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Cisplatin is a chemotherapy drug commonly used in cancer treatment. Tumour cells are
more sensitive to cisplatin than normal cells. Cisplatin exerts an antitumour effect by
interfering with DNA replication and transcription processes. However, the drug-
resistance properties of tumour cells often cause loss of cisplatin efficacy and
failure of chemotherapy, leading to tumour progression. Owing to the large
amounts of energy and compounds required by tumour cells, metabolic
reprogramming plays an important part in the occurrence and development of
tumours. The interplay between DNA damage repair and metabolism also has an
effect on cisplatin resistance; the molecular changes to glucose metabolism, amino
acid metabolism, lipid metabolism, and other metabolic pathways affect the cisplatin
resistance of tumour cells. Here, we review the mechanism of action of cisplatin, the
mechanism of resistance to cisplatin, the role of metabolic remodelling in tumorigenesis
and development, and the effects of common metabolic pathways on cisplatin
resistance.
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INTRODUCTION

Cancers are systemic and complex diseases that seriously endanger human health, and their
incidence is increasing because of the influence of environmental pollution and modern living
habits. Current treatments for tumours include surgery, chemotherapy, radiotherapy, targeted
therapy, and immunotherapy (McCarthy, 2006; Englinger et al., 2019). In recent years,
molecular-mechanism-based targeted therapies and immunotherapy have shown great
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progress. However, the targeted therapy approach is limited by
the low frequencies of gene mutations and small experimental
population sizes. The use of immunotherapy also encounters
many challenges, with few definitive answers on how to select
the population likely to benefit, optimize the immunotherapy
regimen, evaluate the effects of immunotherapy, and solve drug
resistance and other urgent problems (Nishino et al., 2013;
Carbone et al., 2017; Sharma et al., 2017). Chemotherapy
remains the most widely used adjuvant treatment for cancer.
Platinum drugs, including cisplatin, carboplatin, and
oxaliplatin, are commonly used for most tumour types. Their
basic pharmacological mechanism involves internal and
interchain crosslinks created by binding to DNA, inhibition
of DNA replication and transcription, and then induction of
damage to double-stranded DNA. Cisplatin, a first-generation
platinum drug, is used as a first-line therapy in clinical practice
and has a good inhibitory effect on solid tumours including
testicular cancer, ovarian cancer, lung cancer, stomach cancer,
head and neck tumours, cervical cancer, and breast cancer
(Dasari and Tchounwou, 2014). However, it is associated
with numerous undesirable side effects including severe
kidney problems, allergic reactions, decreased immunity to
infections, gastrointestinal disorders, haemorrhage, and
hearing loss especially in younger patients (Dasari and
Tchounwou, 2014). Moreover, drug resistance of tumour
cells often leads to loss of cisplatin efficacy and failure of
chemotherapy, resulting in tumour progression (Q. Wu et al.,
2014; Cree and Charlton, 2017). Previous in-depth studies on
cisplatin resistance have addressed the contribution of genetics,
epigenetics, and signal transduction pathways. Increasing
attention has been given to the role of tumour metabolism in
cisplatin resistance.

Tumour tissue is composed of cancer cells with different
genetic and/or epigenetic backgrounds and surrounding
stromal cells, a condition known as intra-tumoral
heterogeneity (Hanahan and Weinberg, 2011; L. V. Nguyen
et al., 2012). The microenvironment around cancer cells is
completely different from that around normal cells.
Therefore, tumour cells must demonstrate a rapid adaptive
response to hypoxia and hypotrophic conditions. This
phenomenon of bioenergetics in tumour cells, known as
“metabolic reprogramming” (Yoshida, 2015), has been
identified as one of the 10 characteristics of cancer.
Remodelling of glucose, amino acid, and lipid metabolism is
an important factor for promoting tumour development
(Biswas, 2015). Metabolic reprogramming, on the one hand,
meets the energy and material requirements of tumours; on the
other hand, it involves epigenetic regulation, thereby playing an
important part in tumour formation, metastasis, drug
resistance, and other processes (Biswas, 2015; Wettersten
et al., 2017). The processes by which cisplatin induces
tumour cell death and by which tumour cells resist cisplatin-
induced death are accompanied by metabolic reprogramming.
Targeting metabolic processes therefore represents a potential
novel strategy to reverse cisplatin resistance. The role of
metabolic reprogramming in cisplatin resistance is reviewed
in this paper.

