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The reliability and usefulness of molecular dynamics simulations of equilibrium processes
rests on their statistical precision and their capability to generate conformational
ensembles in agreement with available experimental knowledge. Metadynamics
Metainference (M&M), coupling molecular dynamics with the enhanced sampling ability
of Metadynamics and with the ability to integrate experimental information of
Metainference, can in principle achieve both goals. Here we show that three different
Metadynamics setups provide converged estimate of the populations of the three-states
populated by a model peptide. Errors are estimated correctly by block averaging, but
higher precision is obtained by performing independent replicates. One effect of
Metadynamics is that of dramatically decreasing the number of effective frames
resulting from the simulations and this is relevant for M&M where the number of
replicas should be large enough to capture the conformational heterogeneity behind
the experimental data. Our simulations allow also us to propose that monitoring the relative
error associated with conformational averaging can help to determine the minimum
number of replicas to be simulated in the context of M&M simulations. Altogether our
data provides useful indication on how to generate sound conformational ensemble in
agreement with experimental data.
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INTRODUCTION

Molecular dynamics simulations (MD) are a powerful tool to study at high resolution the dynamics
of biomolecules in solution, yet they rely on the quality of the physical model used to describe
molecules (i.e., the force field) as well as on the computing power needed to acquire longer and longer
trajectories that is better and better statistics (Bottaro and Lindorff-Larsen, 2018; Grossfield et al.,
2019). Force fields have been dramatically improving in the last years and computing power is always
increasing allowing to study more and more complex systems (Best et al., 2014; Huang et al., 2017;
Robustelli et al., 2018). To further improve the extent of the sampling and the accuracy of the physical
model, enhanced sampling techniques (Sugita and Okamoto, 1999; Laio and Parrinello, 2002) as well
as techniques to integrate experimental data in MD have been developed (Fennen et al., 1995;
Bonomi et al., 2016; Köfinger et al., 2019). Reviewing the vast literature on both topics is outside the
scope and space of the present work and excellent reviews are available (Spiwok et al., 2015; Allison,
2017; Bonomi et al., 2017; Bottaro and Lindorff-Larsen, 2018; Camilloni and Pietrucci, 2018; Bernetti
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et al., 2020). Among these methods we have contributed to
develop Metadynamics Metainference (M&M) (Bonomi et al.,
2016a) that is a combination of Metadynamics (Laio and
Parrinello, 2002), a popular enhanced sampling technique, and
Metainference (Bonomi et al., 2016), a Bayesian scheme that
allows for the integration of equilibrium experimental
observables as restraints over multiple replicas of a simulation.
M&M has been applied to combine different experimental
observables and to work on a large variety of systems (Löhr
et al., 2017; Eshun-Wilson et al., 2019; Heller et al., 2020;
Jussupow et al., 2020).

In this work we aim to understand how Metadynamics should
be ideally coupled to Metainference in order to guarantee optimal
statistical precision and experimental accuracy. Multiple MetaD
variants are available and M&M has always been coupled with
Parallel Bias Metadynamics (PBMetaD), a variant specifically
designed to enhance the sampling along many one-
dimensional collective variables (CVs) (Pfaendtner and
Bonomi, 2015). In particular we identified three key questions:
1) how reliable are the error estimates resulting from
Metadynamics simulations when using a standard technique as
block averaging (Flyvbjerg and Petersen, 1989); 2) how does
multiple-walkers PBMetaD compare to conventional multiple-
walkers MetaD and what are their pros-and-cons; 3) how do the
two approaches combine with Metainference to achieve at the
same time an optimal sampling and an optimal integration of
experimental data? Of note, the first two questions apply not only

