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Eukaryotic life is possible due to the multitude of complex and precise phenomena that
take place in the cell. Essential processes like gene transcription, mRNA translation, cell
growth, and proliferation, or membrane traffic, amongmany others, are strictly regulated to
ensure functional success. Such systems or vital processes do not work and adjusts
independently of each other. It is required to ensure coordination among them which
requires communication, or crosstalk, between their different elements through the
establishment of complex regulatory networks. Distortion of this coordination affects,
not only the specific processes involved, but also the whole cell fate. However, the
connection between some systems and cell fate, is not yet very well understood and opens
lots of interesting questions. In this review, we focus on the coordination between the
function of the three nuclear RNA polymerases and cell cycle progression. Although we
mainly focus on the model organism Saccharomyces cerevisiae, different aspects and
similarities in higher eukaryotes are also addressed. We will first focus on how the different
phases of the cell cycle affect the RNA polymerases activity and then how RNA
polymerases status impacts on cell cycle. A good example of how RNA polymerases
functions impact on cell cycle is the ribosome biogenesis process, which needs the
coordinated and balanced production of mRNAs and rRNAs synthesized by the three
eukaryotic RNA polymerases. Distortions of this balance generates ribosome biogenesis
alterations that can impact cell cycle progression. We also pay attention to those cases
where specific cell cycle defects generate in response to repressed synthesis of ribosomal
proteins or RNA polymerases assembly defects.
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INTRODUCTION

The eukaryotic cell cycle is controlled by a regulatory network, whose general features are conserved
from yeast to humans (Lubischer, 2007). It proceeds through firmly regulated transitions to ensure
that specific events take place in a correct and organized manner. This, in turn, ensures viability and
the correct transmission of genetic information (Haase and Wittenberg, 2014). A fundamental
element of cell cycle regulation consists of arrests at particular steps to guarantee the completion of a
previous cell cycle event, to repair cellular or DNA damage, or to resolve a challenging situation.
Accordingly, eukaryotic cell cycle regulation integrates a huge multitude of internal and external
signals to optimize survival. Failures in these processes reduce cell survival and, in higher metazoans,
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lead to cancer, and other diseases (Moriel-Carretero et al., 2019;
She et al., 2019; Klemm et al., 2020; Lai et al., 2020; Matellán and
Monje-Casas, 2020; Niwa, 2020).

RNA synthesis in the eukaryotic nucleus is carried out by three
multisubunit complexes. RNA polymerase II (RNA pol II)
transcribes the vast majority of genes, including all protein
coding and many other non-coding RNAs (ncRNAs) such as
snRNAs, miRNAs, and snoRNAs. RNA polymerase I (RNA pol I)
transcribes ribosomal RNAs (rRNA) as a single polycistronic
gene: rRNA 35-47S, which is processed into 3 mature rRNAs: 28S
(25S in yeast), 18S and 5.8S. This gene appears repeatedly in all
eukaryotes with hundreds of copies arranged in tandem. RNA
polymerase III (RNA pol III) transcribes an intermediate number
of small, non-coding genes (150–400 different), including 5S
rRNA and tRNAs (Chan and Lowe, 2016). RNA pol I
transcription accounts for almost 60% of global transcription
and RNA pol III for around 25%. Of the latter, the 5S rRNA
constitutes between 10–15%; and the rest, mostly corresponds to
tRNAs. Finally, RNA pol II transcription corresponds to
approximately 15% of the total. An important part of this
corresponds to RNAs that encode ribosomal proteins (Warner,
1999; Pelechano et al., 2010).

The connection between this transcriptional network and cell
cycle progression, can be divided into two different aspects with
different levels of knowledge. Regarding what we can call “better
known word of the RNA polymerases and the cell cycle,” lot of
information has been generated describing the dramatic
reorganization of gene expression that takes place through the
cell cycle. Nearly 20% of S. cerevisiae yeast genome is transcribed
periodically during each cell division cycle. Abundant
information is available on the waves of genes expression
associated to the different phases (G1, S, G2/M, M/G1), the
complex regulatory connection between them, and on the
technological approaches to study this phenomenon (Haase
and Wittenberg, 2014). Obviously, in this better-known world,
we can understand how transcription impairment of specific
genes can disturb the normal cell cycle progression. At this
level, RNA pol II has a relevant and direct role on cell cycle
regulation (Hartwell et al., 1973; Bähler, 2005; Nurse, 2020).