DISCOVERY AND MECHANISM OF
CISPLATIN ACTION

The antitumour effect of cisplatin was discovered in the 1960s by
American physicist B. Rosenberg (Rosenberg et al., 1965), who
associated the shapes of cell mitotic filaments with an electric or
magnetic dipole field direction map and studied the effects of
electric fields on bacterial division to discover disinfectants. In the
course of this research, he found that when the platinum electrode
was energized, Escherichia coli cells were 300-fold longer than the
corresponding non-energized normal cells (Muggia et al., 2015;
Rancoule et al., 2017). To study this phenomenon, T. Krigas
tested the bacteria with all the products isolated from the culture
and eventually found that [Pt (Ⅳ) (NH3)2Cl4] was a platinum-
activated complex produced by electrolysis in nutrient solution
that contributed to E. coli filamentation (Rosenberg et al., 1967).
Krigas then asked, “Does only tetravalent platinum have this
activity?” To answer this question, Krigas synthesized divalent
platinum [Pt (Ⅱ) (NH3)2Cl4] and found that its activity was
stronger than that of tetravalent platinum. [Pt (Ⅱ) (NH3)2Cl4]
has both cis- and trans-structures, and its cis-structures have
active trans-structures; the cis-structure is cisplatin
(ROSENBERG et al., 1965). Rosenberg then applied cisplatin
in antitumour research and found that it had good antitumour
activity (Rosenberg et al., 1967). In 1978, the United States Food
and Drug Administration approved cisplatin as a new anticancer
drug, ushering in a new era of platinum drug development and
applications (Prestayko et al., 1979). Later, a large number of
studies demonstrated the antitumour effects of cisplatin on solid
tumours including ovarian cancer, testicular cancer, and head
and neck tumours (Kaye et al., 1992; Tanaka et al., 2018; de Vries
et al., 2020).

Following the discovery of the anticancer effect of cisplatin, its
mechanism of action was studied. The biochemical mechanism
by which cisplatin crosses the cell membrane is still not
completely understood. Recently, many studies have
demonstrated that cisplatin enters cells through the copper
trafficking system, which includes members of the copper
transport (Ctr) protein family such as Ctr1 and Ctr2 (Kilari
et al., 2016). The ATP7A and ATP7B copper pumps are also
associated with the pumping of cisplatin. Cisplatin is inert and
must be intracellularly activated by a series of aquation reactions
that consist of the substitution of one or both cis-chloro groups
with water molecules. Therefore, the activation of cisplatin
depends on environmental conditions. In the blood or
extracellular tissue fluid, the physiological chloride
concentration is approximately 100 mmol/L, and the activity
of cisplatin is low. Inside cells, the concentration of chloride
ions decreases to only a few mmol/L, enabling the generation of
highly reactive mono-and bi-aquated cisplatin forms (Chu et al.,
1994).

The anticancer mechanism of cisplatin can be divided into
nuclear and cytoplasmic modules according to localization.
Aquated cisplatin avidly binds DNA, with a predilection for
nucleophilic N7-sites on purine bases, resulting in 1,2- or 1,3-
intrastrand crosslinks (P. Chen et al., 2016) and a lower
percentage of interstrand crosslinks (Ming et al., 2017). These
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interactions lead to damage to the DNA double helix structure
and interfere with replication and transcription. In particular 1,2-
intrastrand ApG and CpG crosslinks have been identified as the
most prominent cisplatin-induced DNA lesions and have been
suggested to account for most, if not all, cisplatin cytotoxicity. In
addition, the altered structure of the DNA makes it
unrecognisable by DNA-damage-repair proteins. In general,
the main roles of cisplatin in the nucleus are to inhibit DNA
replication and RNA transcription, arrest the cell cycle, and cause
programmed cell death. However, only ∼1% of intracellular
cisplatin binds to nuclear DNA (Gonzalez et al., 2001), and
cisplatin has been shown to have significant cytotoxicity to
enucleated cells (Berndtsson et al., 2007). The larger
proportion of intracellular cisplatin interacts with cytoplasm
nucleophiles such as glutathione (GSH), mitochondrial DNA,
proteins, phospholipids and phosphatidylserine in membranes,
sulphur donors, and other mitochondrial structures (Galluzzi
et al., 2014). These interactions result in reduced isotonic
consumption and/or direct maintenance of reactive oxygen
species (ROS) production. ROS have a dual role in cisplatin
cytotoxicity, directly triggering mitochondrial outer membrane
permeabilization (MOMP) or aggravating DNA damage induced
by cisplatin (Sancho-Martinez et al., 2012).

The most effective mode of action of cisplatin involves the
DNA damage response and mitochondrial apoptosis. Cisplatin-
induced lesions cause distortions in DNA that can be identified by
multiple repair pathways. Among these, the nucleotide excision
repair (NER) and mismatch repair (MMR) systems are the most
prominent mechanisms for the removal of cisplatin. If the
damage cannot be repaired, cells become committed to
(usually apoptotic) death. This involves the sequential
activation of the ATR (ataxia telangiectasia mutated and
RAD3-related protein, a sensor of DNA damage) and
checkpoint kinase 1 (the most prominent substrate and
downstream effector of ATR), which in turn phosphorylates

the tumour suppression protein TP53. TP53 activates several
genes whose products promote MOMP, thereby triggering
endogenous apoptosis, as well as genes encoding components
of exogenous apoptotic pathways. The extrinsic pathway is
activated when the ligand binds to members of the tumour
necrosis factor-α receptor superfamily and then forms the
death-inducing signalling complex through oligomerization of
the connector molecule and recruitment of procaspase-8
(Kischkel et al., 1995). The intrinsic pathways are initiated by
cellular stresses such as DNA damage, leading to the release of
cytochrome C by mitochondria, which activates procaspase-9.
Bcl-2 family proteins regulate DNA-damage-induced apoptosis
by regulating the release of mitochondrial cytochrome C in
response to DNA damage (Nunez et al., 1998) (Figure 1).