to M&M but to the sound application of enhanced sampling
techniques. To answer these questions, we investigated
thoroughly the conformational space of chignolin (Figure 1), a
10 residues peptide that can populate three states and whose
complexity, while not comparable to that of full-length proteins,
is definitely greater than the widely used alanine dipeptide in
vacuum (Kührová et al., 2012). In doing so we introduced a
scheme to combine simple CVs into more complex ones with the
aim of discriminating some identified reference states. By
performing PBMetaD simulations with many simple CVs
(PB20), PBMetaD simulations with less, optimally combined,
CVs (PB4); as well as MetaD simulations with the same optimally
combined CVs (ME2), all in triplicate (Table 1), we show that, 1)
block-averaging provides a robust estimate of statistical errors; 2)
PBMetaD and MetaD dramatically decrease the effective number
of frames collected by MD and this effect is worse in MetaD. This
second effect is very relevant in combining Metadynamics with
Metainference because it decreases the number of effective
replicas that can actually contribute to the estimation of the
conformational heterogeneity associated with experimental
observables. To test this effect, we then performed (Table 1)
M&M simulations using either PBMetaD orMetaD and 10 or 100
replicas. To avoid effects related to the quality of the experimental
data and the forward model, synthetic SAXS data have been
obtained using as a reference a 40 μs long simulated tempering
simulation of chignolin by Piana et al., 2020. Our results indicate
that the minimum number of replicas in M&M simulations can
be set by monitoring the relative error associated with the
averaging of back calculated observables, and that this number
is affected not only by the system and the calculated observable
but also by the details of the Metadynamics setup.

MATERIALS AND METHODS

Molecular Dynamics Simulations of
Chignolin
Simulations of chignolin were performed using GROMACS 2019
(Abraham et al., 2015) and PLUMED 2 (Tribello et al., 2014). In
the first round of simulations the DES-amber force field (Piana
et al., 2020) was used in combination with the tip4p water model
with increased dispersion (Piana et al., 2015). A starting model of
CLN025 chignolin was taken from PDB 5AWL (Honda et al.,
2008) and solvated with 2,553 water molecules in a dodecahedron
box initially 1.4 nm larger than the protein in each direction. The
system was neutralized with a salt concentration of 100 mM
NaCl. After an initial energy minimization to a maximum
force of 100 kJ/mol/nm, the solute was equilibrated under
NVT condition at the temperature of 340 K for 50 ps using
the Berendsen thermostat (Berendsen et al., 1984); then
Berendsen barostat was used to equilibrate the system in the
NPT ensemble to the target pressure of 1 atm for 200 ps,
maintaining the temperature at 340 K with the Bussi
thermostat (Bussi et al., 2007). The equilibration phase was
followed by an initial MD simulation of 250 ns, from which a
pool of conformations was extracted to be used as starting models
for the subsequent runs (run 1). Starting points for replicates run

FIGURE 1 | Representation of the three main chignolin minima
corresponding to the folded (Min 1), misfolded (Min 2) and unfolded (Min 3)
states.
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2 and run 3, where instead extracted from run 1 thus resulting in
very different initial conditions. The production runs were all
performed in the NPT ensemble, maintaining temperature and
pressure at the values of 340 K and 1 atm respectively, using the
Bussi thermostat (Bussi et al., 2007) and the Parrinello-Rahman
barostat (Parrinello and Rahman, 1981). Electrostatic was treated
by using the particle mesh Ewald scheme (Essmann et al., 1995)
with a short-range cutoff of 0.9 nm and a Fourier grid spacing of
0.12 nm; van der Waals interaction cutoff was set to 0.9 nm. For
these simulations the hydrogen mass repartitioning scheme
(Hopkins et al., 2015) was used to reduce the computational
cost: the mass of heavy atoms was repartitioned into the bonded
hydrogen atoms using the heavyh flag in the pdb2gmx tool; the
LINCS algorithm (Hess et al., 1997) was used to constraint all
bonds, eventually allowing to use a time step of 5 fs.

Using this set-up, we ran three different Metadynamics
simulations, each performed in triplicates (named run 1, run
2, run 3, starting from different set of conformations). These are:

1. PB20: in which PBMetaD was employed and 20 CVs were
biased. These include the phi/psi dihedral angles of the 10
amino acids composing chignolin (18 CVs), the gyration
radius and the antiparallel beta sheet-content.

2. PB4: in which PBMetaD was employed biasing 4 CVs,
comprising the gyration radius, the antiparallel beta sheet-
content and 2 CVs optimized based on the knowledge of the
folded, misfolded and unfolded chignolin conformations
(named back and cmap, and based on a combination of
backbone dihedral angle and of contacts between groups of
atoms, see next section).