In this review, we focus in the “lesser known world of the RNA
polymerases and the cell cycle.” During years, there has been an
increase in the knowledge of connections between complex
regulatory networks as the transcriptional machinery and cell
cycle progression. General changes on transcription levels
depending on the cell cycle phases has been known for over
decades (Gottesfeld and Forbes, 1997). Different biochemical
events underlying this coupled regulation have been
elucidated. Here we will focus on mechanisms affecting the
three nuclear RNA polymerases. Here we also address this
crosstalk between cell cycle and RNA polymerases in the
opposite sense, that is, how the status and function of nuclear
RNA polymerases can affect cell cycle progression, a much lesser
known aspect. It is important to highlight that this interplay
coordinates different aspects of the overall status of the three
polymerases system with cell cycle progression. In this sense, we
review how cell cycle regulation is affected by the balance between
the three RNA polymerases products and, secondly, by RNA

polymerases assembly. Finally, we also analyze the parallelism
between these regulatory interplays in yeast and metazoan,
suggesting that it could exist a general control strategy
extended throughout eukaryotes.

CELL CYCLE PHASES IMPACTS ON RNA
POLYMERASES FUNCTION

Since several years, it is well known that transcription activity in
eukaryotes is affected by cell cycle phases. Thus, transcription is
repressed during mitosis and highly active in interphase (G1, S,
and G2). This mitotic repression has been observed in vivo for
genes transcribed by all three nuclear RNA polymerases.
Different mechanisms contribute to mitotic repression as
global transcriptional silencing, including dissociation of
transcription factors and cofactors from target genes and
profound reorganization of chromatin structure (Gottesfeld
and Forbes, 1997, and references therein; Taylor, 1960;
Marsden and Laemmli, 1979; Martínez-Balbás et al., 1995).
We will focus on how cell cycle phases modulate transcription
affecting the basal transcription machinery (RNA pol I, II, and II)
in S. cerevisiae although some aspects in higher eukaryotes will
also be addressed.

RNA Pol II Transcribing Through the Cell
Phases
Early works, interestingly described a cell cycle arrest for some
RNA pol II mutants. Thus, mutations in the largest RNA pol II
subunit, Rpb1, impaired cell cycle progression in budding yeast S.
cerevisiae (Drebot et al., 1993), fission yeast Schizosaccharomyces
pombe (Sugaya et al., 1998) and mammalian cells (Sugaya et al.,
2001). RNA pol II activity is regulated during the cell cycle by
changes in the phosphorylation status of the carboxyl-terminal
domain (CTD) of its largest subunit Rpb1 both in yeast and
mammal cells (Bregman et al., 2000; Oelgeschläger, 2002;
Chymkowitch and Enserink, 2013). The Rpb1 CTD contains
26 heptapeptide repeats in yeast (Allison et al., 1988) and 52 in
mammals (Corden et al., 1985). The direct regulation of CTD
phosphorylation serves as a switch to regulate transcription
machinery during the cell cycle. In the budding yeast S.
cerevisiae, early in the transcription cycle, Kin28
phosphorylates the CTD which serves as a mark for
recruitment of the mRNA capping system (Rodriguez et al.,
2000). Interestingly, and coupling cell cycle to RNA pol II
activity, it has been demonstrated that Cdc28 (also called
Cdk1, and the main CDK cell cycle regulator in budding
yeast) is a CTD kinase sharing a partially redundant role with
Kin28 (Chymkowitch et al., 2012; Chymkowitch and Enserink,
2013).