CLINICAL APPLICATIONSOFCISPLATIN IN
TUMOUR TREATMENT

Cisplatin is widely used in the treatment of various cancers owing
to its excellent anticancer effects (Table 1). Induction
chemotherapy followed by radiation therapy (RT) is an organ-
sparing treatment approach targeted to selected sub-sites of
locally advanced head and neck squamous cell carcinoma.
Induction regimens originally included cisplatin and 5-
fluorouracil (5-FU) (PF) (Forastiere et al., 2003). More recent
phase III trials have shown that the addition of docetaxel to PF
results in superior efficacy in patients treated with RT
(Vermorken et al., 2007) or carboplatin and RT (Posner et al.,
2007). The standard chemotherapy for the initial treatment of
ovarian cancer is a combination of a platinum analogue with
paclitaxel (McGuire et al., 1996; Ozols et al., 2003); Deborah K
found that intravenous paclitaxel plus intraperitoneal cisplatin
and paclitaxel improved survival in patients with optimally
debulked stage III ovarian cancer compared with intravenous

FIGURE 1 | Overview of molecular mechanisms of cisplatin in cancer treatment. The figure was drawn in adobe illustrator.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6917953

Wang et al. Tumour Metabolism in Cisplatin Resistance

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


paclitaxel plus cisplatin (Armstrong et al., 2006). In 1993, Housset
and colleagues reported encouraging results with regard to
bladder preservation and patient compliance with a
hypofractionated twice-a-day radiation approach employing
concurrent cisplatin and 5-FU that could be safely given as an
outpatient regimen (Housset et al., 1993). Treatment of TC
depends on stage and tumour type, i.e., seminoma or non-
seminoma. Patients with disseminated non-seminoma
(intermediate or low risk IGCCC) are treated with four
courses of the BEP (bleomycin, etoposide and cisplatin) or
VIP (etoposide, ifosfamide and cisplatin) regimen after
surgical removal of the affected testicle. In cases of residual
disease after completion of chemotherapy, patients undergo
surgical removal of affected lymph nodes and/or metastases
that had not completely disappeared after chemotherapy.
Approximately 10–15% of patients with disseminated disease
will need second-line treatment as a consequence of relapse or
refractory disease (Adra and Einhorn, 2017). Various effective
salvage strategies are currently available. The choice of standard-
dose salvage treatment depends on which drugs were initially
used in combination with cisplatin. Some common and effective
standard-dose salvage treatments have been reported, with long-
term remission rates ranging from 23 to 54% using VIP
(McCaffrey et al., 1997; Miller et al., 1997), 63% using TIP
(paclitaxel, ifosfamide and cisplatin) (Kondagunta et al., 2005),
24% using VeIP (vinblastine, ifosfamide, and cisplatin (Loehrer
et al., 1998), and 51% using GIP (gemcitabine, ifosfamide and
cisplatin) (Fizazi et al., 2014). In patients with advanced non-
small-cell lung cancer, cisplatin plus etoposide was more effective
but also more toxic than carboplatin plus etoposide (Klastersky
et al., 1990; Faivre-Finn et al., 2017). Patients with limited-stage
small-cell lung cancer were treated with concurrent twice-daily
chest radiotherapy and etoposide/cisplatin followed by
cyclophosphamide, doxorubicin, and vincristine (Johnson
et al., 1996 Mar). Compared with paclitaxel plus cisplatin,
paclitaxel plus carboplatin is not inferior and should be a
standard treatment option for metastatic or recurrent cervical
cancer; however, cisplatin is still the key drug for patients who
have not received platinum agents (Kitagawa et al., 2015). 5-
Fluorouracil combining with cisplatin (FP), capecitabine plus
cisplatin (XP) regimen, epirubicin/cisplatin–5-FU (ECF), as well
as 5-FU, an anthracycline and cisplatinis are adopted as standard
reference regimens for patients with gastric cancer (Kang et al.,
2009; Lee et al., 2012). Brandes et al. found that cisplatin plus

temozolomide appeared to be effective in chemotherapy-naive
patients with recurrent glioblastoma multiforme, with an
acceptable level of toxicity (Brandes et al., 2004). The
CBCSG006 trial reported the superior efficacy of a cisplatin
plus gemcitabine (GP) regimen compared with paclitaxel plus
gemcitabine as a first-line treatment for metastatic triple-negative
breast cancer (Hu et al., 2015; J. Zhang et al., 2018a).

MOLECULAR MECHANISM OF CISPLATIN
RESISTANCE

Despite the successful application of cisplatin treatment against
several cancer types, the effectiveness of the therapy is often
limited by resistance, leading to therapeutic failure. DNA-
damage-mediated apoptotic signals can be attenuated, and
the resistance that ensues is a major limitation of cisplatin-
based chemotherapy. Drug resistance is still the major obstacle
to successful chemotherapy. Given the multiple mechanisms of
cytotoxicity exerted by cisplatin, the cisplatin-resistant
phenotype of cancer can be due to alterations in one or more
of these molecular circuits (Galluzzi et al., 2012). The
mechanism of cisplatin resistance includes the following
main aspects.

