, a decrease in pancreatic volume has been observed
compared to healthy controls (Williams et al., 2012),
indicating that pancreatic atrophy might be an important
contributing factor to disease pathogenesis and bringing the
often-neglected study of the pancreas as a whole to T1D research.

Beta cells are the main source of insulin biosynthesis, storage,
and secretion (Vasiljević et al., 2020). Insulin is a peptide hormone
of 51 amino acids consisting of two chains (A and B chain, linked
by two disulfide bonds), which is initially synthesized from a
single-chain precursor—preproinsulin. After synthesis in the
ribosomes, preproinsulin is transferred to the endoplasmic
reticulum (ER), where proinsulin is created by cleavage of the
signal peptide. When folding and disulfide bonds are completed,
proinsulin is transferred to the Golgi, where it is packaged in
clathrin-coated vesicles (Steiner et al., 2009; Vasiljević et al., 2020).
In these granules, proinsulin is cleaved sequentially by 1)
prohormone convertase 1/3 (PC1/3), which shows preference
for the C-peptide/A-chain junction, but cleaves also at the
C-peptide/B-chain junction, 2) prohormone convertase 2
(PC2), which cleaves at the C-peptide/B-chain junction, and 3)
carboxypeptidase E (CPE), which cleaves away the connecting
segment and removes any remaining C-terminal basic residues
from both insulin and C-peptide (Steiner et al., 2009; Vasiljević
et al., 2020). In T1D and other pancreatic diseases, alterations at
the level of these enzymes in beta cells have a major impact in
proinsulin processing, proinsulin and insulin secretion (Sims et al.,
2019), and overall beta cell function.

Infiltrating immune cells can be found scattered in the exocrine
and endocrine pancreas in physiological conditions and their
numbers increase prior to, at the time of diagnosis, and after T1D
onset (Willcox et al., 2009; Rodriguez-Calvo et al., 2014; Bender et al.,

2020). Insulitis, which is a hallmark of T1D, has been defined over the
years as infiltration by ≥15 CD45+ cells (Campbell-Thompson et al.,
2013) or ≥6 CD3+ cells (Campbell-Thompson et al., 2016) located
immediately adjacent to or within the islet, in a minimum of three
islets of standard size (150 μm of diameter). In addition,
pseudoatrophic islets (insulin deficient) should be present in the
tissue section (Campbell-Thompson et al., 2013). T cells are themajor
cell type found in insulitis, and their presence is significantly higher in
T1D subjects, not only in the islets, but also in the exocrine
compartment (Rodriguez-Calvo et al., 2014). Up to this date, the
events leading to the autoimmune attack and the consequent beta cell
destruction are not well elucidated. However, increasing evidence
suggests a potential self-involvement of beta cells in their own demise
(Mallone and Eizirik, 2020; Roep et al., 2020). In individuals with
genetic predisposition, intrinsic properties of beta cells such as high
ER stress, vascularization, and hormone secretion,might intensify the
presentation of self-antigens on beta cells, which could increase the
recruitment of immune cells to the islets.

Early research in T1D was originally based on limited human
pancreatic specimens (Foulis and Stewart, 1984; Foulis et al.,
1986), experimental mouse models [mainly the non-obese
diabetic (NOD) mouse (Anderson and Bluestone, 2005)], or
on beta cell lines (Scharfmann et al., 2019). During the last
decades, the scientific community realized the importance of
systematic organ collection and distribution for research and
founded several biobanks, such as the Exeter Archival Diabetes
Biobank (EADB) (Foulis et al., 1986), the Dutch Pancreas
Biobank (Strijker et al., 2018), and the IMIDIA Biobank
(Solimena et al., 2018). The National Institutes of Health
established the Human Pancreas Analysis Program (HPAP),
which aims to distribute high quality molecular data derived
from human pancreata in order to enable scientific discovery
(Kaestner et al., 2019). The biggest and well-known biobank in
the T1D field is the Network for Pancreatic Organ Donors with
Diabetes (nPOD), founded by the Juvenile Diabetes Research
Foundation (JDRF) in 2007, and based in the United States
(Campbell-Thompson et al., 2012). nPOD’s main goals are to
obtain and distribute pancreatic or disease-relevant tissue
samples from organ donors to affiliated researchers around the
globe, as well as to foster and promote collaboration between
research teams, leading ultimately to a quicker elucidation of the
disease pathogenesis (Pugliese et al., 2014).

One of the biggest challenges in the study and analysis of
pancreas pathology is the heterogeneity of the human pancreas,
which is evident at the beta cell, the islet, and the organ level
(Dybala and Hara, 2019). Manual analysis of multiple regions of
interest (ROIs) has been traditionally performed, which faced a
lack of robustness and reproducibility. This type of analysis is
prone to bias and cannot capture the variability in size, endocrine
composition, architecture, vasculature and immune cell
infiltration in islets, and exocrine tissue (Dybala and Hara,
2019). Several algorithms and workflows for the analysis of 2D
(Wang et al., 2013; Kilimnik et al., 2012) and 3D (Poudel et al.,
2016; Fowler et al., 2018) images of the pancreas have been
proposed using specific Fiji plugins and MATLAB. However,
most of these algorithms are not intuitive and require a
considerable amount of computer proficiency. Nowadays,
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whole-slide image analysis of tissue sections, provided by the
biobanks mentioned above, is becoming increasingly accessible to
researchers. To date, analysis of such images required either
specialized commercial software (Tang et al., 2020) or was
limited to a small ROI, due to the inability of existing open-
source software to handle large 2D images (Aeffner et al., 2019).
QuPath (http://qupath.github.io) is an open-source, user-friendly
software developed by Bankhead et al. (2017) in 2016 in order to
enable whole-slide image analysis and digital pathology, by
addressing the unique requirements in the visualization and
analysis of such data.

