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Pirin (PIR) protein is highly conserved in both prokaryotic and eukaryotic organisms.
Recently, it has been identified that PIR positively regulates breast cancer cell proliferation,
xenograft tumor formation, and metastasis, through an enforced transition of G1/S phase
of the cell cycle by upregulation of E2F1 expression at the transcriptional level. Keeping in
view the importance of PIR in many crucial cellular processes in humans, we used a variety
of computational tools to identify non-synonymous single-nucleotide polymorphisms
(SNPs) in the PIR gene that are highly deleterious for the structure and function of PIR
protein. Out of 173 SNPs identified in the protein, 119 are non-synonymous, and by
consensus, 24 mutations were confirmed to be deleterious in nature. Mutations such as
V257A, I28T, and I264S were unveiled as highly destabilizing due to a significant stability
fold change on the protein structure. This observation was further established through
molecular dynamics (MD) simulation that demonstrated the role of the mutation in protein
structure destability and affecting its internal dynamics. The findings of this study are
believed to open doors to investigate the biological relevance of the mutations and
drugability potential of the protein.
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INTRODUCTION

Pirin (PIR) protein is considered highly conserved in both prokaryotic and eukaryotic organisms;
however, its biological functions are poorly described (Dunwell et al., 2001; Pang et al., 2004). Pirin is
reported as a biomarker in breast cancer, which is abnormal and irregular proliferation of cells
associated with inappropriate stimulation of pathways involved in signal transduction (Feitelson
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et al., 2015; Riaz et al., 2017; Chang et al., 2019). The crystal
structure of the human PIR gene revealed its quercetinase (acts on
quercetin flavonoid) and regulatory functions in many cellular
pathways like an inhibitor of protein kinase, antioxidant as well as
putative transcriptional co-factor (Chen et al., 2004; Wendler
et al., 1997). Previous studies reported the overexpression of PIR
in different neoplastic transformation and its role in the
enhancement of tumor formation due to inducing the
expression of Bcl3 by forming the ternary complex with proto-
oncogenes Bcl3 and NF-kB (Zhu et al., 2003; Massoumi et al.,
2009). Recently, it has been identified that PIR positively regulates
breast cancer cell proliferation, xenograft tumor formation, and
metastasis, through an enforced transition of G1/S phase of the
cell cycle by upregulation of E2F1 expression at the
transcriptional level (Suleman et al., 2019). It was a significant
breakthrough in unveiling the hidden function of PIR in the field
of cancer.

The most frequently occurring genetic variations are single-
nucleotide polymorphisms (SNPs), which disturb both coding
and non-coding regions of DNA. SNPs occur in every 200–300 bp
in the human genome and consist of about 90% of the total
genetic variations in the human genome. The nsSNPs (non-
synonymous single-nucleotide polymorphisms) are the various
mutations that occur in exonic regions and change the protein
sequence, structure, and normal function by triggering
modifications in the mechanism of transcription and translation.

Recently, various in silico computational tools, methods, and
approaches were adopted to investigate the possible role of non-
synonymous variation in protein structure and function
efficiently and accurately (Kumar et al., 2009; Wadood et al.,
2017; Muneer et al., 2019). These methods are of great interest to
decipher important molecular mechanisms from protein–protein
binding to drug development (Khan et al., 2020a; Khan et al.,
2020b; Khan et al., 2020c; Khan et al., 2020d; Khan et al., 2021a;
Khan et al., 2021b; Khan et al., 2021c). So far, a total of 173 SNPs
comprising 119 missense mutations have been described in the
human PIR gene and deposited to the database gnomAD
(Karczewski et al., 2020).

The PIR gene is very polymorphic and is involved in
tumorigenesis; however, at this stage, we are uncertain about
the effects of the reported nsSNPs on protein structure and
biological activities. Therefore, in the present study, with the
help of various computational approaches, highly deleterious
nsSNPs in the PIR gene will be identified, which profoundly
affect the structure and function of PIR protein. This study is the
first extensive in silico analysis of the PIR gene that can narrow
down the candidate mutations for further validation and
targeting for therapeutic purposes.