1) Decreased drug uptake or increased drug effusion. This can
significantly reduce cisplatin adducts, resulting in reduced
toxicity and resistance. Ctr1 is a transmembrane protein with
an important role in the cellular uptake of cisplatin. Studies
have shown that cisplatin at clinical concentrations reduces
the expression of CTR1, leading to a reduction in cisplatin
uptake (Holzer et al., 2006). Overexpression of the ABC family
transporter MRP2 leads to cisplatin being pumped from the
cell into the extracellular space, reducing the intracellular
cisplatin concentration (Borst et al., 2000; Liedert et al., 2003).

2) Increased sequestration of cisplatin by GSH and other
cytoplasmic scavengers with nucleophilic properties.
Aquated cisplatin binds to cytoplasmic nucleophilic
substances, including GSH, methionine, metallothionein,
and other cysteine-rich proteins. The activation of GSH
detoxification and metallothionein systems by nucleophilic
substances serving as cytoplasmic scavenging agents also
accelerates the removal of cisplatin from cells (Mandic
et al., 2003).

TABLE 1 | The chemotherapy regimens of cisplatin in various tumours.

Tumour Cisplatin chemotherapy regimens

Head and neck squamous cell carcinoma cisplatin and 5-fluorouracil Armstrong et al. (2006); Kelland, (2007)
Ovarian cancer cisplatin and paclitaxel McGuire et al. (1996); Ozols et al. (2003)
Bladder cancer cisplatin and 5-fluorouracil Kaufman et al. (2000)
Testicular cancer cisplatin, ifosfamide and etoposide Housset et al. (1993)
Lung cancer cisplatin and etoposide Klastersky et al. (1990); Faivre-Finn et al. (2017)
Cervical cancer cisplatin and paclitaxel Kitagawa et al. (2015)
Stomach cancer cisplatin and capecitabine Lee et al. (2012)
Glioblastoma cancer cisplatin and temozolomide Brandes et al. (2004)
Breast cancer cisplatin and gemcitabine Hu et al. (2015); Zhang et al. (2018a)
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3) The sensitivity of tumour cells to cisplatin is related to the
molecular damage caused by the direct binding of cisplatin to
its target. Once cisplatin reacts with DNA, the cell must clear
or tolerate the lesions to survive. Thus, cisplatin resistance is
also related to DNA damage repair ability. The repair of
damage to double-stranded DNA caused by cross-linking
requires the joint participation of different repair
mechanisms. Previous studies have found that NER
(Shuck et al., 2008), homologous recombination (Telli
et al., 2016), non-homologous end joining (Diggle et al.,
2005; Sears and Turchi, 2012), and other repair mechanisms
are involved.

4) The continuous action of cisplatin leads to abnormalities in
the signal regulation networks in tumour cells, resulting in
strong anti-apoptosis ability and resistance of cells to cisplatin.
For example, TP53 is inactivated in approximately one-half of
human tumours, endowing tumour cells with anti-apoptotic
ability (Vousden and Lane, 2007). Other studies have found
that theMAPK pathway (which has a critical role in regulating
cisplatin-induced apoptosis) cannot be activated in cisplatin-
tolerant cells, and, as a result, the FAS/FASL system (an
inducer of extrinsic apoptosis) cannot be activated to
enable cell survival (Spierings et al., 2003). In addition,
PI3K/AKT, NF-κB, Stat3, and other signalling pathways are
also involved in the regulation of cisplatin resistance
(Mitsuuchi et al., 2000) (Figure 2).

These resistance mechanisms explain the changes in the
genome, proteome, and signal transduction pathways that
occur under the action of cisplatin. This does not fully explain
the resistance mechanism of cisplatin. New research fields such as
metabolic reprogramming are gradually being developed; we will
elaborate on these in detail below.

THE METABOLIC REMODELLING
PROCESS OF TUMOURS

In recent years, the understanding of malignant tumours has
gradually changed from the concept of a “genetic disease” to one
of a “metabolic disease” (Wishart, 2015), and metabolic
remodelling has been recognized as one of the ten
characteristics of tumours. Obesity, diabetes, dyslipidaemia,
and other metabolic diseases are related to the development of
tumours. Metabolic changes create selective advantages for
tumour growth, proliferation, and survival. Metabolic
processes produce energy and anabolic growth substrates to
sustain cell survival and proliferation. Tumour cells meet the
energy, biosynthesis, and oxidation-reduction reaction
requirements for rapid and continuous proliferation through
metabolic remodelling, which involves glycometabolism, amino
acid metabolism, lipid metabolism, and other processes (Mathieu
and Ruohola-Baker, 2017). Normal cells dissipate glucose energy
mainly through the glycolytic–tricarboxylic acid (TCA)
cycle–phosphorylation pathway under aerobic conditions;
however, owing to their higher demand for energy, tumour
cells rely on glycolysis as the main pathway of energy production.

