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Background: Dysregulation of lipid metabolism plays important roles in the tumorigenesis
and progression of gastric cancer (GC). The present study aimed to establish a prognostic
model based on the lipid metabolism-related genes in GC patients.

Materials and Methods: Two GC datasets from the Gene Expression Atlas, GSE62254
(n = 300) and GSE26942 (n = 217), were used as training and validation cohorts to
establish a risk predictive scoring model. The efficacy of this model was assessed by ROC
analysis. The association of the risk predictive scores with patient characteristics and
immune cell subtypes was evaluated. A homogram was constructed based on the risk
predictive score model and other prognostic factors.

Results: A risk predictive score model was established based on the expression of 19 lipid
metabolism-related genes (LPL, IPMK, PLCB3, CDIPT, PIK3CA, DPM2, PIGZ, GPD2,
GPX3, LTC4S, CYP1A2, GALC, SGMS1, SMPD2, SMPD3, FUT6E, ST3GAL1, BAGALNTT,
and ACADS). The time-dependent ROC analysis revealed that the risk predictive score
model was stable and robust. Patients with high risk scores had significantly unfavorable
overall survival compared with those with low risk scores in both the training and validation
cohorts. A higher risk score was associated with more aggressive features, including a
higher tumor grade, a more advanced TNM stage, and diffuse type of Lauren classification
of GC. Moreover, distinct immune cell subtypes and signaling pathways were found
between the high-risk and low-risk score groups. A nomogram containing patients’ age,
tumor stage, adjuvant chemotherapy, and the risk predictive score could accurately
predict the survival probability of patients at 1, 3, and 5 years.
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Conclusion: A novel 19-gene risk predictive score model was developed based on the
lipid metabolism-related genes, which could be a potential prognostic indicator and

therapeutic target of GC.

Keywords: gastric cancer, prognostic model, lipid metabolism, nomogram, gene expression omnibus dataset, gene

panel

INTRODUCTION

Gastric cancer (GC) is one of the leading causes of cancer-related
death worldwide, ranking the third in males and the fifth in
females (Bray et al., 2018). Current treatments of GC, including
surgery, chemotherapy, and targeted regimens, improve the
survival of patients to some extent (Johnston and Beckman,
2019). New prognostic biomarkers remain needed to lower
risk, stratify patients, and guide future research for potential
new therapeutic targets.

Deregulation of lipid metabolism has a critical role in the
promotion of tumorigenesis and tumor progression (Rohrig and
Schulze, 2016; Yu et al,, 2018; Yang et al., 2020; Esposito et al.,
2019). It also participates in the regulation of T cell function,
including T cell proliferation and differentiation (Lochner et al.,
2015; Raud et al, 2018). Dysregulation of lipid metabolism
contributes to various aspects of tumor growth (Lochner et al,
2015; Raud et al,, 2018). Lipoproteins, high lipid droplets, and
excessive cholesteryl ester storage are hallmarks of aggressiveness
of cancers (Yue et al., 2014; Liu et al., 2017). Therefore, targeting
deregulated lipid metabolism is a promising strategy for cancer
treatment (Liu et al., 2017; Tannelli et al., 2018).

GC progression is closely associated with alterations of lipid
metabolism. A low level of serum high-density lipoprotein
predicted a high risk of GC development, a high rate of
lymphatic and vascular invasion, an advanced nodal
metastasis, and a poor prognosis in patients with GC (Guo
et al., 2007; Tamura et al., 2012; Nam et al., 2019). Adipocytes
and fatty acids fueled metastasis and conferred a poor prognosis
of GC (Duan et al, 2016; Tan et al., 2018; Jiang et al., 2019).
Various lipid metabolites and genes involved in lipid metabolism
also shared some roles in GC tumorigenesis or progression
(Abbassi-Ghadi et al, 2013; Tao et al., 2019; Huang et al,
2020; Zhang et al,, 2020). For example, adipocytes promoted
peritoneal metastasis of GC through reprogramming of fatty acid
metabolism mediated by phosphatidylinositol transfer protein,
cytoplasmic 1 (PITPNCI1) (Tan et al., 2018). Enhanced fatty acid
carnitinylation and oxidation mediated by carnitine
palmitoyltransferase 1C (CPT1C) promoted proliferative
ability of GC (Chen et al., 2020).