3. ME2: in whichMetaD was employed using 2 CVs, the gyration
radius and the optimized cmap collective variable.

All the simulations were performed adopting the multiple-
walker scheme (Raiteri et al., 2006), simulating 10 replicas (or
walkers): each replica was evolved for 1 µs, resulting in a 10 μs
sampling per each simulation. Metadynamics was used in its well-
tempered version (Barducci et al., 2008), where Gaussians with an
initial height of 0.5 kJ/mol were deposited every 1 ps using a bias
factor of 10. For all the CVs, the width of the Gaussians was
determined with the dynamically adapted geometry-based
Gaussian approach (Branduardi et al., 2012), using 0.015 nm

as the extent of Cartesian space covered by a variable to estimate
CVs fluctuations, and setting a minimum value for the width
specific for each CV (0.03 rad for the dihedral angles, 0.004 nm
for the gyration radius, 0.02 for the antiparallel beta sheet-
content, 0.01 and 0.001 for the back and cmap optimized CVs).

Each simulation was analyzed by creating a concatenated
trajectory and reweighting each frame by using the final
Metadynamics bias potential, assuming a constant bias during
the entire course of the simulation (Branduardi et al., 2012). To
assess the convergence of the simulations and the associated
statistical errors we used block-average analysis (Flyvbjerg and
Petersen, 1989; Bussi and Tribello, 2019). According to this
technique, the trajectory is split into a set of NB blocks of
equal length. By comparing the averages of a given quantity
from each block we can calculate the error bar on our estimate of
that quantity: for large enough blocks the averages should not be
time correlated so that the estimate of the error converges. As our
blocks could be characterized by different weights, this must be
taken into account in the estimation of the error as described in
(Invernizzi et al., 2020). Given Wb the weight of the block b,
obtained as the sum of the weights of the frames
composing the block, the statistical error on the observable

O is: errO �
������������������

1
(NBeff −1)

∑NB

b�1 Wb [Ôb−Ô]2∑NB

b�1 Wb

√
, where NBeff �

(∑NB
b�1Wb)2/∑NB

b�1W2
b is the effective block size, the sums run

on the number of blocks NB, Ôb is the average computed over
the frames of block b and Ô is the average computed over all the
frames, which corresponds to the average computed over the
block averages, i.e. Ô � ∑NB

b�1 Wb Ôb/∑NB
b�1 Wb. As pointed out in

(Invernizzi et al., 2020) when the weights of the blocks are
unbalanced, using NB instead of NBeff can significantly
underestimate the uncertainty.

Optimized Collective Variables
PBMetaD can in principle bias many CVs using one-dimensional
Gaussians (Pfaendtner and Bonomi, 2015), but often these CVs
are simple in nature (like dihedrals or distances) thus losing the
complex correlations that may be at play in slow reaction
coordinates. Finding optimal CVs is a complex problem that
requires the previous knowledge not only of the different states

TABLE 1 | Summary of the simulations performed or analyzed in this work.

Name Replicates #Replicas Enhanced sampling technique #CV Force field Replica length (total) μs Color code

Referencea 1 1 Simulated tempering NA DES-amber 40 Dark grey
PB20 3 10 PBMetaD 20 DES-amber 1 (30) Blues
PB4 3 10 PBMetaD 4 DES-amber 1 (30) Greens
ME2 3 10 MetaD 2 DES-amber 1 (30) Violets
Prior 1 10 PBMetaD 4 99sb-ildn 1 (10) Light grey
PB4(10r) 1 10 PBMetaD 4 99sb-ildn + M&M 0.5 (5) Cyan
ME2 (10r) 1 10 MetaD 2 99sb-ildn + M&M 0.5 (5) Yellow
PB4(100r) 1 100 PBMetaD 4 99sb-ildn + M&M 0.5 (50) Blue
ME2 (100r) 1 100 MetaD 2 99sb-ildn + M&M 0.5 (50) Orange

For each simulation are reported: the number of replicates, the replicas (or walkers), the enhanced sampling technique employed, the number of CVs, the force field, the length of each
replica (and the total simulation time) and the color code associated to the simulation in the figures.
aThis simulation was performed by Piana et al. (2020).
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but also of the pathways connecting them. Example of methods
using reactive pathways to estimate optimal CVs include TICA,
SGOOP and machine learning approaches (Tiwary and Berne,
2016; McCarty and Parrinello, 2017; Sultan and Pande, 2017,
2018; Wang and Tiwary, 2020). Instead of learning from reactive
pathways one can instead try to only maximize the discrimination
of the different states as implemented in HLDA (Mendels et al.,
2018). One possible limitation of this latter approach, which has
the clear advantage of being more affordable for large and
complex systems, is that a CV that optimally discriminate
states may not correspond to an efficient reaction coordinate.
Here we propose a simple method to generate a novel
CV(a,φ) � ∑N

i�1aiφi, where a is a normalized vector of size N,
starting from N input simple collective variables φ (e.g., these
could be the backbone dihedral angles, or the C⍺-C⍺ contacts).
CV(a,φ) while trying to discriminate two or more states, tries
also to 1) discard as few of the input CVs φ as possible by keeping
the weights a of the combined CVs as uniform as possible; and 2)
keep the width of the minima comparable. This latter property is
relevant for methods like Metadynamics that uses Gaussians. To
achieve these properties the optimal value a is obtained by
minimizing the following scoring function (here given for two
states indicated as 1 and 2):