This remodelling of glucose metabolism in tumour cells is
known as the Warburg effect (Warburg et al., 1927) and also
involves changes in the metabolic intermediates that provide
biosynthetic materials for the rapid growth and division of
tumour cells. These changes in metabolite levels vary among
different cancers; for instance, a high-glycine diet may prevent
breast cancer (Y. Wang et al., 2018b), serine metabolism is
dysregulated in many tumours (Mattaini et al., 2016),
asparaginase is an integral component of multiagent
chemotherapy regimens for the treatment of acute
lymphoblastic leukaemia (Salzer et al., 2018), histone

FIGURE 2 | Cisplatin resistance mechanism. (1) Reduced intracellular accumulation of cisplatin. (2) Increased sequestration of cisplatin by GSH and other
cytoplasmic scavengers with nucleophilic properties. (3) Enhanced DNA damage repair ability. (4) Defects in apoptotic signal transduction pathways. The figure was
drawn in Adobe Illustrator.
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hypermethylation can be induced in V600EBRAFmelanoma cells
by withdrawing glutamine (Cluntun et al., 2017), and high lactate
levels are predictive of metastasis and restricted patient survival
(Choi et al., 2013). Cellular glucose metabolism and cancer
metabolism in general were not previously considered to be
major branches of cancer biology, and high cellular glucose
metabolism has only recently been recognized as one of the
hallmarks of cancer by biologists (Hay, 2016). Lipid
metabolism remodelling has an important role in the
occurrence and development of hepatocellular carcinoma
(HCC), mainly involving lipid biosynthesis and desaturation
caused by upregulation of numerous crucial enzymes [ACL,
acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN),
and stearoyl-coenzyme A desaturase-1 (SCD1)] in fatty acid
biosynthesis. Monosaturated fatty acids, produced from
saturated fatty acids by SCD1, are vital for membrane
synthesis and prostaglandin synthesis and serve as sources for
triacylglycerols. They influence cancer cell survival by
contributing to autophagy activation, promoting cell
membrane turnover, influencing intracellular signalling and
gene transcription, and enhancing energy production (Pope
et al., 2019). The three major metabolisms are not only
independent of each other but are also related to each other
through the TCA cycle. Below we will introduce the link between
metabolic reprogramming and cisplatin resistance.

ROLES OF METABOLIC PROCESSES IN
DNA DAMAGE REPAIR

As mentioned earlier, the direct target of cisplatin is DNA, which
can cause DNA cross-linking and double-strand damage.
Metabolism may be involved in tumour development because
it influences DNA damage repair. The first connection between
cell metabolism and DNA repair involves DNA folding (Jeggo
and Downs, 2014). Chromatin packaging and remodelling are
accomplished through various histone post-translational
modifications and DNA modifications, the most common
types being methylation (Niculescu and Zeisel, 2002) and
acetylation. Most methyl donors are produced during
S-adenosylmethionine (SAM) metabolism, which is correlated
with methionine, one-carbon metabolism, tetrahydrofolate
(THF), and the choline pathway (Niculescu and Zeisel, 2002;
Mehrmohamadi et al., 2016). Changes in methionine, THF, and
choline concentrations directly affect SAM and thus DNA or
histone methylation. The only acetyl donor is acetyl-coenzyme A,
which is closely related to TCA (Choudhary et al., 2014; Sivanand
et al., 2017). Limiting the number of acetyl donors can destroy
normal DNA in affected tissue and influence DNA folding and
DNA remodelling (Sivanand et al., 2017). Therefore, regulating
methyl and acetyl donors through different metabolic pathways
affects the DNA repair process. Second, the availability of
metabolites and other nutrients affects the amount and the
proportion of nucleotides produced in cells (Rao et al., 2015),
thereby affecting DNA repair and replication. Various amino
acids are closely related to raw DNA synthesis materials.
Glutamine and glycine are involved in purine synthesis (Cory

and Cory, 2006; Lane and Fan, 2015), while aspartic acid is related
to pyrimidine synthesis. Finally, the regulation of ROS
metabolism is also related to DNA damage repair. Strict
regulation of cellular oxidation-reduction reaction stress is
necessary because high levels of ROS can lead to oxidative
stress and oxidative damage to proteins, DNA, and lipids;
however, a certain level of ROS is essential to activate
signalling pathways involved in multiple biological processes
(Shanware et al., 2011; Alleman et al., 2014).

Cells have evolved several ways to balance ROS levels, and
GSH is one of the main molecules that scavenge ROS. In addition,
studies have found that an important regulator of ROS levels is
the transcription factor NRF2, which has been proven to regulate
key enzymes of serine metabolism (PHGDH, PSAT1, and ATF4)
(DeNicola et al., 2015). In our previous work, we found that
reducing the concentration of serine in the medium or inhibiting
the activity of PHGDH could reduce levels of H3K4 methylation
and promote DNA repair, leading to resistance to cisplatin (X.
Zhao et al., 2020). Although tumour metabolic remodelling can
affect DNA repair pathways, DNA damage caused by endogenous
and exogenous genotoxicity may also lead to cellular metabolic
remodelling (Mirzayans et al., 2006). Knowledge of the
associations between tumour metabolism and DNA damage
and repair is growing, providing opportunities to study the
mechanistic basis behind potential metabolic defects in tumours.