RNA Pol III Transcribing Through the Cell
Phases
A tRNAsynthesisfluctuation during cell cycle has been described both
in mammals and yeast (Scott et al., 2001; Frenkel-Morgenstern et al.,
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2012; Chen and Gartenberg, 2014; Herrera et al., 2018). Previous
results had proposed a tRNA peak inM phase (Chen and Gartenberg,
2014). However, a more recent research has demonstrated that tDNA
transcription peaked in S phase. The authors, interestingly, propose
that this apparent discrepancy can be explained by the overlapping
between the S phase and metaphase in S. cerevisiae, concluding that
the cell cycle-dependent increase in tDNA transcription occurs in the
overlapping time span of late S phase/early metaphase. The same
authors demonstrate the regulatory mechanism coupling cell cycle to
RNA pol III activity: the S phase cyclin Clb5 recruits Cdc28 (Cdk1) to
tDNA genes; Cdc28 promotes the recruitment of TFIIIC and
stimulates the interaction TFIIIC/TFIIIB which directly increases
the dynamics of RNA pol III in vivo. Bdp1, a component of the
TFIIIB complex, has been proposed as the direct target for Cdc28
(Herrera et al., 2018). Recently, new post-translational modifications
of RNA pol III, as sumoylation, has been proposed to be involved in
stress response in yeast (Nguéa P et al., 2019). The role of this
modifications in cell cycle would also be a very interesting open
question.

RNA Pol I Transcribing Through the Cell
Phases
Transcription by RNA pol I oscillates during the cell cycle, being
repressed during mitosis, recovered during G1 and maximal in
S/G2 phases. In mammals, repression during M phase is caused
by inactivation of a RNA pol I specific factor (TIF-IB/SL1) by an
inhibitory cdc2 mediated phosphorylation (Heix et al., 1998).
Then, transcription recovery during G1 is mediated by
reactivation of another specific factor, UBF (Klein and
Grummt, 1999). In the budding yeast, the locus containing
rDNA genes, segregate after the rest of the genome, in late
anaphase. Only in anaphase, yeast repress RNA pol I
transcription by the Cdc14 phosphatase acting on Rpa43
subunit, inducing the dissociation of RNA pol I from the 35S
rDNA (Clemente-Blanco et al., 2009). More recently in S.
cerevisiae, it has been demonstrated that Rio1 downregulates
RNA pol I in a cell cycle dependent manner through Rpa43
subunit as a target. Moreover, Rio1 promotes rDNA stability to
ensure rDNA segregation during anaphase (Iacovella et al., 2015).

IMBALANCE OF RNA POL I, II, AND III
PRODUCTS PROVOKES G1 ARREST

Balanced Production of Ribosomal
Components Prevents G1 Arrest in Budding
Yeast
NTP-depleting drugs, as 6-Azauracil (6AU) and mycophenolic acid
(MPA) interfere with transcription elongation in vivo by strongly
inhibiting inosine monophosfate (IMP) dehydrogenase, a rate-
limiting enzyme in the novo synthesis in guanine nucleotides
(Shaw and Reines, 2000; Shaw et al., 2001). Our studies revealed
that S. cerevisiae cells accumulate at G1 after NTP-depleting drug
treatment. As NTP are substrates for three RNA polymerases, we
could clearly establish that NTP depletion differentially impacts the

RNA products of the three RNA polymerases: products from RNA
pol I and III presented a strong and early reduction after treatment
but mRNAs showed a very slight reduction at the same conditions.
Thus, NTP-depletion drugs generate a clear imbalance between pre-
rRNAs, tRNAs and mRNAs (Gómez-Herreros et al., 2013). Using
conditionalmutants affecting essential subunits of RNApol I (Rpa43)
or III (Rpc17), where their normal transcripts production (rRNAs or
5S rRNA respectively) decreased but not mRNAs generated from
wild type RNA pol II, cells also arrested at G1, indicating that any
imbalance in RNA polymerases products negatively impacts G1/S
transition (Gómez-Herreros et al., 2013).