ψ(a) � − <CV1 > − <CV2 >
2(σ2

CV1
+ σ2CV2

) +max(σCV1, σCV2)
min(σCV1, σCV2) +∑N

i�1a
2
i ln

a2i
1/N

where the first term maximizes the discrimination among states,
the second keeps the width of the minima comparable, the last
keeps the parameters as uniform as possible.

This approach is then applied to optimize two CVs, back and
cmap, as the combination of chignolin backbone dihedral angles
and the contacts among the center of the backbone of i − i + 3
aminoacids, respectively. The CVs are first calculated for the three
states as observed in the preliminary 250 ns long simulation
(Supplementary Figure S1) and then their combination is
obtained as described above. The distribution of the values for
the cmap CV before and after optimization is reported in
Supplementary Figure S1.

Metainference
Metainference is a technique based on Bayesian inference and
replica-averaging modeling (Rieping, 2005; Cavalli et al., 2013;
Bonomi et al., 2016). Following the replica-averaging modeling
strategies, multiple replicas of the system are simulated in parallel
and the quantities to be restrained against experimental data are
back-calculated as averages over the replicas, thus taking into
account the effects of conformational averaging. Bayesian
inference allows to modulate the strength of the restraints
estimating, along with the model, statistical errors, which
include random and systematic errors as well as inaccuracies
of the forward model.

In the case of Gaussian noise, the Metainference
energy is described by (Löhr et al., 2017):
EMI � EFF + kBT

2 ∑Nd
i�1∑NR

r�1[di − λ〈 fi(X)〉]2/(σBr,i)2 + (σSEMi )2 + Eσ ,
where EFF is the force field energy, kB is the Boltzmann constant,
T the temperature, d the set of Nd experimental data, f(X) is the

forward model used to back-calculate the observable from
conformation X, fi(X) indicates the average over the NR
replicas for observable i, σBr,i is an uncertainty parameter that
describes random and systematic errors, σSEMi is the standard
error of the mean related to conformational averaging, λ is an
optional scaling parameter and Eσ is an energy term that accounts
for normalization of the data likelihood and error priors. In
Metainference Monte Carlo sampling is used to sample both the
uncertainty σBr,i (which depends on both the replica and the
observable) and optionally the scaling parameter λ.

Metainference can be combined with Metadynamics (M&M)
to accelerate the exploration of the conformational space
(Bonomi et al., 2016; Löhr et al., 2017). In M&M the replicas
share the Metadynamics bias potential as in the case of multiple-
walkers method (Raiteri et al., 2006). Depending on the
bias potential VG each replica r has a different weight that can
be approximated on the fly as wr ∼ eVG(CV(Xr))/kBT , with CV(Xr)
representing the set of selected CVs, functions of the microscopic
coordinates X. Therefore, these weights must be taken into
account when calculating the experimental averages and the
standard error of the mean σSEMi , that are computed as: fi(X) �

∑NR
r�1 wrfi(Xr)/∑NR

r�1 wr and σSEMi �
����������������������

1
(NReff −1)

∑NR

r�1 wr [fi(Xr)−〈fi(X)〉]2∑NR

r�1 wr

√
,

with NReff � (∑NR
r�1wr)2/∑NR

r�1w2
r representing the number of

effective replicas. In order to reduce the noise resulting from the
instantaneous fluctuations of the bias, the weight of each replica is
calculated via a moving average of the bias over a given number of
MD steps (set by the keyword AVERAGING). Also, to reduce the
oscillations of σSEMi we used the maximum value of σSEMi over the
same time window defined by AVERAGING keyword. Finally, we
automatically determined the maximum values that can be sampled
for σBr,i as max(σBr,i) � σSEMi

���
NR

√
, with NR being the number of

replicas (this option can be set in plumed using the keyword
OPTSIGMAMEAN � SEM_MAX).