MATERIALS AND METHODS

Pirin Sequence and 3D Structure Data
Collection
The online public resources were used to retrieve all the available
data about the human PIR gene. All the experimentally reported
single-nucleotide polymorphisms (SNPs) in the PIR gene were

collected from an online database gnomAD (https://gnomad.
broadinstitute.org/) (Karczewski et al., 2020), and the UniProt
database (http://www.uniprot.org/) (Magrane, 2011) was used to
retrieve the amino acid sequence (UniProt ID: O00625) that
encodes for PIR protein. The already reported crystal structure
(PDB ID: 6N0J) of PIR protein was obtained from the Protein
Data Bank (http://www.rcsb.org/) (Rose et al., 2010).

DATA PROCESSING

Prediction of Functional Consequences of
Non-Synonymous Single-Nucleotide
Polymorphisms
Various online servers such as PredictSNP (Bendl et al., 2014),
MAPP (Multivariate Analysis of Protein Polymorphism) (Chao
et al., 2008), PhD-SNP (Predictor of human Deleterious Single
Nucleotide Polymorphisms) (Capriotti and Fariselli, 2017),
PolyPhen-2 (Polymorphism Phenotyping version 2) (Adzhubei
et al., 2013), SIFT (Sorting Intolerant from Tolerant), SNAP
(screening for non-acceptable polymorphisms) (Bromberg et al.,
2008), and PANTHER (Protein ANalysis THrough Evolutionary
Relationships) (Mi et al., 2019) were used to predict the functional
effect of nsSNPs. The deleterious nsSNPs, as suggested by all
servers, were selected for further analysis. PredictSNP (https://
loschmidt.chemi.muni.cz/predictsnp1/) executes prediction with
diverse tools and provides a more authentic and accurate
substitute for the predictions provided by the individual
integrated tool. The predictions by tools in the PredictSNP
server are enhanced by experimental annotations from two
databases (24). MAPP (http://mendel.stanford.edu/SidowLab/
downloads/MAPP/) predicts the effect of all possible SNPs on
the function of the protein by considering the physiochemical
deviation present in a column of aligned protein sequence (Stone
and Sidow, 2005). PhD-SNP (http://snps.biofold.org/phd- snp/
phd-snp.html) predicts and divides nsSNPs into disease-related
and neutral polymorphisms according to the score ranging from
0 to 1. This server considers SNPs as a disease associated with a
score more than 0.5 by using a related program algorithm. The
outputs of PhD-SNP depend on frequencies of wild and mutant
residues, the conservation index of SNP position, and a number of
sequences aligned (Capriotti et al., 2006). PolyPhen-2 (http://
genetics.bwh.harvard.edu/pp2) predicts the effect of amino acid
variation on protein structure and function. The PolyPhen output
is represented with a score that ranges from 0 to 1. This online
tool considers non-synonymous SNPs as deleterious, having a
higher mutation score, while zero scores indicate no effect of
amino acid substitution on protein function (Adzhubei et al.,
2010). SIFT (http://sift.bii.a-star.edu.sg) is a program that
predicts the effect of amino acid substitution on protein
functions. The principles of SIFT predictions depend on the
physicochemical properties of protein sequence and its
homologies. SIFT classifies its output as deleterious or neutral
according to the score ranging from 0 to 1 (0–0.05 as deleterious
and 0.05–1 as neutral). (Sim et al., 2012). SNAP (https://rostlab.
org/services/snap) is a neural network–based prediction server
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that identifies the functional effects of amino acid sequence variants.
The prediction score ranges from -100 (strongly neutral prediction) to
100 (strong effect prediction), which reflects the likelihood of the
single amino acid mutation that may alter the native protein function
(Hecht et al., 2015). PANTHER-PSEP (http://www.pantherdb.org/
tools/csnpScoreForm.jsp) is an advanced online tool that predicts the
non-synonymous mutations that have an important role in human
diseases. PANTHER-PSEP uses a correlated but distinctive metric-
based evolutionary conservancy. Homologous proteins are used to
reconstruct the likely sequences of ancestral proteins at nodes in a
phylogenetic tree, and the history of each amino acid can be traced
back in time from its current state to estimate how long that state has
been preserved in its ancestors.