The mechanisms of deregulation of lipid metabolism in
cancers are complicated, including alteration in pathways
involved in de novo lipogenesis, lipid uptake, lipid storage, and
lipolysis and generating enhanced synthesis, uptake,
consumption, and storage of fatty acids (Liu et al, 2017).
However, an overall view of the prognostic value of lipid
metabolism-related genes in GC remained to be explored (Liu
et al, 2017). Identification of genes associated with clinical
outcomes is important for further research in this area. In the

current study, lipid metabolism-related gene sets were extracted
and analyzed for their prognostic value in patients with GC. A
novel lipid metabolism-related gene panel was developed and
validated for its capability of predicting patient outcomes.

MATERIALS AND METHODS

Study Subjects

Two GEO (Gene Expression Omnibus, https://www.ncbi.nlm.nih.
gov/geo/) datasets, GSE62254 and GSE26942, were used for analyses.
Patients eligible for analyses were as follows: 1) histologically
diagnosed with gastric adenocarcinoma, 2) having available
mRNA expression data, and having 3) available complete clinical
and survival information. There were 300 and 217 patients in the
GSE62254 and GSE26942 datasets, respectively. 17 patients were
excluded from the GSE26942 dataset due to not meeting the
inclusion criteria, including 12 cases of normal tissue, 3 cases of
gastric stromal tumor, and 2 cases without available survival
information. Finally, the 300-patient cohort from the GSE62254
dataset was used as the training cohort for our risk predictive score
model development, and the 200-patient cohort from the GSE26942
dataset was used as the validation cohort. The risk predictive score
was also validated in another two public GC datasets, including the
TCGA dataset (n = 350) and GSE84437 dataset (n = 432).

Risk Predictive Model Development in the

Training Cohort

The normalized gene expression data of the GSE62254 dataset
were downloaded from GEO. Prognosis relevant genes from lipid
metabolism-related gene sets were identified using the “survival”
package. All the lipid metabolism-related genes were subjected to
the univariate Cox regression model, and 63 genes were identified
to be associated with overall survival (OS). The 63 genes were
further subjected to the LASSO Cox regression model analysis
using the glmnet package, and then 19 genes were selected for
construction of the risk prognostic scoring system. Calculation of
risk scores was performed using the generated coefficients and
corresponding expression. According to the risk scores, patients
were classified into low-risk and high-risk groups with a cut-off
value (risk score = —3.793587), which best stratified patients with
different OS.

Risk Predictive Model Validation in the
Validation Cohort

The same model and coefficients in the training cohort were
applied in the validation cohort (GSE26942 dataset). The
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normalized gene expression data of GSE26942 were downloaded.
The efficacy of risk score prognostic classification was evaluated
by ROC analysis with the timeROC package. The survival analysis
was conducted as mentioned above and was also validated with
another two gene sets (TCGA GC and GSE84437).

Risk Predictive Model Assessment

The timeROC package of R software was applied to perform the
time-dependent receiver-operating characteristic curve (ROC)
analysis. Survival analysis with Kaplan-Meier plots and the
log-rank test, and the univariate and multivariate Cox hazard
model were performed. GO and KEGG functional enrichment
analyses were conducted through the R package clusterProfiler.

Evaluating the Relevance of the Risk

Predictive Model With Immune Cells

The expression matrices of GSE62254 and GSE26942 datasets
were uploaded to CIBERSORT to determine the tumor-
infiltrating immune cell fractions, which were calculated
according to the LM22 signature with 1,000 permutations, as
described previously (Newman et al., 2015). The genes and the
immune cell markers are listed in Supplementary File 1. The
immune cell subtype fractions were compared between the
low-risk and high-risk score groups.

Construction of a Nomogram

Independent prognostic factors were identified through
univariate and multivariate Cox regression analysis. The
independent prognostic factors were used to construct the
prognostic nomogram, which assessed the OS probability at 1,
3, and 5 years with the “rms” package in R software.

Statistical Analysis

Student’s t-test, the chi-squared test, and the Mann-Whitney U
test were used to examine the differences between groups.
Spearman analysis was adopted to assess the correlation
between gene expression levels. All calculations
performed with R 3.5.3 software (http://www.R-project.org). A
two-tailed p value < 0.05 was considered statistically significant.

were

RESULTS

Construction of a Risk Prognostic Model

Based on Lipid Metabolism-Related Genes
Human lipid metabolism-related pathways were downloaded
from the KEGG (https://www.kegg.jp/) database. 13 lipid
metabolism-related pathways were included for analysis
(Supplementary Table S1). The characteristics of patients in
the GSE62254 and GSE26942 datasets are listed in
Supplementary Table S2. The study procedures are shown in
Supplementary Figure S1.