Ribosome biogenesis is a highly resource-consuming process and,
therefore, involves the tight regulation and balanced synthesis of all its
components. This complicated pathway requires the coordinated
assembly of rRNAs, synthesized by RNA pol I and III, and ribosomal
proteins (r-proteins), whose mRNAs are transcribed by RNA pol II.
This coordination is critical for an effective utilization of cell resources
and requires a balanced function of the RNA pol I, II, and III
transcription activities. Thus, the synthesis of rRNAs and r-proteins
are two coordinated pathways that lead to efficient ribosome
biogenesis [(Warner, 1999; de la Cruz et al., 2018) and references
therein]. Data from mammalian cells also showed a G1 arrest after
disturbances in ribosome biogenesis, moreover, a key role of
mammalian r-proteins L5 and L11 for this essential response has
been demonstrated very well (Sun et al., 2008). L11 and L5 r-proteins
assembly to 5S rRNA on pre-60S ribosomal particles in a process
mediated by Rrs1 (Miyoshi et al., 2004). Thesemammalian r-proteins
L5 and L11 have been reported to accumulate as free proteins and to
induce p53 stabilization and G1 arrest after ribosomal biogenesis
stress (Sun et al., 2008; Bursać et al., 2012). Therefore, we proposed
that in yeast, the imbalance in the three RNA polymerases transcripts
provoked defects in ribosomal biogenesis and generated the
accumulation of free r-proteins due to the drop in rRNAs. This
ribosomal assembly defect could induce a G1 arrest through the
accumulation of free r-proteins. Thus, we demonstrated the
accumulation of free L5 r-protein in these conditions, as was the
case for mammalian cells. Figure 1 summarizes the model that has
been proposed (Gómez-Herreros et al., 2013). In this model, the
balanced activity of the three eukaryotic RNA polymerases (I, II, and
III) is a prerequisite for an equimolar production of the different
ribosomal components. When this balance is disturbed, the
accumulation of free L5 occurs and acts as a signal to arrest cell
cycle at G1 (Figure 1).

Specific cell cycle defects have been described in response to
repressed synthesis of r-proteins. After several hours of repression of
r-proteins, systematic analyses of cell cycle progression, cell
morphology, and bud site selection were performed after
repression of 54 individual r-proteins genes in S. cerevisiae. In this
study, most of the repressed genes involved a G1 arrest (nine
encoding 60S subunit components and twenty-two encoding
r-proteins of the 40S subunit) and only nine repressed genes
encoding components of the 60S subunit resulted in a G2/M
delay (Thapa et al., 2013). A later work from the same laboratory,
explore cell cycle changes during the transition from normal cell cycle
to arrest after inhibition of ribosome formation or translation
capacity. Both inhibitions are sensed after a short time and the
G1 stage was reached. No spindles or mitotic actin rings were visible,
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but membrane ingression was completed in most cells and Ace2, a
transcription factor with asymmetric localization to daughter cell
nuclei after cell division (Herrero et al., 2020), was localized to
daughter cell nuclei demonstrating that, even in the budded
arrested cells, G1 phase was reached (Shamsuzzaman et al., 2017).
Finally, and very recently, it has been shown that disruption of the
assembly of the 40S subunit affected the assembly of the 60S subunit
(Rahman et al., 2020). As the r-proteins in each ribosomal subunit are
essential only for the assembly of the cognate subunit (Gregory et al.,
2019), it was unexpected that disruption of the 40S subunit assembly
affected the kinetics of assembly of the 60S subunit, causing
accumulation of free/extra-ribosomal 60S L5 (also named uL8)
(Rahman et al., 2020). These results indicate that an interaction
between the assembly of ribosomal subunits 40S and 60S exists, and
that free L5 is a good marker of this generated ribosomal stress.