Effect of Mutation on Structure Stability and
Estimation of Evolutionary Conservation of
Non-Synonymous Single-Nucleotide
Polymorphisms
To analyze the effect of a mutation on protein stability, we used
DynaMut (Rodrigues et al., 2020), a protein stability consensus
predictor based on ENCoM’s predicted vibrational entropy
changes and the stabilization changes predicted by an mCSM’s
graph-based signature method. The degree of the evolutionary
conservancy of protein sequence location correlates with the
evolutionary degree, which is not the same for all amino acids
in the corresponding protein. Positions of amino acids that
change slowly are usually known to be conserved sites that are
important for the structure and function of a protein.

Modeling of Wild Type and Variants of Pirin
The crystal structure of the PIR protein was extracted from the
PDB (Entry ID: 6N0J). The protein structure was minimized
using Chimera software [(Webb and Sali, 2016),33]. Moreover,
the wild type (WT) structure was mutated by each one of the
three most deleterious mutants predicted in the previous sections.
The three structures of mutant (MT) proteins, such as I28T,
V257A, and I264S, were modeled by making a point mutation in
the wild-type (WT) protein structure using Chimera software.
The WT and three MT structures are shown in Figure 1.

Molecular Dynamics Simulation
The AMBER18 (Mermelstein et al., 2018) package was used for
molecular dynamics simulation to investigate the stability of WT
and mutants of pirin (PIR) using the ff14SB force field (Maier
et al., 2015). Molecular dynamics (MD) simulation was
performed for a total of four systems, including one wild type
(WT) and three mutants I28T, V257A, and I264S. For the
solvation of each system in a rectangular box water model,
TIP3P was used. With the help of counterions, addition
neutralization was achieved. A two-step energy minimization
procedure: the steepest decent minimizations of 6,000 cycles and
conjugate gradient minimization of 3,000 cycles, was applied for
minimization of each neutralized system. After minimization,
these complexes were heated up to 300 K for 0.2 ns, and then we
equilibrated the system with weak restraint and without restraint
for 2 ns at 300 K, respectively. The temperature was controlled
with a Langevin thermostat (Adzhubei et al., 2010) (26), and the
procedure was run for 100 ns. Each simulation was repeated three

FIGURE 1 |Modeled 3D structures of theWT and I28T, V257A, and I264Smutants. Themodeledmutations are encircled to show their position. The Fe ion binding
is also shown.
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times. Long-range electrostatic interactions (Bromberg et al.,
2008; Sim et al., 2012; Adzhubei et al., 2013; Hecht et al.,
2015) were detected with the particle mesh Ewald method
(Petersen, 1995) using a cut-off distance of 10.0 Å. The
SHAKE method was applied for covalent bond treatment (Mi
et al., 2019). The MD simulation production step was performed
on the GPU-supported PMEMD code for each system (Glaser
et al., 2003; Stone and Sidow, 2005), and the trajectories were
analyzed on the CPPTRAJ package in Amber18.

Principal Component Analysis and Gibbs
Free Energy Calculation
Principal component analysis (PCA) was utilized for the
calculation of high-amplitude fluctuations within the protein
(Berezin et al., 2004; Capriotti et al., 2006). The CPPTRAJ

package calculated the covariance matrix based on Cα
coordinates. Eigenvectors and eigenvalues were calculated by
diagonalizing the covariance matrix. 5,000 snapshots from the
trajectory of each system were used to get PCA calculations.
Eigenvectors and eigenvalues indicate the direction ofmotion and
mean square fluctuation, respectively. PC1 and PC2 were used for
plotting tomonitor the motion. The lowest energy stable state was
determined by the free energy landscape (FEL) and is indicated by
deep valleys on plot, whereas the intermediate state is shown by
boundaries between deep valleys (Xu et al., 2017; Adzhubei et al.,
2010). In this study, FEL calculations based on PC1 and PC2 were
obtained by

ΔG (PC1, PC2) � −KBTln P (PC1, PC2 (1)

where the reaction coordinates are taken by PC1 and PC2, KB

denotes the Boltzmann constant, and P (PC1, PC2) shows the

TABLE 1 | Processing of 119 missense variants by different servers predicted 24 mutations to be deleterious collectively. The predicted score by each server is also shown.