Here, we show that QuPath can automatically and accurately
detect, quantify and distinguish cell populations in the endocrine
and the exocrine compartments of the pancreas using a series of
detection algorithms based on intensity thresholding, pixel
classification, and machine learning. We provide the
groundwork for a standardized, semi-automated analysis of
the human pancreas using QuPath, which can lead to a more
efficient and reproducible analysis of tissue images, reducing
inter-observer variability, and bringing researchers closer to
elucidating the etiology of T1D.

MATERIALS AND EQUIPMENT

QuPath Software
Multiplexed fluorescence images from tissue sections were analyzed
with QuPath version 0.2.3, an open-source software for digital
pathology and whole-slide image analysis described by Bankhead
et al. (2017). Briefly, the software was developed using Java 8, with a
JavaFX interface for annotation and visualization, built-in algorithms
for common tasks, including cell and tissue detection, and interactive
machine learning for object and pixel classification. It is compatible
with ImageJ, OpenCV, Java Topology Suite, and OMERO. The
software supports several image formats through Bio-Formats and
OpenSlide, including whole-slide images and multiplexed data.

Pancreatic Specimens
Six 4-µm-thick pancreatic formalin-fixed paraffin-embedded
(FFPE) sections from the tail of the pancreas of a female non-
diabetic donor, were obtained through nPOD. All the sections
were obtained from the same tissue block. Slides #1, #2, #3, #4,
and #6 were consecutive, while section #5 was not. Briefly, the
donor was 64 years old, Caucasian, with a BMI of 31.2 and an
HLA-A*02/03, B*07/60, DR*13/15, DQ*06 phenotype, who was
hospitalized for 2.67 days due to a cerebrovascular accident. The
histopathology record showed insulin and glucagon positive
normal islets. All experimental procedures were approved by
the ethics committee at the Technical University of Munich
(protocol #215/17 S) and the Helmholtz Center Munich,
Institute of Diabetes Research.

Immunofluorescence and Imaging
FFPE sections were stained for insulin, proinsulin, glucagon, CD3,
CD8, CD45, chromogranin A (CHGA), PC1/3, PC2, and CPE by
immunofluorescence (Supplementary Figure S1). Tissue sections
were deparaffinized with an alternative to xylene clearing agent

(H2779, Sigma-Aldrich, MO, United States) and rehydrated in
ethanol baths of decreasing ethanol content. Antigen retrieval
and multiplexing of primary antibodies of the same species was
performed using the Opal kit according to the manufacturer’s
instructions (NEL811001KT, Akoya Biosciences, CA,
United States). Specifically, a 2-step microwave antigen retrieval
process preceded the primary antibody incubations and was the
same for all the stainings. Slides were first microwaved at 900W for
45–65 s (until retrieval buffer reached the boiling point), followed
by a second step, where the sections were microwaved for 15 min at
160W. The following primary antibodies were incubated for 1 h at
room temperature or overnight at 4°C depending on the protocol:
mouse anti-proinsulin (1:200, GS-9A8 supernatant, DSHB, IA,
United States), mouse anti-CD45 (1:100, M070101, Agilent
Technologies, CA, United States), rabbit anti-CD3 (1:200,
A045229, Agilent Technologies), rabbit anti-CD8 (1:900, ATA-
HPA037756, Atlas Antibodies, Bromma, Sweden), mouse anti-
insulin (1:300, 5-1108, Merck, Darmstadt, Germany), guinea pig
anti-insulin (1:500; A056401-2, Agilent Technologies), rabbit anti-
glucagon (1:1200; ab92517, Abcam, Cambridge, United Kingdom),
rabbit anti-CHGA (1:500; ab15160, Abcam), mouse anti-PCSK1N
(1:500, ATA-HPA064734, Atlas Antibodies), rabbit anti-PC2 (1:
800, Merck), and rabbit anti-CPE (1:100, ATA-HPA003819, Atlas
Antibodies). Detection was performed by 1 h incubation at room
temperature with the following secondary antibodies at 1:1,000
dilution (all from Life technologies, Darmstadt, Germany): Goat
Anti-Guinea Pig IgG Alexa Fluor 488 (A11073), Goat Anti-Rabbit
IgG Alexa Fluor 750 (A21039), Goat Anti-Mouse IgG Alexa Fluor
750 (A21037), F(ab’)2-Goat anti-Rabbit IgG Alexa Fluor 488
(A11070), Goat Anti-Mouse IgG1 Alexa Fluor 555 (A21127),
F(ab’)2-Goat anti-Rabbit IgG Alexa Fluor 555 (A21430), and
Goat Anti-Mouse IgG1 Alexa Fluor 647 (A21240). Sections were
counterstained with Hoechst 33342 (1:5,000; Invitrogen, CA,
United States) and mounted with Prolong Gold Antifade reagent
(Invitrogen). Whole tissue sections were scanned by an Axio
Scan.Z1 slide scanner (Zeiss, Jena, Germany) using a 20x/0.8NA
Plan-Apochromat (a � 0.55mm) objective.

Statistics
All the graphs show the median and 95% confidence interval of
the median. Analyses were performed using GraphPad Prism
version 9, GraphPad Software, La Jolla, CA, United States, www.
graphpad.com.