The risk prognostic model was developed using the training
dataset (GSE62254). The univariate Cox regression model was
used to identify genes with prognostic relevance for overall
survival (OS). As a result, 63 genes were found to have

Lipid Genes and Gastric Cancer

statistically ~ significant relevance with OS, and their
correlations with each other were validated (Supplementary
Figure S2A). The LASSO algorithm was used to reduce
overfitting and construct the model. The LASSO algorithm is
known to have the following features: it is simple and visible, can
reduce variance through reduction of coefficients, and can
increase interpretability and decrease overfitting through
eliminating irrelevant variables. The risk score was built using
the LASSO Cox regression model (Supplementary Figures
S2B,S2C). 19 genes were selected for the construction of the
risk prognostic scoring system (Supplementary Table S3). The
correlations between these genes are shown in Supplementary
Figure 2D. The risk score was calculated as follows based on the
19 genes:

Risk score = (0.100 * LPL) + (-0.374 * IPMK) + (-0.122 *
PLCB3) + (0.311 * CDIPT) + (0.146 * PIK3CA) + (-0.263 *
DPM2) + (0.310 * PIGZ) + (-0.594 * GPD2) + (0.043 * GPX3) +
(0.077 * LTCA4S) + (-0.782 * CYP1A2) + (-0.102 * GALC) +
(~0.189 * SGMS1) + (=0.061 * SMPD2) + (~0.184 * SMPD3) +
(—0.081 * FUT6) + (0.130 * ST3GALL) + (0.549 * BAGALNT1) +
(-0.040 * ACADS).

Validation of the Risk Prognostic Model and

Its Efficiency

The GSE26942 dataset was adopted as the validation dataset.
With a cut-off value of —3.793587, which stratified patients into
two groups with the largest OS difference, patients were
classified into low-risk and high-risk groups. The difference
between the low-risk and high-risk groups in OS was statistically
significant in the training dataset, the validation dataset, and
both datasets combined. Kaplan-Meier curves are displayed in
Figures 1A-C. Our constructed risk score also had significant
prognostic relevance when validated with another two gene sets,
TCGA GC and GSE84437 (Supplementary Figure S3).
Subgroup analyses of Kaplan-Meier curves stratified by
adjuvant chemotherapy (no/yes) and TNM stage (I + II/IIT +
IV) in the combined dataset are displayed in Supplementary
Figure S4. Time-dependent ROC analysis for the risk
prognostic model at 1, 3, and 5years is shown in Figures
1D-F. The area under the curve (AUC) was, respectively,
0.74 (95% CI: 0.67-0.82), 0.78 (95% CI: 0.73-0.83), and 0.78
(95% CI: 0.73-0.83) at 1, 3, and 5 years in the training dataset.
The AUC was, respectively, 0.61 (95% CI: 0.50-0.72), 0.60 (95%
CI: 0.51-0.68), and 0.63 (95% CI: 0.53-0.73) at 1, 3, and 5 years
in the validation dataset and 0.69 (95% CI: 0.63-0.75), 0.71 (95%
CI: 0.67-0.76), and 0.73 (95% CI: 0.68-0.77) at 1, 3, and 5 years
in the combined dataset.

Univariate and multivariate Cox regression analysis in the
combined dataset showed that the risk prognostic score model
was an independent and significant prognostic factor for OS
(Figures 1G,H). Patients with a high risk score had
significantly worse OS (HR and 95% CI: 2.51 [1.93-3.28])
after being adjusted by other independent prognostic factors.
The continuous patient risk score, survival state, and
expression of the 19 genes of both datasets are shown in
Supplementary Figure S5.
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FIGURE 1| The risk predictive score model had high efficacy of prediction in the training set, the validation set, and the combination of both datasets. Kaplan-Meier
curves of overall survival stratified by risk score (low/high) in the training set (A), validation set (B), and both datasets (C). Time-dependent ROC analysis for the risk
predictive model at 1, 3, and 5 years in the training set (D), validation set (E), and both datasets (F). Univariate and multivariate Cox regression analysis for overall survival
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Association of Risk Score With Clinical

Characteristics and Immune Cells

We compared the risk score between patients with different
clinical characteristics. The results showed that the risk score
between patients with different age (<60 or >60 years) was
comparative (p = 0.11), so it was between males and females
(p = 0.84). Tumors with more aggressive features generally had a
higher risk score than those with less aggressive features. In
particular, patients with a higher grade (G3) tumor had a
higher risk score than those with a lower grade (G1/G2)
tumor (p < 0.001, Figure 2A). Patients in stage lll/IV had a
higher risk score than those in stage I/II (p < 0.001, Figure 2B). In
terms of Lauren classification, diffused tumors had a higher risk
score compared with the intestinal tumors (p < 0.001, Figure 2C).
In addition, tumors located in the gastric body had a higher risk
score than those located in the gastric antrum (p = 0.02,
Figure 2D).