Variant Predict SNP MAPP PhD-SNP PolyPhen-1 PolyPhen-2 SIFT SNAP PANTHER Outcome

E18G 0.869 0.508 0.676 0.744 0.811 0.792 0.622 0.662 DELETERIOUS
G19A 0.869 0.766 0.773 0.744 0.811 0.792 0.805 0.760 DELETERIOUS
I28T 0.869 0.461 0.676 0.594 0.550 0.792 0.720 0.780 DELETERIOUS
P38L 0.869 0.766 0.858 0.744 0.811 0.792 0.720 0.842 DELETERIOUS
H56Q 0.869 0.765 0.732 0.744 0.811 0.792 0.848 0.842 DELETERIOUS
H58R 0.869 0.919 0.875 0.744 0.811 0.792 0.885 0.874 DELETERIOUS
R59P 0.869 0.841 0.817 0.744 0.811 0.792 0.720 0.714 DELETERIOUS
G60V 0.869 0.913 0.875 0.744 0.811 0.792 0.848 0.874 DELETERIOUS
D77E 0.869 0.819 0.607 0.744 0.811 0.792 0.885 0.744 DELETERIOUS
H81P 0.869 0.656 0.588 0.744 0.453 0.792 0.720 0.718 DELETERIOUS
A95V 0.869 0.760 0.858 0.744 0.811 0.792 0.720 0.780 DELETERIOUS
G98S 0.869 0.573 0.875 0.744 0.811 0.792 0.848 0.744 DELETERIOUS
G98D 0.869 0.877 0.875 0.744 0.811 0.792 0.869 0.874 DELETERIOUS
H101Y 0.869 0.841 0.817 0.744 0.811 0.792 0.885 0.7145 DELETERIOUS
Q115K 0.869 0.856 0.773 0.744 0.811 0.792 0.848 0.744 DELETERIOUS
L116P 0.869 0.774 0.858 0.744 0.811 0.792 0.720 0.744 DELETERIOUS
G179V 0.869 0.751 0.817 0.744 0.562 0.792 0.555 0.744 DELETERIOUS
L220P 0.869 0.765 0.858 0.744 0.675 0.792 0.720 0.760 DELETERIOUS
E248A 0.869 0.718 0.875 0.744 0.647 0.792 0.720 0.686 DELETERIOUS
E248D 0.869 0.656 0.773 0.594 0.562 0.527 0.622 0.734 DELETERIOUS
G254V 0.869 0.842 0.773 0.744 0.811 0.792 0.848 0.780 DELETERIOUS
V257A 0.869 0.819 0.858 0.594 0.675 0.792 0.885 0.766 DELETERIOUS
M258I 0.869 0.559 0.607 0.594 0.600 0.527 0.805 0.698 DELETERIOUS
I264S 0.869 0.806 0.858 0.744 0.634 0.792 0.555 0.842 DELETERIOUS

FIGURE 2 | The total number of predicted deleterious SNPs by each server is shown as bars. Each bar represents a specific server, and its predicted deleterious
mutations are given on the top.
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probability distribution of the system along with the first two
principal components.

RESULTS AND DISCUSSION

Identification of Deleterious
Non-Synonymous Single-Nucleotide
Polymorphisms
The online public resources were used to retrieve all the available data
of the human PIR gene. According to the information obtained from
the online database gnomAD, there were a total of 173 SNPs in the
PIR protein. Of those, 119 SNPs were identified as non-synonymous.

These 119 SNPs were submitted to different online servers for
identification of the deleterious mutations. First, the SNPs were
submitted to PredictSNP and MAPP servers, and only 51 and 41
SNPs were found as deleterious, respectively. The nsSNPs were then
submitted to PhD-SNP and SNAP online tools, and 63 and 55 SNPs
were found as deleterious, respectively. The other online servers such
as PolyPhen-1, PolyPhen-2, SIFT, and PANTHER analyzed the
nsSNPs and predicted that, out of 119 SNPs, only 51, 46, 68, and
80 were deleterious, respectively. All the nsSNPs were selected for
further analysis that were predicted as deleterious consistently by all
the above online servers as shown in Table 1. The total number of
predicted deleterious SNPs by each server is given in Figure 2.