Small-Angle X-Ray Scattering
(SAXS)-Driven Molecular Dynamics
Simulations
Synthetic SAXS intensities, to be used as target for the restraints
in our simulations, were calculated from a reference 40 μs long
MD trajectory, performed with the DES-amber forcefield and
provided by Piana et al. 2020. From this simulation a set of 24
representative SAXS intensities at different scattering angles,
ranging between 0.01 and 1.39 Å−1 and equally spaced, were
calculated with PLUMED using atomistic structure factors and
considering only the trajectory frames with temperature close to
340 K (Paissoni et al., 2019; Paissoni et al., 2020). While we know
that this range is not representative of a realistic SAXS
experiment, considering the small dimension of the protein we
decided to use such a large range to include higher resolution
details. SAXS restraints were applied every 2 MD steps and
atomic scattering factors were used to back-calculate the 24
SAXS intensities. The SEM_MAX option was used to
automatically estimate both the σSEMi as well as the maximum
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value of σBr,i for the M&M simulations; the window averaging for
the estimation of the weights was performed on a time window of
1 ps to match the frequency of deposition of Metadynamics hills.

For the set of SAXS-driven simulations we used as prior the
amber99sb-ildn (Lindorff-Larsen et al., 2010) force field with the tip3p
water model (Mark and Nilsson, 2001). The systemwas prepared and
equilibrated as described above and a set of starting conformationswas
generated from a 1 μs long plain MD simulation. We performed five
Metadynamics simulations (Table 1): one unrestrained, prior,
amber99sb-ildn simulation, using the PB4 setup with 10 replicas;
two simulations, PB4 (10r) and PB4 (100r), with the PB4 setup plus
SAXS restraints using either 10 or 100 replicas; two simulations, ME2
(10r) andME2 (100r), with theME2 setup plus SAXS restraints, using
either 10 or 100 replicas. The unrestrained prior simulation evolved for
1 μs per replica, while the SAXS driven simulations evolved for 500 ns
per replica.

The input files for all the simulations of this work are
deposited in PLUMED-NEST (The PLUMED Consortium,
2019) as plumID:21.014.

RESULTS

Metadynamics and M&M simulations, using either PBMetaD or
conventional MetaD, were performed to understand: 1) the
statistical precision achievable by different Metadynamics setups;
2) the role played by enhanced sampling in the integration of
experimental information in MD simulation by Metainference.

Assessing the Statistical Precision of
Metadynamics Simulations
PBMetaD or conventional MetaD, was used to simulate the
folding and unfolding of chignolin close to the transition

temperature and to compute the free energy and the
equilibrium population related to its three main
conformational states (Figure 1). In particular we focused our
attention on the ability to correctly estimate the errors associated
to these calculations. Estimating statistical errors in enhanced
sampling MD of large systems is a relevant problem because of
their high computational cost. Previous works have already noted
the importance of running multiple replicates, alternatively
block-averaging can be used to estimate errors taking into
accounts the time-correlated nature of MD. Here we compare
statistical errors estimated from replicates with those resulting
from block-averaging. In Figure 2 we rebuilt a free-energy profile
as function of an unbiased collective variable, the RMSD
(computed over the main chain plus the Cβ atoms) with
respect to a reference folded state of chignolin, and we
estimated the population of three minima: folded (Min 1,
RMSD ≤1.9 Å), misfolded (Min 2, 1.9 Å ≤ RMSD ≤3.0 Å) and
unfolded (Min 3, RMSD >3.0 Å, see Figure 1). The error of each
simulation is estimated using block-averaging. Furthermore,
averages and errors are obtained by the triplicates, where the
average free energy of bin b is computed as Fb � −kBT log(pb)
and the associated errors are estimated as errFb � 1�

3
√ kBT

σpb
pb
, with

pb being the average probability of the bin computed over the
triplicates and σpb its standard deviation.