We analyzed the percentage of 22 immune cell subtypes in the
tumors of both datasets and compared their level between
patients with low and high risk scores (Figure 2E). The levels
of some immune cells, including plasma cells (p = 0.007),
activated CD4 memory cells (p < 0.001), follicular helper
T cells (p = 0.001), and resting dendritic cells, were
significantly lower in the high-risk score group (p = 0.003),
while some immune cells, including naive CD4 T cells (p =
0.005), monocytes (p < 0.001), M2 macrophages (p < 0.001), and
resting mast cells, were higher in the high-risk score group (p =
0.006).

Differentially Expressed Genes and
Pathways Based on the Risk Prognostic

Score

Functional analysis of differentially expressed genes was
performed with KEGG and GO functional enrichment
analyses. The top 10 GO genes were found to be associated
with the biological process (BP), cellular component (CC), and
molecular function (MF) (Figure 3A). These genes are associated
with positive regulation of cell development, focal adhesion, cell-
substrate adherens junction, extracellular matrix structural
constituent, growth factor binding, etc. The top 20 enriched
pathways are shown in Figure 3B, with the focal adhesion
signaling pathway as the most significantly differently
expressed pathway. Some other cancer-related pathways,
including the Wnt signaling pathway, PI3K-Akt signaling
pathway, and MAPK signaling pathway, were also significantly
enriched in the high-risk score group.

Construction of a Nomogram Model

Factors identified by univariate and multivariate Cox regression
analysis as independent and significant prognostic factors were
applied in the construction of a nomogram model (Figure 4A).
As shown in Figures 1G,H, those factors included patients’ age,
tumor stage, adjuvant chemotherapy, and the risk prognostic
score. The predictive accuracy of the nomogram at 1 year (AUC =
0.79, Figure 4B), 3 years (AUC = 0.82, Figure 4C), and 5 years
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(AUC = 0.81, Figure 4D) was calculated and assessed by ROC
analysis. The comparisons between the 1-, 3-, and 5-year
nomogram models and the ideal model are shown in Figures
4E-G that displayed consistent indices and indicated relatively
high accuracy of the nomogram models. The decision curve
analysis (DCA) showed high predicting efficiency of the
nomogram for the 3- and 5-year overall survival in the
training dataset, the validation dataset, and the combination of
both datasets (Supplementary Figures S6A-S6F).

DISCUSSION

GC has long been recognized as a recalcitrant cancer for its high
incidence, high mortality, aggressive behavior, refractory traits,
and poor prognosis (Van Cutsem et al., 2016). Identification of
genetic factors that drive tumor progression and contribute to
unfavorable outcomes is of key importance, for both improving
patient care and developing potential therapeutics. As one of the
most important basic metabolites, lipid has been demonstrated to
be involved in the development and progression of malignancies
in recent years, including GC (Huang et al., 2020). Although some
studies have suggested important roles of lipid metabolites and
lipid metabolism-related genes in GC (Huang et al., 2020), no
reports have given an overall view of the prognostic value of lipid
metabolism-related genes in GC.

In this study, we develop a novel prognostic scoring model
based on the expression of lipid metabolism-related genes in
gastric cancer. We used independent datasets from GEO to
construct and validate the risk predictive scoring system
containing 19 lipid metabolism-related genes. This scoring
system was demonstrated to be efficient in predicting patient
survival by ROC analysis. Patients had a significant and
remarkable difference of OS between the high-risk and
low-risk score groups. We further generated a nomogram
integrating the risk predictive scoring system and three other
prognostic factors (patients’ age, TNM stage, and adjuvant
chemotherapy) that improved the efficiency of prognostic
value of the nomogram and accurately predicted the 1-, 3-,
and 5-year OS of GC patients in the GEO datasets.