Effect of Mutation on Pirin Protein Structure
Stability
To calculate the stability changes upon mutations, an online
server mCSM was used, which reported the average changes
ranging from 0.715 to −2.856 kcal/mol. Mutations, such as
V257A with a stability fold change of -2.157 kcal/mol, I28T
with a stability fold change of -2.374 kcal/mol, and I264S with
a stability fold changes of -2.856 kcal/mol, were found to be
highly destabilizing for the PIR protein structure. However, the
mutation H81P with a stability fold change of 0.715 kcal/mol has
the opposite effect (i.e., stability) and does not induce major
changes in the protein structure (Table 2). The RMSDs between
the WT and the three mutants are shown as a superimposed
structure in Figure 3. The highly destabilizing mutations
identified by mCSM were analyzed by DynaMut to check the
effect of these mutations on the structure flexibility. As shown in
Figure 4, the mutations I28T, V257A, and I264S produced higher
flexibility in the protein structure. These results are clearly
pointing out the importance of these three mutations. These
changes in flexibility (red) and rigidity (blue) are mapped onto
the corresponding protein structure and presented in Figure 4.

Dynamics Stability and Residual Flexibility
of the Wild and Mutant Structures
To estimate the impact of the specific mutant (I28T, V257A, and
I264S) and WT, we calculated the RMSD (root mean square
deviation) from the MD trajectory. We used 5,000 structures

TABLE 2 | A list of 24 highly deleterious mutations was processed to identify the
highly destabilizing mutations.

Index Mutation ΔΔG mCSM Outcome

1 E18G −1.063 Destabilizing
2 G19A −0.265 Destabilizing
3 I28T −2.374 Highly destabilizing
4 P38L −0.839 Destabilizing
5 H56Q −0.777 Destabilizing
6 R59P −1.518 Destabilizing
7 H58R −1.986 Destabilizing
8 G60V −0.63 Destabilizing
9 D77E −0.822 Destabilizing
10 H81P 0.715 Stabilizing
11 A95V −0.937 Destabilizing
12 G98D −1.812 Destabilizing
13 G98S −1.53 Destabilizing
14 H101Y −0.191 Destabilizing
15 Q115K −0.244 Destabilizing
16 L116P −1.237 Destabilizing
17 G179V −0.66 Destabilizing
18 L220P −1.406 Destabilizing
19 E248A −0.764 Destabilizing
20 E248D −0.693 Destabilizing
21 G254V −0.205 Destabilizing
22 V257A −2.157 Highly destabilizing
23 M258I −0.996 Destabilizing
24 I264S −2.856 Highly destabilizing

Based on ΔΔG, the mCSM server predicted I28T, V257A, and I264S as highly
destabilizing, while the rest were classified as destabilizing only. Bold are highly
destabilizing mutations which were subjected to MD simulation.

FIGURE 3 | Superimposed structure of WT PIR protein (cyan) with mutants I28T (green), I264S (orange), and V257A (yellow). The RMSD of each superimposition
was reported to be 0.333 Å (I28T) and 0.879 Å (I264S, V257A).
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from the MD trajectory as a function of time. In the case of the
WT, the RMSD remained stable during the 100 ns simulation
time. No significant convergence was observed. The system
reached the stability at 1.3�A. The average RMSD was reported
to be 1.25�A. Overall, the system seems to be stable with no

significant convergence during the 100 ns simulation. On the
contrary, the I28T mutation showed significant convergence at
different intervals. Initially, the structure continued to proceed
stably until 20 ns, but after the system faced convergence, the
RMSD increased from 1.5 to 2.0�A.

FIGURE 4 | Effect of mutations on structural dynamics flexibility. Changes in flexibility (red) and rigidity (blue) mapped onto the corresponding protein structure
are shown.