Qualitatively, the resulting free energies display a good overlap
both within the triplicates and when comparing the three
simulation setups (Figure 2). Major deviations are mainly
located in the high energy regions (>2kBT). Nevertheless, we
note that the variability among simulations strongly affect the
population of the three minima, leading to differences for the
foldedminimum from less than 10% for PB4 simulations to ∼20%
for ME2 simulations. The populations estimated by averaging
over the replicates are more precise and in quantitative agreement
among the three simulation setups stressing once again the

FIGURE 2 | The RMSD free energies (top panels) and the population of the three main chignolin minima (bottom panels) are represented for different sets of
simulations (PB20 in blues, PB4 in greens, ME2 in violets shades). The different shades indicate each of the runs of the triplicates and the errors are estimated via block-
average analysis. In the rightest panels are reported the averages computed over the triplicates for each set of simulations; here the errors are determined as standard
errors over the triplicates as described in the main text. In all the pictures the free energies are shifted to set their minimum to 0.
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importance of running independent simulations. Reassuringly,
errors calculated by block-averages (comparing the free-energy
obtained from blocks of lengths in the range 30 ns–1 µs), correctly
estimate the variability observed within the triplicates (Figure 2),
with ME2 simulations showing the largest error in the set. Free-
energies and errors estimated as a function of the other biased and
unbiased CVs (Supplementary Figures S2, S3) display a
consistent behavior. Furthermore, we compared our results
with a reference 40 μs long simulated tempering simulation
published in Piana et al. (2020), showing that the populations
of the minima are quantitatively in agreement with those
obtained averaging over our replicates (Supplementary
Figure S4).

To rationalize the higher variability observed in ME2
simulations with respect to the PB20 and PB4 simulations, we
calculated the number of transitions between the folded and
unfolded state as well as the effective statistics, i.e., the fraction of
frames actually contributing to our statistical observations (cf.
Table 2). While the number of transitions per microsecond is
slightly lower in ME2 with respect to PB20 and PB4, the effective
number of frames is surprisingly low for all simulations and
dramatically so for ME2 (Table 2). This is likely due to the wider
exploration of the conformational space by MetaD, that spends
more time in high free-energy regions, thus reducing the fraction
of frames that actually populate the most relevant conformations
(see also Supplementary Figure S5). This reminds us that
enhanced sampling is not a free lunch: indeed, while favoring
the exploration of a wider conformational space, it reduces the
statistical precision of the low free-energy regions reconstruction.
A similar observation can explain the difference in the effective
frames observed between PB20 and PB4. To improve the statistics
one possibility is to fine tune and decrease the bias factor
employed for well-tempered Metadynamics (here it was 10 for
all setups, a very common value for simulations of biological
molecules) and thus focus the sampling only within regions of
interest.

Metadynamics Metainference: Enhanced
Sampling and Conformational Averaging
The poor statistics characterizing our Metadynamics simulations,
and ME2 in particular, raises issues about their combination with
Metainference, in particular when the experimental data to be
integrated represent averages over multiple conformational
states. To test this effect, we performed 4 M&M simulations
with the amber99sb-ildn force field, using as restraints synthetic
SAXS data derived from reference 40 μs long DES-amber
trajectory. The choice of SAXS is due to the ability of this
technique to capture the overall size and shape of the
molecules, thus being particularly sensitive to the equilibrium
between the different conformational states (see Supplementary
Figure S6); herein the use of synthetic data allows to avoid
experimental and forward model errors and to focus on the
effect of Metadynamics on the number of effective replicas.

We firstly performed a prior 10 replicas PB4 simulation, with
the amber99sb-ildn force field, verifying that the resulting
conformational ensemble and the back-calculated SAXS
profiles are significantly far from the reference DES-amber
simulation (Supplementary Figures S7, S8). Then we tested
four different SAXS-restrained M&M setup, either using PB4
or ME2 with 10 or 100 replicas (Table 1). The inclusion of SAXS
restraints improve, as expected, the agreement with the input
scattering profile Iref . We found that the relative error of the

calculated SAXS intensity, defined as Rfactor �
∣∣∣∣∣∣∣∣I−IrefIref

∣∣∣∣∣∣∣∣ × 100, is in

the range 0.4–1.0% (Supplementary Figure S9), representing a
significant improvement with respect to the prior amber99sb-ildn
simulations (Rfactor � 6.7%, Supplementary Figure S8). Also, we
observe that in all the cases the input profile is well in agreement
with the one back calculated from the simulations within the
error estimated by Metainference (Supplementary Figure S9).
Nevertheless, it is worth noting that the estimated errors differ in
the four simulations as it will be discuss later, thus slightly
impacting the extent of the agreement with the input data:
i.e., larger errors result in slightly worse agreement as in ME2
(10r), while smaller errors lead to better agreement as in PB4
(100r).