The risk predictive score calculated with our scoring system
was significantly associated with the aggressiveness of GC.
Patients with a higher grade tumor and in an advanced stage
were shown to have a higher risk score, suggesting that
dysregulation of lipid metabolism not just was associated with
cancer progression in GC but also served as a driving factor for
the aggressiveness of GC. Some of the genes included in our risk
scoring system had been found to be involved in cancers, such as
lipoprotein lipase (LPL) (Zaidi et al., 2013), phosphate 3-kinase
catalytic subunit alpha (PIK3CA) (Arafeh and Samuels, 2019),
mitochondrial glycerol-3-phosphate dehydrogenase (GPD2)
(Singh, 2014), leukotriene C4 synthase (LTC4S) (Halvorsen
et al,, 2014), galactosylceramidase (GALC) (Halvorsen et al,
2014), sphingomyelin phosphodiesterase 3 (SMPD3) (Singh
et al., 2014), fucosyltransferase 6 (FUT6) (Singh et al, 2014),
and [(-galactoside a-2,3-sialyltransferase-1 (ST3Gall) (Wu et al,,
2018). Except for PIK3CA, which was found to be frequently
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altered in GC and was associated with unfavorable prognosis
(Cancer Genome Atlas Research Network, 2014; Kim et al., 2017),
although most of these genes were less studied, studies have
suggested some roles of them in GC. LPL, which encodes
lipoprotein lipase, a key enzyme in triglyceride metabolism,
was reported to promote the progression of GC (Chang et al,,
2017). Phospholipase C beta 3 (PLCB3), which encodes a member
of the phosphoinositide phospholipase C beta enzyme family, was
found to be one of the critical altered genes involved in
aristolochic acid-induced gastric benign or malignant tumors
(Wang et al., 2020). The polymorphism of cytochrome P450
family 1 subfamily A member 2 (CYP1A2) was repeatedly found
to be associated with GC risk (Xue et al., 2014) and could
modulate susceptibility to GC in patients with Helicobacter
pylori infection (Ghoshal et al, 2014). Our study presented
evidence for the prognostic value of these genes in GC,
demonstrating their potential to be targets for anti-GC
therapeutic research and development in the future.

Interestingly, the present study also revealed that patients with
high and low risk scores had distinct features in tumor-infiltrating
immune cells. Patients with high risk scores had significantly
reduced number of plasma cells, activated CD4 memory cells,
follicular helper T cells, and resting dendritic cells and increased
number of naive CD4 T cells, monocytes, M2 macrophages, and
resting mast cells. Activated CD4 memory cells were associated
with favorable outcomes in patients with cervical cancer (Ju et al.,
2020) and favorable outcomes after radiotherapy in patients with
multiple cancers (Ju et al., 2020; Wen et al., 2020). In gastric cancer,
patients with low risk scores had increased number of activated
CD4 memory cells and had superior prognosis (Zhao et al., 2020).
Dendritic cells are specialized antigen-presenting cells which are
key to the initiation of immune responses, including anti-tumor
immune responses (Wculek et al., 2020). The increased number of
dendritic cells induced by neoadjuvant chemotherapy was reported
to be related to improved survival in GC (Hu et al.,, 2014). Naive
CD4 T cells were developed to form Treg cells in the tumor
microenvironment and predicted poor prognosis in breast cancer
(Su et al, 2017). M2 macrophages are a well-known tumor-
promoting immunosuppressive cell type, and they have been
proposed as a therapeutic target in GC (Gambardella et al,
2020). Immunotherapy has been established as a novel
treatment in GC, but as monotherapy, PD-1 antibodies have
limited benefit because the majority of patients do not respond
(Xie et al., 2021). Novel combination options with immunotherapy
are in great need in GC. Lipid metabolism not only impacts the
proliferation and migration of tumor cells but also shapes the
immuno-microenvironment by affecting the recruitment and
function of tumor-infiltrating immune cells (He et al., 2021). In
our study, patients with high risk scores had an
immunosuppressive tumor microenvironment, indicating a
possible role of treatments targeting lipid metabolism-related
genes with immunotherapy in GC.

The major limitation of the present study was the lack of
validation in larger patient cohorts from multicenter real-world
clinical practice. Thus, the risk predictive score was still far from
being able to be used in clinical practice. Another important
limitation was that most of the genes used to construct this risk

Lipid Genes and Gastric Cancer

predictive score model were scarcely investigated in cancers. In
addition, we did not perform the basic experiment to validate
their roles and related mechanisms in GC cells. The biological
mechanism was unclear and needed further experimental
validation. However, as a prognostic risk score, our model was
repeatedly validated and achieved consensus results, so the
conclusions of our study are still convincing despite the lack
of experimental validation of each gene’s role in GC.

CONCLUSION

In the present study, a novel lipid metabolism-related gene-based
risk predictive score model was constructed and validated in datasets
of patients with GC. This risk predictive scoring system could
efficiently predict patient outcomes and had significant
correlation with immune cell subtypes. A nomogram containing
the risk score was generated, and it improved the prognostic
predictive value of the current TNM staging system. This study
will be helpful in biomarker and therapeutics development for GC
patients.
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nomogram based on the risk scores were conducted.
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metabolism-related pathways were screened (A). The risk predictive score
system was constructed using the LASSO Cox regression model (B,C).
Correlation between the 19 selected genes (D).
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