GLYCOMETABOLISM AND CISPLATIN
RESISTANCE

Glucose is the most demanded nutrient. After ingestion, glucose
undergoes glycolysis to produce pyruvate; this can be catalysed
to produce lactic acid, which is the final product under hypoxic
conditions, or catalysed into acetyl-CoA under normal
conditions, ultimately entering the TCA cycle. Tumour cells
undergo glycolysis as the main way to generate energy, even
under aerobic conditions, owing to the Warburg effect, which is
also involved in cisplatin resistance (Warburg et al., 1927).
Evidence indicates that increased glucose uptake and
enhanced aerobic glycolysis induce intrinsic or acquired
resistance to cisplatin in several cancer cell types (X. Y.
Zhang et al., 2018b).

In a cisplatin-resistant gastric cancer cell model, glycolysis
levels were shown to be significantly increased. Gastric cancer
cells were significantly more sensitive to cisplatin after the
inhibition of glycolysis via treatment with 2-deoxy-D-glucose,
a glucose-competitive substrate (Qian et al., 2017; Varghese et al.,
2020), which had the same effect in head and neck cancer cells
(Simons et al., 2007). Glucose transporter 1 (GLUT1) is closely
related to cell metabolism and is mainly involved in transport of
glucose across the membrane to provide energy for cells. Studies
have found that inhibiting GLUT1 can improve the sensitivity of
oesophageal and head and neck cancer cells to cisplatin
(Sawayama et al., 2019). In breast and cervical cancer cells,
cisplatin inhibited the expression of GLUT1, GLUT4, LDHA
(Manerba et al., 2015), and other glycolysis-related proteins,
thereby inhibiting glycolysis.
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Alterations in glycolysis affecting cisplatin resistance have
been shown to be associated with several enzymes. Enolase1
catalyses the conversion of glycerate-2-phosphate into
phosphoenolpyruvate in the ninth step of glycolysis (Qiao
et al., 2019). The expression of enolase1 in drug-resistant
cells is significantly increased, as proven by proteomic
screening. Knocking down enolase1 expression resulted in
increased sensitivity of gastric cancer cells to cisplatin (Qian
et al., 2017). In this resistance model, higher expression of PDK3
was discovered through gene chip technology; PDK3 functions
by preventing pyruvate from being catabolized into acetyl-CoA,
which forms a positive feedback loop with HSF1, driving
cisplatin resistance (J. Xu et al., 2019). Xu et al. found that
cisplatin resistance in ovarian cancer involved higher glucose
uptake; moreover, oxidative phosphorylation was modulated by
Bcl-2, and targeting Bcl-2 reversed cisplatin resistance by
inhibiting glucose metabolism (Y. Xu et al., 2018). M2
pyruvate kinase (PKM2) (X. Wang et al., 2017) catalyses
phosphoenolpyruvate to produce pyruvate; in dimer form, it
typically supplies energy for tumour cells. In osteosarcoma
tumour stem cells, PKM2 is highly expressed and
downregulated with metformin, which reduces the uptake of
glucose and the production of lactic acid and ATP, thereby
increasing cell sensitivity to cisplatin (Shang et al., 2017). The
oncogene ALC1 can promote cisplatin resistance in oesophageal
cancer cells by activating glycolysis (F. Li et al., 2019). Glycolysis
levels increased significantly in cisplatin-resistant T24 cells of
bladder cancer, promoting acetate and fatty acid synthesis (Wen
et al., 2019).

Inhibition of the glycolytic pathway was shown to increase
the sensitivity of drug-resistant ovarian cancer cells to cisplatin
(Xintaropoulou et al., 2018). In cisplatin-resistant A549 lung
cancer cells, the expression of G6PD (Hong et al., 2018), a key
enzyme involved in bypassing the pentose phosphate pathway,
was increased, and reducing G6PD could increase cisplatin
sensitivity (Hong et al., 2018; Giacomini et al., 2020).
Pyruvate participates in oxidative phosphorylation via
conversion to acetyl-CoA. Pyruvate dehydrogenase kinase
(PDK) can inhibit the conversion of pyruvate to acetyl-CoA
(Z. Sun and Xu, 2019; G. Wang et al., 2019). Dichloroacetate
(DCA), an inhibitor of PDK, can facilitate the transition from
glycolysis to oxidative phosphorylation (Stacpoole et al., 2019;
Tataranni and Piccoli, 2019). In drug-resistant ovarian cancer
cells, PDK1 expression was significantly upregulated, and
knocking down PDK1 expression significantly increased
cisplatin sensitivity (Zhang et al., 2019). In cisplatin-resistant
head and neck cancer cells, glycolysis enhanced cisplatin
resistance and PDK2 expression was increased, whereas DCA
reversed this enhancement of resistance (Roh et al., 2016). In
addition, microRNAs are involved in the regulation of glucose
metabolism during cisplatin resistance. Study have found that
the expression of miR-5787 is downregulated in cisplatin-
resistant tongue squamous cell carcinoma, promoting the
transition from oxidative phosphorylation to aerobic
glycolysis; in contrast, high expression of miR-5787 can
improve the sensitivity of these cells to cisplatin (W. Chen
et al., 2019).