Standard Operating Procedure for Whole
Slide Image Analysis
A step by step guide and detailed information on how to analyze
whole-slide pancreatic tissue sections is provided as a
supplementary document (Supplementary Data S1).

METHODS

Tissue, Islet and Cell Detection
First, tissue area and islets were automatically identified based on
average values of all channels for the labeled proteins (antibody
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FIGURE 1 | Schematic illustration of the whole-slide image analysis workflow using QuPath. (A) Experimental method and image analysis. Multiple
immunofluorescence protocols were employed for the staining of tissue sections from the pancreatic tail of a single non-diabetic donor. Whole-slide image analysis was
carried out with QuPath, version 0.2.3 1); tissue was detected using an intensity thresholder based on average values of all channels for the labeled proteins 2), Objects
(islets) were then created using the pixel classifier, and 3) cells were detected and smoothed features were added. (B) The Single measurement classifier tool was
employed to detect positive cells for the marker of interest. Cells were identified as areas of staining above the background level by applying optimizedCell mean intensity
thresholds. Combination of single classifiers was necessary for the accurate detection of beta and alpha cells. Annotation measurements were exported as CSV files and
were subsequently processed in Excel spreadsheets.
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combinations are shown in Supplementary Table S1) using
thresholding detection and machine learning. Information on
the whole tissue section, exocrine and endocrine areas, number of
islets per section, as well as the total number of alpha and beta
cells was obtained. Independent workflows and settings for 1)
tissue, 2) islet, and 3) cell detection are shown in Figure 1A and
Supplementary Figure S2. Only islets formed by ≥10 cells were
included in the analysis in order to avoid scattered single
endocrine cells present in the exocrine tissue and possible
detection errors derived from small artefacts. First, for tissue
detection, the command Pixel classification→ Create thresholder
was used (Figure 1A). After applying the fill holes function, the
tissue was manually checked for the presence of artifacts. Then, a
small ROI was created, and islets were recognized as a new class
by Pixel classification. For this purpose, the command Train pixel
classifier was used and new objects (islets) were created. Once the
new islet classifier was saved, Cell detection was performed in the
entire tissue section. Cells were identified as areas of staining
above the background level, by applying optimized nucleus
threshold, segmentation parameters (Median filter radius and
Sigma), and cell expansion (Figure 1A and Supplementary
Figure S2). Last, smoothed features were added in order to
obtain new measurements considering the cell features within
a 25 µm range. After cells were detected, the islet pixel classifier,
initially applied to a small ROI, was applied to the whole tissue
area, and the newly created islet areas, defined as objects, were
filled automatically following the path Objects→ Annotations→
Fill holes.

Endocrine Cell Detection
Thresholding detection was applied to create unique classifiers for
every staining combination due to fluorescence channel
dependency. After islet detection, the path Classify → Object
classification → Create single measurement classifier tool was
applied to detect cells positive for insulin, proinsulin,
glucagon, PC1/3, PC2 or CPE (Figure 1B). Cells were
identified as areas of staining above the background level by
applying optimized Cell mean intensity thresholds. To identify
beta cells, the new classifiers were combined to obtain the number
of cells positive for both insulin and proinsulin together with
different proteins of interest like PC1/3, PC2 or CPE. Data on
alpha cells were obtained by using glucagon positive cells as

reference. Chromogranin A was used for complete islet cell
detection for slide #6. Annotation measurements were exported
and information on islet size, cell composition and number of
positive cells was obtained (Table 1 and Supplementary
Table S2).

Immune Cell Detection and Spatial Analysis
of Immune Infiltration
Different image analysis protocols were generated for the study of
CD45+ (leucocyte marker), CD3+ (T cell marker) and CD8+ cells
(CD8+ T cell marker) and their localization in the islets and
exocrine tissue. CD4+ T cells were calculated as the total number
of CD3+ cells minus the number of CD8+ cells (CD3+
CD8−cells). The use of thresholding vs. machine learning was
compared (Figure 2A). First, the membranemarker CD45, which
is expressed in all leucocytes, was detected. For thresholding, a
single measurement classifier for the cell mean intensity value of
the CD45marker was used. Using this method, an overestimation
in the number of islet-infiltrating cells was observed, and manual
correction was applied. For machine learning, the following path
was used: Classify→Object classification→ Train object classifier.
For the classifier training, the option Points only was selected.
Then, the Points tool was used to assign two different classes to
the corresponding cells, one for the marker of interest (CD45+),
and one for unclassified objects (ignore*). For each class, negative
(ignore*) and positive (CD45+), three different ranges of training
points were tested (≥50, ≥80, and over 100). Overall, classifying
between 50 and 80 points and using machine learning was
comparable to applying the best threshold and subsequent
manual correction. Moreover, when the whole section was
analyzed, the total number of CD45+ cells detected by
thresholding was lower than the one obtained by machine
learning using 100 training points (8,078 vs. 17,116 cells),
indicating that immune cells with low intensity values were
not properly detected when thresholding was used (Table 2).
Machine learning using ≥100 points showed higher accuracy than
thresholding and was subsequently used for the detection of
CD3+ and CD8+ cells. However, the most suitable number of
training points should be defined by the user based on staining,
intrinsic characteristics of the tissue and quality of the specimen.
Last, measurements were exported and the number, proportion of

TABLE 1 | Characterization of the endocrine and the exocrine pancreas of a non-diabetic donor according to different staining combinations.