FIGURE 5 | RMSD graph of the WT and mutants (I28T, V257A, and I264S). The x-axis shows the time in nanoseconds, while the y-axis shows the RMSD in
angstrom. (A) Wild type; (B) I28T; (C) V257A; (D) I264S.
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Afterward, the RMSD decreased and remained uniform until
70 ns, but the structure faced significant perturbation and the
RMSD increased again until 100 ns. The major convergence was
observed specifically between 75 and 90 ns. The average RMSD
(1.8�A) also remained higher than that in the wild type. This
shows that the I28T mutation has caused a significant structural
stability shift and needs longer simulation to gain the equilibrium.
Furthermore, the V257A mutation also induced significant structural
stability changes. The RMSD remained higher during the 100 ns
simulation. Initially, the RMSD increased until 1.25�A and then
continued to increase until 20 ns. Afterward, an abrupt decrease
was observed at 22 ns, and then again, the RMSD increased. The
RMSD between 60 and 80 ns significantly converged, and the average
RMSD between 60 and 80 ns was observed to be 2.0�A. The RMSD

then decreased and remained uniform until 95 ns, but then again, the
structure converged and the RMSD increased. Hence, the V257A
mutation has caused significant structural perturbation, and the
stability significantly shifted as compared to that of the wild type.
I264S was reported to be the most destabilizing mutation among the
list of 24 non-synonymous mutations reported to be deleterious. The
results here are uniform with the mCSM server. The mutation has
induced significant stability transition and perturbation. Initially until
20 ns, the RMSD remained uniform, but a sudden convergence
increased the RMSD up to 2.5�A. Later on, the RMSD decreased
for a short period of time, and then significant convergence was
observed between 35 and 40 ns. The RMSD then remained lower and
uniform until 85 ns. The structure then faced significant perturbation,
and the RMSD increased again up to 2.0�A. The average RMSD for

FIGURE 6 | RMSF graph of the WT and mutants (I28T, V257A, and I264S). The x-axis shows the number of residues, while the y-axis shows the RMSF in
angstrom.

FIGURE 7 | Rg graph of the WT and mutants (I28T, V257A, and I264S). The x-axis shows the time in nanoseconds, while the y-axis shows the RMSD in angstrom.
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I264S was reported to be 2.2�A. Thus, these results signify that the
mutations have caused significant structural destability and internal
dynamics of the protein. The RMSD graph of the WT and mutants
(I28T, V257A, and I264S) is shown in Figure 5. The x-axis shows the
time in nanoseconds, while the y-axis shows the RMSD in angstrom.

Furthermore, to estimate the impact of the mutation on the
residual flexibility, we calculated the RMSF (root mean square
fluctuation) as a function of residues. Overall, the residual
flexibility showed more similar fluctuation except in few regions.
In the case of V257A, the region between 15 and 25 showed higher
fluctuation than the others. In addition, the region between 72 and 85
in the WT possesses higher fluctuation than the mutants. Thus, this
shows that this region is significantly affected by the mutation
induction. In the case of I264S, specifically the region between 140
and 150 showed higher fluctuation. Furthermore, this mutation also

increased the fluctuation of the region between 250 and 280, thus
causing significant internal dynamics fluctuation. These results show
that the mutation has affected different regions of the protein to
increase or decrease the flexibility. The RMSF graph of the WT and
mutants (I28T, V257A, and I264S) is shown in Figure 6. The x-axis
shows the number of residues, while the y-axis shows the RMSF in
angstrom.

Structural Compactness Estimation of the
Wild and Mutant Structures
In order to calculate the compactness of all the WT and mutant
(I28T, V257A, and I264S) systems, Rg (radius of gyration) was
calculated. The stability of the complexes formed also depended
on the compactness of the structure. From Figure 7, it can be

FIGURE 8 | Fractions of the first ten eigenvectors. Using the MD trajectory, the fraction of motions is calculated and given in percentage against the eigenvector
numbers.