Nucleolar Stress Induces a G1 Arrest in
Mammalian Cells
Nucleolar stress is the term used to described failures in ribosome
biogenesis or function that ultimately leads to disruption in cell
homeostasis (James et al., 2014). In human cells, mycophenolic
acid (MPA) acts as an NTP-depleting drug, as in yeast. Thus, in
mammalian, MPA treatment results in both a drastic reduction of
pre-rRNA synthesis and the disruption of the nucleolus, causing
p53 activation and the subsequent G1 arrest. This treatment

provokes the accumulation of free human r-proteins L5 and L11
that bind and inhibit MDM2, the p53 E3 ubiquitin ligase.
Therefore, ribosomal imbalance causes MDM2 inhibition,
which induces p53 stabilization (Sun et al., 2008; Bursać et al.,
2012; Fumagalli et al., 2012; Lo et al., 2012).

Cell responses to the imbalance between RNA polymerases
activities, described in yeast and human cells, show very strong
analogies: i) in both systems the outcome is a G1 arrest; ii) in both
organisms, the G1 arrest responses are mediated by a ribosomal
stress; iii) in both scenarios the accumulation of free r-proteins (as
L5) is essential for coupling to cell cycle. This strong parallelism
between the mechanisms responding to nucleolar stress in yeast
and metazoan suggests that it reflects a general control strategy
extended throughout eukaryotes. However, a major difference
between the two systems exists: yeast does not contain p53 or
MDM2. The interpretation of these differences has been
extensively discussed and other systems exhibiting nucleolar
stress without p53 have been described (James et al., 2014).

DEFFECTS IN RNA POLYMERASE
ASSEMBLY PROVOKES ARREST AT G1

As we have just described, the ribosome biogenesis process has
been extensively studied [(de la Cruz et al., 2018) and references
therein] and its relevant role in interplaying complex networks, as

FIGURE 1 | Coupling RNA polymerases production to cell cycle through the free accumulation of the r-protein L5 in yeast. The top panel represents balanced
production of ribosomal components: rRNA, r-proteins mRNA and 5S rRNA, transcribed by RNA pol I, II, and III, respectively, are synthesized in the balanced proportion
required for correct ribosomal particles assembly. The bottom panel represents situations where this balance is disturbed by a decrease in rRNAs levels but not in
r-proteins mRNAs, generating free L5 accumulation and a G1 arrest. As indicated in the figure, rRNA is represented by waves and mRNA by lines.
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cell cycle regulation, has been revealed. The assembly of
eukaryotic RNA polymerases (RNA pol I, II, and III), is not
completely understood although some elements involved in
that process has been recently identified. We focus on yeast
RNA pol III assembly, as coupling between this assembly
process and cell cycle progression has been described
(Płonka et al., 2019). The authors had previously isolated
and characterized conditional mutants affecting the Rpc128,
the second largest RNA pol III subunit. The mutant allele
rpc128-1007 presents a severe defect in RNA pol III assembly
as well as an expected reduction in tRNA levels (Cieśla et al.,
2007; Cieśla et al., 2015). This conditional mutant, at the
restrictive temperature, shows a G1 arrest phenotype which
is partially suppressed by overexpression of RBS1, the gene
encoding a protein involved in RNA pol III assembly (Cieśla
et al., 2015). Also, cells lacking Rbs1 showed moderated delay in
G1/S transition, indicating that impaired RNA pol III assembly
is connected to the cell cycle default. Moreover, the G1 arrest
phenotype is not suppressed after inactivation of Maf1,
conditions in which elevated levels of tRNAs are produced
(Pluta et al., 2001). Thus, they conclude that impairment of
RNA pol III complex assembly, and not decreased tRNA
transcription levels, is the primary reason for the G1 arrest
observed in the rpc128 mutant (Płonka et al., 2019). Very
interestingly, Rbs1 was identified as a substrate
of cyclin-dependent kinase Cdc28, the main cell cycle

regulator in S. cerevisiae, in a global proteomic approach
(Ubersax et al., 2003).