AMINO ACID METABOLISM AND
CISPLATIN RESISTANCE

A large number of studies have shown that amino acids are used
not only as substrates for protein synthesis but also as metabolites
and metabolic regulators to support the growth of cancer cells (Z.
Li and Zhang, 2016; L. Sun et al., 2018; G. Wu, 2009). Among the
amino acids used in this way, glutamine, serine, and glycine have
been widely studied (Nikiforov et al., 2002; Labuschagne et al.,
2014). Amino acid uptake and metabolism are abnormal in many
cancers that show addiction to specific amino acids. Amino acids
promote the survival and proliferation of cancer cells under
genotoxicity, oxidative stress, and nutritional stress. Thus,
targeting amino acid metabolism is a potential cancer
treatment strategy (Wei et al., 2020). Amino acid metabolites
and metabolic enzymes also affect cisplatin resistance.

Glutamine, the most abundant amino acid in blood and
muscle, maintains the high bioenergy requirements of tumour
cells and serves as a precursor for macromolecular biosynthesis
(Windmueller and Spaeth, 1974). Glutamine has a pleiotropic
role, providing not only carbons but also nitrogen for nucleic acid
synthesis. This amino acid can serve as a respiratory substrate
that enters the TCA cycle in mitochondria, thereby driving ATP
production (Fan et al., 2013). In addition, glutamine supports
GSH biosynthesis and NADPH production and is involved in
cellular redox homeostasis (Jiang et al., 2019). From the
perspective of the current review, the glutamine dependence of
cancer cells may represent a metabolic vulnerability of cancer;
therefore, enzymes that inhibit the glutamine metabolic pathway
could be used in cancer therapy (Obrist et al., 2018). Glutamine
intake affects the sensitivity of cells to cisplatin. ASCT2 (SLC1A5)
(Liu et al., 2018), a glutamine transporter, was found to be highly
expressed in A549 wild-type cells and cisplatin-resistant cells but
was negligibly expressed in normal lung fibroblasts (J. Wu et al.,
2018). By simulating a polyglutamine delivery system with
glutamine macromolecules, SLC1A5 was used to deliver
specific therapeutic compounds to glutamine-dependent cancer
cells, further sensitizing these cancer cells to cisplatin (C. Wang
et al., 2018a). The rapid catabolic metabolism of glutamine
mediated by the oncogene KRAS continuously enhances the
antioxidant capacity of cisplatin-resistant cells, thus enabling
them to tolerate cytotoxicity. However, excessive consumption
of glutamine also impedes the growth of cisplatin-resistant cells.
Compared with cisplatin-sensitive cells, cisplatin-resistant cells
show increased autophagy and are susceptible to glutamine
deprivation. In the case of glutamine deficiency, the G1 phase
is significantly blocked, and the apoptosis rate is increased (Duan
et al., 2018a). Inhibition of glutaminemetabolism can increase the
sensitivity of drug-resistant ovarian cancer cells to cisplatin
(Duan et al., 2018b). Combining the glutaminase inhibitor
BPTES with cisplatin significantly increased the apoptosis
induction rate of cisplatin-sensitive and cisplatin-resistant
ovarian cancer cells (Hudson et al., 2016; Masamha and
LaFontaine, 2018).

In addition to glutamine, there are other amino acids that
contribute to cisplatin resistance. Cisplatin-resistant lung cancer
cells do not primarily use glucose but instead consume amino
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acids such as glutamine and tryptophan to survive. Compared
with cisplatin-sensitive lung cancer cells, IDO1 activity and ROS
levels in cisplatin-resistant cells were increased. Inhibition of
IDO1 with shRNAs or IDO1 inhibitors increased ROS levels
and produced significant growth inhibition only in cisplatin-
resistant cells (D. J. M. Nguyen et al., 2020). In our previous work,
we found that serine deficiency or insufficiency (12.5, 25, or 50%
of serine contained in RPMI-1640 complete medium) during cell
culture inhibited the toxicity and pro-apoptotic effects of cisplatin
on gastric cancer cells by reducing H3K4 tri-methylation. The
addition of serine could reverse the sensitivity of gastric cancer
cells to cisplatin (X. Zhao et al., 2020).

LIPID METABOLISM AND CISPLATIN
RESISTANCE

Lipid metabolic reprogramming is a newly recognized hallmark
of malignancy. Increased lipid uptake, storage, and fat production
in various cancers contribute to rapid tumour growth. Lipids
form the basic structure of cell membranes and also function as
signalling molecules and energy sources (Cheng et al., 2018; Long
et al., 2018). Abnormal lipid metabolism is closely related to the
occurrence of cancer (Ameer et al., 2014). Lipids affect cell
survival, membrane fluidity and dynamics, and response to
chemotherapy; therefore, lipid metabolism is relevant to
tumour therapy (Qiu et al., 2015). In recent years, lipid
metabolism has also been shown to be closely related to
cisplatin resistance. Specifically, metabolic enzymes related to
lipid metabolism have an effect on cisplatin resistance. In T24R
drug-resistant bladder cancer cells, enzymes involved in acetic
acid use (ACSS2) and fatty acid synthesis (ACC) and fatty acid
synthesis precursors (acetyl-CoA) levels are increased, leading to
higher yields of glucose-derived acetic acid and fatty acids. ACSS2
is highly expressed in cisplatin-resistant tissues, and targeted
inhibition of fatty acid synthesis was shown to inhibit bladder
cancer cell resistance (Jin et al., 2018). In addition, ω-3
polyunsaturated fatty acids induce apoptosis by ADORA1 and
enhance the effect of cisplatin on gastric cancer cells, human lung
cancer cells, and melanoma cells (Zajdel et al., 2014; Sheng et al.,
2016). In primary HCC cells, carnitine palmitoyltransferase-2 is
downregulated to promote adipogenesis of cancer cells, inducing
cisplatin resistance of HCC cells and enhancing their oncogenic