FIGURE9 | Principal component analysis of all the systems, including theWT and the threemutants. The first two principal components (PC1 and PC2) are used for
the projection of motion in the space phase at 300 K.
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easily observed that the average Rg value for all the systems is
between 19.0 and 19.4�A. In the case of wild type, the Rg value
remained uniform until 100 ns. The average value for theWTwas
observed to be 19.0�A. In the case of I28T, the system remained
relatively less compact than the wild type. The average Rg value
was reported to be 19.0�A for the first 52 ns, and then the Rg value
continued to increase and reached 19.2�A during the simulation
time. In the case of V257A, the Rg value remained lower until 5 ns.
The Rg then continued to increase until 100 ns. The Rg value for
the rest of 95 ns remained 19.3�A. The Rg for I264S started from
19.2�A and continued to increase. After reaching 30 ns, the Rg

value increased to 19.3�A and increased further. After 70 ns, the
Rg value further increased to 19.5�A and continued until 100 ns.
These results significantly justify that the mutation has different
compactness than theWT during the simulation. The Rg graph of
the WT and mutants (I28T, V257A, and I264S) is shown
Figure 7. The x-axis shows the time in nanoseconds, while the
y-axis shows the Rg in angstrom.

Dimensionality Reduction and Clustering
the Protein Motions
To describe the protein motion and clustering of the related
structural frames, principal component analysis (PCA) was
performed. PCA is a statistical approach that incorporates a
smaller number of uncorrelated variables called principal
components into several correlated variables. The eigenvectors
were measured and are provided in Figure 8 to comprehensively
explain the effect of the substitution on the protein motion. From
the PCs, we can understand the overall and internal motions. In

the wild type, the total contributed variance by the first three
eigenvectors to the total motions was reported to be 47%, while in
the case of I28T, the variance by the three eigenvectors was
observed to be 38%, and for V257A, it was observed to be 39%. In
the other mutation such as I264S, the variance by the first three
eigenvectors was reported to be 35%.

The other eigenvectors have shown localized or overall
motions. Hence, it is confirmed that the mutations have
impacted the total trajectory motion and, thus, internal
dynamics behavior. To further gain convincible attributes, the
first two PCs, i.e., PC1 and PC2, were drawn against each other.
Different colors (red to blue) reflect the conformational transition
from one to another. Each dot in Figure 9 depicts a single frame
of the trajectory. As compared to the WT, the mutant complexes
covered a lower region of the phase space except in V257A and
I264S. Together, these observations suggest that mutations had a
substantial influence on the structure that has contributed to pirin
(PIR) destabilization.

Conformational changes induced by a particular mutation
during the MD simulation were explored through the FEL. PC1
and PC2 were used to map the energy minima and extract the
variations due to a specific mutation. In the case of the wild type,
the lowest energy minima were reached at 23 ns. Figure 10 shows
that, during the simulation, no structural perturbation was
experienced in the wild type. On the contrary, in the three
mutations, destabilization of the Fe ion was observed. The
energy minima separated by subspace in each mutant complex
were reached at 49 ns (I28T), 67 ns (V257A), and 79 ns (I264S).
In addition, the cavity surrounding the Fe ion also exhibits a
dynamic structure in all the mutants. The beta sheet covering the

FIGURE 10 | Conformational changes during the molecular dynamics simulation are represented through the FEL. PC1 and PC2 are used to map the energy
minima and extract the variations due to a specific mutation.
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Fe ion from the top and the loop on the alternate side changed
their orientations, and an opening–closing switch-like pattern
was observed. In addition, the flipping of beta sheets in the
mutant complexes was most frequently observed in the
mutant complexes. All the FEL graphs of the wild type, I28T,
V257A, and I264S are given in Figure 10.

CONCLUSION

PIR is an oxidative stress sensor from the functionally diverse
superfamily of cupin. This protein is suggested to have
biological relevance in cancer development and thus
remains a novel research area. Being polymorphic, its
oncogenic activity is a hot topic of discussion in the recent
past. The work reported herein attempted to use an extensive
computational framework to screen all potential mutations of
the protein and identify deleterious mutants that could affect
protein structure stability and ultimately functionality. The
work predicted 119 missense variants by different servers and
reported 24 deleterious mutations consistently reported by all
available mutation predictor servers. Furthermore, it was
highlighted that the three mutations I28T, V257A, and
I264S are most destabilizing and confer structure flexibility
to the PIR protein. To sum up, the study provides structural
basis for each mutation-induced conformational change and

disclosed a possible way for the mutations’ role in the
progression of Breast Cancer (BC); thus, PIR acts a
potential therapeutic target or a biomarker in the future ahead.
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