However, there is evidence that RNA pol III defects can affect
cell cycle progression regardless of assembly defects. Thus,
mutants affecting the Rpc53 RNA pol III subunit, which has
not been described as involved in assembly, leads to a G1 arrest
both in yeast (Mann et al., 1992) and mammals (Ittmann et al.,
1993). Moreover, depletion of RPC17 (encoding another RNA pol
III subunit), also led to a delay in the G1 phase of the cell cycle
(Gómez-Herreros et al., 2013) but, interestingly, RBS1
overexpression did not overcome G1 arrest (Płonka et al.,
2019). These results indicate that G1 arrest coupled to defects
in RNA Pol III can be mediated by different regulatory inputs.

CONCLUSIONS, APPLICATIONS AND
OPEN QUESTIONS

In this work, we have revisited some aspects of the crosstalk
between cell cycle progression and RNA polymerases function.
We have focused on those situations where the cell cycle defect is
not mediated by the limiting transcription of a specific gene, but
those situations where the signal for the cell cycle regulation is the
consequence of impaired activity of RNA polymerases or this
activity is modulated by the cell cycle phase. First, we have
revisited how the three RNA polymerases modulates their

FIGURE 2 | S. cerevisiae yeast cell cycle scheme. The RNA polymerases system status impacts on G1/S transition. Graphical representation of the cell cycle
phases and main regulators in S. cerevisiae are designed. The cyclin-dependent kinase Cdc28 (also known as Cdk1) is sufficient and necessary for cell cycle regulation.
Different substrates are phosphorylated based on their association with G1 phase cyclins (Cln1, 2, and 3), S phase cyclins (Clb 5 and 6) or mitotic cyclins (Clb 1, 2, 3, and
4). In this figure, we represent how two abnormal situations involving RNA polymerases, affects specifically G1/S transition: (1) RNA pol I, II, and III transcripts
imbalance and (2) RNA polymerases assembly defects.
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transcription capacity by cell cycle. Then, we have discussed two
models in yeast. The first one, when cell cycle arrest is generated
by an imbalanced production of RNA pol I, II, and III, which
induces an imbalance in ribosomal components and the
accumulation of the free r-protein L5 (Figure 1). Secondly,
when a defect in RNA polymerases assembly is sensed and cell
cycle arrested. In both cases, cells arrest at G1, indicating that
yeast cells are able to detect internal signals, derived from the
activity of the transcriptional machinery. These signals can
impact the dynamics of START, the main regulatory event
that takes place towards the end of G1 and involves an
extensive transcriptional program (Costanzo et al., 2004; de
Bruin et al., 2004; Haase and Wittenberg, 2014). It is a very
attractive concept that complex processes like gene transcription
and ribosomal biogenesis are coupled and sensed to take
decisions at START (Figure 2).

We have also highlighted that the surveillance mechanism that
couples balanced production of yeast ribosomal components and
cell cycle, resembles the p53-dependent nucleolar stress
checkpoint described in human cells, which indicates that this
is a general control strategy extended throughout eukaryotes. In
human cells, the molecular components of the regulatory
pathway are well known. Clinicians uses the induction of
nucleolar stress in cancer cells as an anti-cancer therapy.
Moreover, selective inhibition of ribosomal gene transcription
in the nucleolus has been shown to be an effective therapeutic
strategy to promote cancer-specific activation of p53 (Bywater
et al., 2012; Hein et al., 2013; James et al., 2014;Woods et al., 2015;
Carotenuto et al., 2019).

Relevant questions remain to be answered in the yeast
regulatory systems presented in this work. First, it would be
interesting to figure out if all G1 arrest phenomena induced by
different defects in RNA polymerases are mediated by the
ribosomal stress. Finally, it would be extremely challenging to
elucidate the molecular elements that connect the signals
(imbalanced production of ribosomal components or defects

in assembly) to the G1 arrest. The different elements that
participate in the G1/S transition regulatory network, are good
candidates. This knowledge would have a relevant translational
potential as more than 50% of human cancers lack functional p53.
Identification of new p53-independent response pathways could
potentially reveal new therapy strategies for p53-defective cancer.

In summary, only understanding both regulatory aspects of
this crosstalk, how cell cycle modulates transcription and
viceversa, a precise knowledge of this complex regulatory
interplay will be achieved with a huge translational potential
that it has already begun promisingly.
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