Slide ID Tissue
area (mm2)

Exocrine
area (mm2)

Endocrine
area (mm2)

No. islets No. islet cells No. beta cells No. alpha cells

1-PI/CD45/INS/GCG 80.9 79.8 1.2 260 13,625 9,571 4,537
2-INS/PI/GCG 71.8 70.6 1.3 262 13,129 7,581 4,163
3-INS/PC1/PI 84.6 83.4 1.1 234 12,441 9,040 3,401
4-INS/CPE/PI 92.9 91.7 1.2 273 14,616 11,682 2,934
5-INS/PC2/PI 130.6 128.3 2.3 432 26,655 17,579 9,076
6-CD3/CD8/CHGA 75.0 74.14 0.9 241 13,203 NA NA
Total mean ± SD 89.3 ± 19.7 87.9 ± 19.2 1.3 ± 0.5 283.7 ± 67.6 15,611.5 ± 4,981.8 11,090.6 ± 3,500.9 4,822.2 ± 2,199.8
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FIGURE 2 | Schematic illustration of the immune cell detection workflow using QuPath. (A) Comparison of the thresholding (single measurement classifier) and the
machine learning (train object classifier) option for the detection of CD45+ cells. (B)Workflow for the detection and distance analysis of CD3+ and CD8+ cells detected
with thresholding and machine learning. Heatmaps were created to depict the relative distance of CD3+ and CD8+ cells (either individually or combined as one class) to
the annotated islets.

TABLE 2 | Comparison of the number of CD45+ cells in the whole tissue, the exocrine and endocrine area of slide #1, depending on the detection method (thresholding vs.
machine learning).

QuPath method Total no. CD45+ No. CD45+ in exocrine No. CD45+ in endocrine

Thresholding 8,107 8,069 38
Thresholding manually corrected 8,078 8,067 11
Machine learning (≥50 points) 6,801 6,800 1
Machine learning (≥80 points) 12,874 12,870 4
Machine learning (≥100 points) 17,116 17,098 18
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infiltrated islets and density of CD45+ cells (expressed as number
of positive cells per mm2) were calculated in the whole tissue, and
the exocrine and endocrine compartments (Table 3 and
Figure 6).

In order to characterize T cell infiltration, a modified version
for cell detection was applied as follows (Figure 2B): After islets
were detected, the option Positive cell detection was used to
identify by thresholding all CD3+ cells. However, as cell
detection by thresholding was not completely accurate, a
second classifier for CD3+ or CD8+ membrane markers was
created using machine learning. As explained above, the object
classifier was trained with a minimum of 100 training points for
CD3+ and CD8+ cell detection, and was applied over the CD3+
cells detected by thresholding, creating a single machine
learning classifier for CD3+ and CD8+ cells. Then, once
T cells were identified, their localization with respect to the
islets was analyzed (Figure 2B). Distance analysis was
performed using the command Spatial analysis. This tool was
applied as follows: Analyze→ Spatial analysis→ Distance to
annotations 2D. Next, we generated individual heatmaps for
CD3+ and CD8+ cells based on the distance of the cells to the
islets. Finally, both single machine learning classifiers were
combined and different classes were automatically created;
the first one corresponding to all CD3+ cells, the second
class for cells positive for both markers (CD3+CD8+),
representing CD8+ cells, and the third one representing
CD4+ cells (CD3+CD8−). Last, annotation and detection
measurements were exported. Data on T cell numbers,
endocrine and exocrine T cell density, proportion of
infiltrated islets, as well as the distance of T cells to the islets
were obtained (Table 3 and Figures 6, 7).

RESULTS

Characterization of the Endocrine and
Exocrine Pancreas in a Non-diabetic Donor
To characterize pancreas tissue sections, thresholding detection
and machine learning were used as described above (Tissue, Islet
and Cell Detection) and applied to define the whole tissue as well
as the exocrine and endocrine areas. For this purpose, six tissue
sections from a non-diabetic donor were analyzed as shown in
Table 1. Data regarding islet density, the number of cells per islet
as well as their cellular composition (beta and alpha cells) were
obtained (Figure 3 and Table 1). There were minimal differences
in endocrine cell density, expressed as number of endocrine cells
per islet area (mm2), between the sections (Figure 3A). Analysis

of the cellular composition showed that the majority of islets
contain between 10 and 100 endocrine cells (Figure 3B). As
observed in Table 1, the mean area value of whole tissue, exocrine
and endocrine compartments (including all slides) was 89.3 ±
19.7, 87.9 ± 19.2, and 1.3 ± 0.5 mm2 respectively. A similar
number of islets was detected in the majority of tissue
sections, even when individual pixel classifiers for each section
were applied (283.7 ± 67.6 islets, Table 1). Only section #5, which
had a bigger area, contained more islets than slide #1 to 4 and
slide #6 (Figure 3B, Supplementary Figure S3 and
Supplementary Table S3). There was a large variability in the
proportion of alpha and beta cells per islet which ranged from 0 to
100% (Figures 3C, E and Supplementary Figure S4), as well as in
endocrine cell density per islet (Figure 3D and Supplementary
Figure S4). A mean of 70.1% of beta cells (range 57.7–79.9%)
were present in the whole section versus a mean of 28.1% of alpha
cells (range 20.1–33.3%) (Figure 3F). Cell density profiles showed
a similar distribution for alpha and beta cells in different sections
(Supplementary Figure S4).