activity and metastasis potential (Lin et al., 2018). AGPS is a key
enzyme in the synthesis of ether-based lipids and is highly
expressed in cisplatin-resistant glioma cells (U87MGDDP).
Reducing AGPS levels can inhibit cell proliferation and
increase cisplatin sensitivity (Zhu et al., 2014). FASN is
essential for initiating long-chain fatty acid synthesis, which is
necessary to meet the ever-increasing demands of cancer cells for
membrane, energy, and protein production. FASN is highly
expressed in cancer tissues compared with normal fallopian
tubes. Bauerschlag et al. found that inhibition of FASN could
increase the sensitivity of ovarian cancer cells to cisplatin and
induce apoptosis, and reverse cisplatin resistance (Bauerschlag
et al., 2015).

OTHER FORMS OF METABOLISM AND
CISPLATIN RESISTANCE

In addition to the three major metabolites, other metabolites can
affect cisplatin resistance. Vitamin D supplements can reduce the
risk of many cancers. Vitamin D sensitizes oral cancer cells to
cisplatin and partially reverses cisplatin resistance. Cisplatin
enhances the expression of lipocalin 2 (LCN2) by decreasing
methylation at the promoter, whereas vitamin D inhibits the
expression of LCN2 by increasing methylation and promoting
cisplatin chemotherapy (Huang et al., 2019). Vitamin D can also
inhibit GPX1; reduce the migration, invasion, and proliferation of
oesophageal cancer cells; and reduce cisplatin resistance (Gan
et al., 2014).

SUMMARY AND PROSPECTS

Cisplatin is an important tool in the treatment of some solid
tumours, including ovarian cancer, testicular cancer, lung cancer,
and head and neck cancer. Unfortunately, owing to intrinsic or
acquired drug resistance, patients treated with platinum often
experience relapses and treatment failures. As discussed in this
review, cisplatin-resistant cancer cells have been shown to evade
drug toxicity by reprogramming their metabolism.
Reprogramming involves all major pathways including cell
biosynthesis, energy substrates, redox homeostasis, and signal
transduction. Now that the regulatory role of metabolism in

TABLE 2 | The inhibitor targeting metabolic alterations of cisplatin-resistant tumours.

Metabolic pathway Target Inhibitor Type of study

Glucose metabolism GLUT1 BAY-876 Sawayama et al. (2019) In vitro
LDHA Galloflavin oxamate Manerba et al. (2015) In vitro
PKM2 Shinkonin Wang et al. (2017) In vitro
G6PD 6AN, DHEA Hong et al. (2018) In vitro
PDK Dichloroacetate (DCA) Tataranni and Piccoli, (2019) In vitro

Amino acid metabolism ASCT2(SLC1A5) Resveratrol Liu et al. (2018) In vitro
Glutaminase BPTES Masamha and LaFontaine, (2018) In vitro
IDO1 Epacadostat Nguyen et al. (2020) In vitro

Lipid metabolism ACSS2 1–2 urea Wen et al. (2019) In vitro
FASN C75 Bauerschlag et al. (2015) In vitro
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cisplatin sensitivity is recognized, further attention should be
directed to determining how to reverse tumour resistance to
cisplatin by intervening in metabolic processes. As mentioned
above, many inhibitors targeting metabolic enzymes combined
with cisplatin have synergistic antitumour effects (Table 2). It is
noteworthy that an effective combination therapy can be
developed by linking the findings of basic research to
translational research.

The cost of research and development of inhibitors is high and
the cycle is long, which leads to a lack of effective intervention
strategies for many of the mechanisms currently recognized;
therefore, interventions need to be derived from other
perspectives. Nutrients are sources of metabolites and
regulating the nutritional status of the body can improve the
effect of tumour therapeutics. Diet directly determines the
nutritional status of the body; therefore, the effect of
regulating diet on tumour metabolism has attracted increasing
attention. Many studies have also shown that diet can influence
the effectiveness of drugs by altering the metabolic state of
tumours. Prevention and blocking of drug resistance through
diet control will be a new direction for the further development of
cisplatin and other platinum-based treatment strategies. Two
aspects of diet are notable: diet affects DNA repair and the

rate of tumour cell apoptosis by changing the metabolic state
of tumour cells; and diet can reduce the toxicity and side effects of
cisplatin by changing the organism’s environment, for example,
by co-administering sulphur-containing “chemoprotective
agents” with cisplatin (Sooriyaarachchi et al., 2016).

In summary, we have systematically summarized the role and
mechanism of tumour metabolism in cisplatin resistance and
described prospective drug resistance reversal strategies based on
tumour metabolism, thus providing new perspectives for the
clinical applications of cisplatin.
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