Assessment of the Reproducibility and
Accuracy of Insulin (INS) and Proinsulin (PI)
Positive Cell Detection
As shown above, insulin-producing beta cells are the
predominant islet cell population. To further characterize
them, the total number of cells positive for insulin (INS+) and
proinsulin (PI+) was first measured in the whole tissue area of
slides #1, #2, #3, #4, and #5 (Supplementary Table S2). The
proportion of INS + cells was lower for sections #1, #2, and #5
(64.8, 56.2, and 53.5% respectively) compared to sections #3
(71.5%) and #4 (77.8%) (Supplementary Table S2). Slight
differences between sections were expected: sections #1 and #2
were stained with a different insulin antibody and section #5
belonged to the same tissue block, but was not consecutive to the
other slides (Supplementary Tables S2, S3). Conversely, the
proportion of PI+ cells was comparable between sections, as
the same antibody was used for all the slides (Supplementary
Table S2). Then, the proportion and density of INS+ and PI+
cells per islet were calculated (Figure 4). Overall, there were mild
differences in INS+ and PI+ cell distribution per islet between
tissue sections.

As intraindividual differences could also be observed, the ratio
PI/INS was calculated for each section (Figure 4F). Comparable
results were obtained with median ratios that ranged from 0.79 to
1.02. In two sections (#2 and #3) the ratios were close to 1,
indicating an equal detection of INS and PI in beta cells, whereas

TABLE 3 | Number, proportion and density of immune cells in the whole tissue, the exocrine and endocrine area. CD45+ cell values correspond to the analysis of slide #1,
and CD3+, CD8+, and CD4+ cell analysis to slide #6.

No.
CD45+

No.
CD3+

No.
CD8+

No.
CD4+

%
CD45+

%
CD3+

%
CD8+

%
CD4+

CD45+/
mm2

CD3+/
mm2

CD8+/
mm2

CD4+/
mm2

Tissue 17,116 8,643 3,911 4,732 100 100 100 100 211.5 115.2 52.1 63.1
Exocrine 17,098 8,639 3,909 4,730 99.9 99.95 99.95 99.96 214.3 116.7 52.8 63.9
Endocrine 18 4 2 2 0.1 0.05 0.05 0.04 15.5 4.1 2 2
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FIGURE 3 | Characterization of the endocrine and exocrine pancreas in a non-diabetic donor. (A) Comparison of islet density expressed as number of endocrine
cells per islet area in mm2 among the different staining combinations. Each dot represents an islet. (B) Histograms showing the cellular content of islets in pancreatic
sections stained with different antibody combinations. The different staining IDs are shown as #1–6. Each bar represents a different slide. More details can be found in
Supplementary Table S1. (C) Violin plots showing the percentage of endocrine cells (beta and alpha cells) per islet analyzed in the whole pancreatic section,
stained with antibody combination #1. Each dot colored represents an islet. (D) Violin plots showing the density of beta and alpha cells in the same section, expressed as
number of endocrine cells per mm2 of islet area. Each dot represents an islet. (E) Representative image showing two islets, one containing mainly beta cells (green) and
one containing mainly alpha cells (magenta). (F) Boxplots showing the mean percentage of beta or alpha cells per islet. Each dot represents the mean from a single slide.
Scale bar: 100 μm.
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in other sections, lower ratios were observed. Therefore, mild
variations in INS and PI expression from islet to islet and cell to
cell are expected, even within the same individual.

Analysis of the Proinsulin Processing
Enzymes Prohormone Convertase 1/3,
Prohormone Convertase 2 and
Carboxypeptidase E
As shown above, interindividual, inter-islet (among different
islets of the same donor) and intra-islet (between cells within
the same islet) differences in protein expression are expected.
Therefore, establishment of reference expression levels for
proteins like insulin, proinsulin, and their processing enzymes
in non-diabetic individuals is of great interest. Thus, the
expression of the enzymes PC1/3, PC2, and CPE was
evaluated. The proportion of PC1/3+, PC2+, and CPE+ cells
per islet was calculated in beta and alpha cells (Figure 5). Overall,
the three prohormone enzymes were expressed in a higher
percentage of beta cells compared to alpha cells, although
there was high inter-islet variability (Figure 5B). CPE was
expressed in a higher proportion of beta cells compared to
PC1/3 and PC2 (mean CPE+ 78.5 ± 21.9%, mean PC1/3+
68.2 ± 20.1%, and mean PC2+ 62.4 ± 24.1%). CPE and PC2

were expressed in a higher proportion of alpha cells compared to
PC1/3 (mean PC1/3+ 49.3 ± 33.4%, mean PC2+ 58.4 ± 33.4%,
and mean CPE+ 63.9 ± 35.9%).

Analysis of the Proportion and Density of
Immune Infiltration in the Exocrine and
Endocrine Pancreas
To investigate immune cell infiltration in the pancreas, cells were
detected using the machine learning protocol described above
(Immune Cell Detection and Spatial Analysis of Immune
Infiltration). A minimum of 100 training points for each class
of interest were assigned, and the proportion of CD45+, CD3+,
CD8+, and CD4+ (CD3+CD8−) cells was calculated in the
exocrine and the endocrine compartments using different
sections from the same donor. As expected in a non-diabetic
pancreas, there were no signs of insulitis, as currently defined.
However, as observed in Figure 6, a few immune cells could be
found close to, or infiltrating some islets. To evaluate immune
infiltration in both compartments (exocrine and endocrine), the
proportion of infiltrated islets, the proportion of immune cells,
and immune cell density in the whole section were calculated
(Figure 6 and Table 3). First, CD45+ cells were analyzed. In a
total of 260 islets, only 18 CD45+ cells could be found within or

FIGURE 4 | Assessment of the reproducibility and accuracy of insulin (INS) and proinsulin (PI) positive cell detection. (A) Representative images showing insulin
(INS) and proinsulin (PI) staining in islets from different pancreatic sections stained with different antibody combinations (slides #1–5). (B) Dot plots showing the
proportion of insulin and (C) proinsulin positive cells per islet in slides #1–5. Each dot represents an islet. (D) Dot plots showing the density of insulin and (E) proinsulin
positive cells expressed as number of positive cells per islet area in mm2. Each dot represents an islet. (F) Comparison of the proinsulin to insulin ratio (PI/INS)
among the different samples. Each dot represents an islet. Scale bar: 50 μm.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6897999

Apaolaza et al. Human Pancreas Analysis Using QuPath

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


immediately adjacent to islets (1% of the total number of CD45+
cells). Then, the proportion of CD3+, CD8+, and CD4+ cells per
islet was calculated. In a total of 241 islets, 4 CD3+ cells (0.05%)
could be found, of which two cells were CD8+ (0.05%) and two
cells were CD8− (considered CD4+, 0.04%) (Table 3). The
majority of immune cells were found in the exocrine tissue or
in close proximity to blood vessels. Next, the proportion of islets
that were infiltrated by at least one cell was calculated
(Figure 6B). Only a few infiltrated islets were found in the
whole section (5% by CD45+, 1.7% by CD3+, 0.8% by CD8+,
and 0.8% by CD4+ cells).

Last, to evaluate the magnitude of the infiltration, T cell
density was calculated as the number of infiltrating cells
divided by the total exocrine or endocrine area (Table 3
and Figure 6C). As expected, density values were higher
for CD45+ and CD3+ cells in both the exocrine and
endocrine compartments (214.3 and 15.5 cells/mm2 for
CD45+ cells; 116.7 and 4.1 cells/mm2 for CD3+ cells,
respectively) while CD8+ (52.8 cells/mm2 in the exocrine
and 2 cells/mm2 in the endocrine tissue) and CD4+ cell
density (63.9 cells/mm2 in the exocrine and 2 cells/mm2 in
the endocrine tissue) were lower.

Two-Dimensional Spatial Analysis of the
Localization and Distance of Immune Cells
to the Islets
The current definition of insulitis takes into account both peri-
islet (peri-insulitis), as well as intra-islet infiltration (intra-
insulitis). Therefore, the location and distance of immune cells
to the islets is an interesting feature for the analysis of immune
infiltration in the context of T1D. As explained above (Immune
Cell Detection and Spatial Analysis of Immune Infiltration),
heatmaps were generated for CD3+ and CD8+ cells, which

were color coded based on their distance to the closest islet.
The majority of T cells were located far from islets while just a few
cells were located close to islets (Figures 7A,B). Subsequently, the
total number of CD3+CD8+ and CD3+CD8− (CD4+) T cells
were grouped based on their distance to the islets (Figure 7). Five
categories were defined: 1) between 0 and 1 μm; 2) between 1 and
50 μm; 3) between 50 and 200 μm; 4) between 200 and 500 μm,
and 5) higher than 500 µm to the closest islet. The majority of
T cells were found at a distance of 200–500 µm (4029 CD3+, 1728
CD8+, and 2301 CD4+ T cells). The distance range 1–50 µm
represented the diameter of 3–5 acinar cells and it was considered
the peri-islet area. For all T cell populations, a low number of cells
was found in the periphery of the islets (619 CD3+, 315 CD8+,
and 304 CD4+ T cells). As observed in Figures 7F–H, the number
was low for cells infiltrating the islet parenchyma (distance of
0–1 µm: 5 CD3+, 3 CD8+, and 2 CD4+ T cells). This analysis
revealed that under physiological conditions, immune cells can be
found predominantly in the exocrine tissue at distances over
50 µm from the islets, whereas a low number of cells is located
within and around the islet parenchyma.

DISCUSSION

The histological analysis of tissue sections has been historically
challenging for pathologists due to time requirements, inter-
observer variability, and the risk of biased interpretation
(Aeffner et al., 2019). In T1D research, there is still a lot of
ground to cover in deciphering the immunopathogenic
mechanisms of the disease. In the last decade, the nPOD
repository addressed the need for high quality human
pancreatic specimens. Around the globe, researchers can now
perform sophisticated multiplexed immunostainings, and
acquire high-resolution whole-slide digitized images. This

FIGURE 5 | Analysis of the prohormone processing enzymes PC1/3, CPE and PC2 in the endocrine pancreas. (A) Representative images showing the distribution
and localization of the proinsulin processing enzymes PC1/3 (slide #3, upper row), CPE (slide #4, middle row) and PC2 (slide #5, lower row) in the islets. (B) Violin plots
showing the proportion of PC1/3+, PC2+, and CPE+ cells in beta (green) and alpha cells (violet). Each dot represents an islet. Scale bar: 100 μm.
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automatically creates a need for a quick, standardized and
reproducible image analysis method. QuPath is an open-
source software that enables whole-slide image analysis with
time-saving and variability-reducing, semi-automated
workflows (Bankhead et al., 2017). Interestingly, whole-slide
image analysis is widely used in pancreatic malignancies for the
detection of infiltrating immune cells or for annotation of tumor
areas (Carstens et al., 2021; Zacarías-Fluck et al., 2021; Bulle
et al., 2020), yet in the T1D research field this is still not a
common practice. To date, out of the 552 publications citing
QuPath (Bankhead, 2021), 27 used it for analysis of images from
the pancreas or from isolated pancreatic islets (human or
rodent): 24 were found related to pancreatic cancer, 3 to
diabetes (Rajendran et al., 2020; Rubey et al., 2020; Apaolaza
et al., 2021) and, to our knowledge, only 2 of them describe

results from whole-image analysis of donors with T1D
(Rajendran et al., 2020; Apaolaza et al., 2021).

Besides QuPath, whole-slide image analysis can be achieved
with other open-source software, such as ImageJ [using the SlideJ
plugin (Della Mea et al., 2017)], Orbit (Stritt et al., 2020), and Icy
(de Chaumont et al., 2012). However, we are not aware of any
studies comparing the reproducibility of the results, the time
requirements for analysis or the ease of use among the three
aforementioned software. HALO image analysis platform is a
proprietary software from Indica Labs that can also handle
whole-slide images; recently, scientists from the nPOD
network analyzed whole-slide images from pancreata of non-
diabetic, autoantibody-positive and T1D donors using the
HALO platform, and reported alterations in the number and
density of the acinar cells in donors with T1D (Tang et al., 2020).

FIGURE 6 | Analysis of the proportion and density of immune infiltration in the exocrine and endocrine pancreas. (A) Representative images of slide #1 showing
CD45+ cells in the vicinity of an insulin-containing islet (upper row) and representative images of slide #6 showing CD3+ (lower row left) and CD8+ (lower rowmiddle) cells
close to a chromogranin A positive (CHGA+) islet. (B) Bar graphs show the proportion of infiltrated islets by CD3+, CD8+, CD4+, and CD45+ positive cells expressed as
percentage of total islets. (C) Bar graphs show the density of CD3+, CD8+, CD4+, and CD45+ cells expressed as number of cells per islet area (mm2). Scale
bar: 50 μm.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 68979911

Apaolaza et al. Human Pancreas Analysis Using QuPath

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


In a recent study, the reproducibility of the Ki67 measurement
and the subsequent predictability of cancer prognosis were
compared among three image analysis platforms: HALO,
QuantCenter (from 3D Histech), and QuPath. While Ki67
scoring can prove useful for the prediction of cancer
prognosis, the variability in pre-analytical, analytical
(experimental), and especially in manual scoring protocols
has discouraged pathologists from implementing it in the
clinical practice. Conversely, using the mentioned Image
analysis platforms yielded excellent results. Ki67 scoring and

prognosis predictability were “indistinguishable” among the
three platforms even when different operators were
employed, thus urging scientists to opt for automated
analysis solutions, in order to avoid the variability of manual
analysis and thus accelerate the implementation of digital Ki67
scoring in the clinic (Acs et al., 2019).

In this study, we used intensity thresholding, pixel
classification and machine learning algorithms in QuPath to
precisely and automatically detect different structures in the
pancreas from multiplexed immunofluorescence images

FIGURE 7 | Two-dimensional spatial analysis of the localization and distance of immune cells to the islets. Heatmaps showing the distance of (A) CD3+ and (B)
CD8+ cells to the closest islet. Scale: 0 (black-blue)—>250 (red) μm. (C) Bar graph showing the distribution of CD3+, (D) CD8+, and (E) CD4+ cells in five different
distance categories to the closest islet: [0, 1), (1, 50], (50, 200], (200, 500], and >500 μm. (F) Violin plots showing the number of CD3+, (G) CD8+, and (H) CD4+ cells in
the intra-islet [0, 1) and peri-islet (1, 50 μm]. Each dot represents a cell.
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regardless the staining protocols. We were able to run an accurate
anatomical (tissue size, islet areas, etc.) and physiological
characterization (insulin, proinsulin, and prohormone enzyme
profiles) of whole pancreas sections from a non-diabetic donor,
establishing an image analysis pipeline that can be applied not
only to the study of T1D but also to other diseases of the pancreas.
Importantly, we found similar islet numbers and densities, as well
as similar distribution for alpha and beta cells between sections,
demonstrating the validity of the parameters implemented in our
protocols. In line with previous studies (Steiner et al., 2010;
Dolenšek et al., 2015; Da Silva Xavier, 2018; Noguchi and
Huising, 2019), we confirmed that insulin-producing beta cells
constitute 60–70% of the islet cell population, whereas around
30–40% are alpha cells. In addition, we showed that in a non-
diabetic condition the majority of the islets contain between 10
and 100 endocrine cells. This parameter is worth to be
considered, as differences in the number of endocrine cells
forming the islets can also indicate beta cell decay.
Independently of the antibody combination used, the median
values for INS+ and PI+ cells, as well as the PI/INS ratio were
comparable, with few exceptions.

Furthermore, changes in the expression and distribution of the
proinsulin processing enzymes can indicate failure of these
specific prohormone conversion mechanisms. Differences may
exist even in non-diabetic individuals, which can be extended to
high intra-individual or even intra- and inter-islet heterogeneity
under pathogenic conditions (Teitelman, 2019). Proteomic
analysis of islets obtained by laser capture microdissection
(LCM) indicated that PC1/3 and CPE are reduced in islets
from donors with T1D with long disease duration (Wasserfall
et al., 2017; Sims et al., 2019). Impaired proinsulin conversion
accompanied by elevated proinsulin secretion is characteristic of
T2D and T1D, and defects in proinsulin processing result in
alteration of the PI/C-peptide and PI/INS ratios (Sims et al., 2019;
Sims et al., 2019). Of note, there has been some controversy
regarding the role of PC2 in proinsulin processing in humans; a
recent paper, Ramzy and colleagues (Ramzy et al., 2020) provide
evidence that PC2 is neither abundant nor plays a significant role
in the processing of proinsulin in human beta cells, whereas other
groups have reported the abundancy of PC2 in human pancreata
(Scopsi et al., 1995; Teitelman, 2019). However, a limitation of
these analyses is that they were not performed in whole pancreas
sections, thus capturing the majority of islet types in an
individual, but in isolated islets and beta cell lines. Here, we
provide an analysis pipeline to estimate the proportion and
density of beta and alpha cells, as well as of the processing
enzymes PC1/3, PC2, and CPE in the islets or endocrine
compartment, which could uncover important alterations in
insulin production under inflammatory or stressful conditions
and provide comprehensive evidence to fundamental mechanistic
questions of proinsulin processing.

Modern lifestyle and diet have placed an enormous amount of
metabolic pressure on beta cells, which are constantly hyper-
functioning to produce and secrete insulin. This metabolic stress
could lead to mistakes in the translational and post-translational
processing of insulin and other beta cell proteins, which could in
turn lead to the generation of neoantigens and to the ultimate

recruitment of the immune cells to the pancreas (Rodriguez-
Calvo et al., 2021). Insulitis is a hallmark of T1D; CD8+ T cells are
the most abundant cell population in an insulitic lesion, followed
by CD68+ macrophages, CD20+ B cells, and CD4+ T cells
(Willcox et al., 2009). Even though insulitis seems to matter
most because of the consequent destruction of beta cells and the
loss of insulin, it has been shown that the exocrine compartment
is also infiltrated by CD8+, CD4+, and CD11c+ cells (Rodriguez-
Calvo et al., 2014; Campbell-Thompson et al., 2015). Despite
these observations, the immunopathological course from health
to disease, as well as the importance of the crosstalk between the
endocrine and the exocrine tissue are still unclear. The detection
of T cells around or within the islets, as well as their dynamic
distribution in the endocrine and the exocrine pancreas are of
great interest. Here, we described two ways of detecting immune
cells using QuPath: 1) using the single measurement classifier
based on thresholding or 2) by machine learning. Our results
show that the machine learning option is quicker and more
accurate and we recommend its use for the detection of
infiltrating immune cells in the pancreas. In this study, we
have evaluated their number, density and distance to the islets.
Distance-wise, the majority of the T cells are found between 50
and 500 µm away from the closest islet in a non-diabetic pancreas.
However, as disease progresses, a higher number of immune cells
might be found closer to or inside the islets. This type of analysis
can help to understand the dynamics of immune infiltration in
the pancreas in individuals with prediabetes, as well as after onset
of disease, and could inform clinical trials aiming to halt the
autoimmune attack in T1D (Herold et al., 2019). As reported
recently (Berben et al., 2020), the semi-automated methods
offered by QuPath are equally reliable and considerably
quicker than manual counting of immune infiltrating cells—a
method that is still considered the gold standard in the clinical
setting.

From a practical point of view, the working time with QuPath
ranges between 1.5 and 2 h per slide, depending on computer
processing power, memory and user’s experience level. Most of
this time is devoted to finding the correct settings in cell
detection and intensity thresholds for each channel that will
work for different sections. In our experience, these two
parameters can strongly influence cell segmentation and
subsequent positive or negative identification of cells for
markers of interest. Thus, we advise researchers to test these
parameters in small areas, and in different types of donor
sections (control, disease, etc), in order to find which ones
will work for most, if not all, types of samples. Despite
slowing the process at the beginning of the analysis, the
aforementioned preliminary testing will save time during the
actual analysis, and prevent the occurrence of segmentation or
detection issues among the different types of samples. Besides the
actual working time with QuPath, the user should plan time for
data-processing, grouping, and analysis, which depending on the
number of desired readouts, may range from 2 to 5 h per slide.
Overall, the time invested in whole-slide image analysis yields
high quality data and we hope that, together with the step-wise
guide provided here, it will encourage the performance of large-
scale image analysis studies.
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We believe that researchers should take advantage of the
increasingly available digitized whole-slide pancreatic images
and of the numerous open-source tools offered by QuPath.
Taken together, we established several image analysis
workflows that provide a basic guide to improve the
characterization of the exocrine and endocrine compartments,
islet cell populations, and immune infiltration. We acknowledge
that other methods and analytical tools within QuPath could be
used to obtain similar datasets, and that these should be
customized based on quality of the sample, staining
parameters and analytical goals. In addition, intra-individual
variability should be assessed, as there are several factors that
could contribute to it: 1) the use of different antibody
combinations and/or protocols on different sections; 2) even
though some sections might be consecutive, it does not
necessarily mean that all the sections contain the same islets
or cells; 3) stainings might not be performed on the same day, and
this could add inter-staining variability. The fact that we were able
to detect and quantify the extent of this variability through the use
of QuPath makes us more confident that we provide an objective
workflow for large-scale studies. Moreover, samples from
different donor groups and disease status need to be included
in the first steps of the image analysis workflow to assess inter-
donor variability and to ensure that all the parameters are
applicable to the different experimental conditions. Therefore,
we invite other scientists to share their image analysis pipelines
with the scientific community to maximize the impact of open-
access tools. Here, we provide an analysis pipeline customized for
the analysis of pancreas specimens with the aim of improving the
accuracy, reproducibility and objectivity of image analysis while
shortening the analysis time. These tools should help to gain new
insights into the pathogenesis of diabetes and other pancreatic
diseases, and could accelerate research on biomarker discovery
and pharmacological interventions aimed at the diagnosis and
cure of T1D.
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