Next, for each of the four simulations we monitored the
number of effective replicas as a function of the simulations
time. With the same number of actual replicas, the PB4 setup
displayed more effective replicas than ME2 (Figure 3): the
average NReff in PB4 (10r) was two times larger, 4.3, than in
ME2 (10r), 2.0, and it was more than three times larger in PB4
(100r) than in the ME2 (100r) setup (NReff of 35 vs. 10). This
difference impacts on the resulting conformational ensemble
(Figure 4; Supplementary Figure S10). A striking effect is
seen for the ME2 (10r) simulation (NReff � 2.0), in which the
inclusion of SAXS data caused a strong distortion of the original
ensemble leading to the formation of a newmain minimum and a
clear deviation from the target also in the low free-energy regions.
This is consequence of the fact that, in time, we are forcing
approximatelyNReff � 2.0 conformations to fit SAXS data that can
only be explained by larger conformational ensembles.
Importantly, the reconstructed ensembles become increasingly
close to the target for larger values of NReff, with the best

TABLE 2 | For each replicate of the PB20, PB4, andME2 simulations are reported:
1) the number of transitions per microsecond from the folded (F) to the
unfolded (U) state and vice versa; 2) the percentage of the effective frames, NFeff,
over the total number of frames (NF).

Transition per μs NFeff/NF (%)

U -> F F -> U

PB20 Run 1 2.2 ± 0.4 2.8 ± 0.3 37%
Run 2 2.2 ± 0.4 1.9 ± 0.3 39%
Run 3 1.9 ± 0.3 1.8 ± 0.3 39%
Average 2.1 ± 0.1 2.2 ± 0.3 38 ± 0 1%

PB4 Run 1 2.0 ± 0.4 2.8 ± 0.5 22%
Run 2 2.1 ± 0.4 1.8 ± 0.4 20%
Run 3 2.2 ± 0.4 2.5 ± 0.5 26%
Average 2.1 ± 0.1 2.4 ± 0.3 23 ± 0 2%

ME2 Run 1 1.6 ± 0.6 2.4 ± 0.5 2.7
Run 2 1.2 ± 0.4 1.3 ± 0.4 4.1
Run 3 1.1 ± 0.3 1.4 ± 0.4 3.0
Average 1.3 ± 0.2 1.7 ± 0.4 3.3 ± 0.4%

NFeff is computed as: NFeff � (∑NF
i�1wi)2/∑NF

i�1w2
i , where wi is the weight associated to

each frame. The average and the standard error over the triplicates are also reported.
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agreement obtained for PB4 (100r) (NReff � 35). We observe that
this does not mean that PB4 allows a better agreement than ME2
in general, but it suggests that to obtain a comparable agreement
more replicas are needed when using the ME2 setup.

The number of effective replicas also affect the model errors
sampled by Metainference. As expected, we observed a direct
effect on σSEMi (Supplementary Figure S11), where less effective
replicas resulted in larger errors: indeed σSEMi represents the
uncertainty related to conformational averaging, which is
consequence of the fact that we are using a small number of
conformations (NReff) to back calculate experimental data, that
are ideally obtained as averages over an infinite number of
conformations. We also noted an indirect effect on σBr,i, where
again fewer effective replicas resulted in larger errors
(Supplementary Figure S11). This is likely due to a better
agreement with input data for larger NReff allowed by the
larger number of conformations on which averaging is

performed. Overall, this implies smaller model errors for
simulations with higher number of effective replicas, where the
total model error is computed as σ2r,i � σSEM2

i + σB2r,i . σ
SEM
i sets the

lower limit for the model error and measures the impact of
conformational averaging for the ith data point. We suggest that
the relative error σSEMi /di, where di is the ith experimental data, can
indicate whether the number of effective replicas (and consequently
the number of simulated replicas) is sufficient to capture the
conformational variability needed to correctly interpret the
corresponding data (Supplementary Figure S11). Our results
suggest that a relative error lower than 5–10% could be sufficient
to achieve a reasonable agreement with the target ensemble. We also
note that the relative errors provide information about the sensitivity
of different data points to conformational averaging.

These results underlie the importance of using a sufficient
large number of replicas in M&M simulations, taking particular
care of the number of effective frames in time, which depends on
the enhanced sampling technique used, including the employed
CVs, the investigated system as well as the specific experimental
observable.

CONCLUSION

Reliability of MD simulations depends on their statistical
precision and experimental accuracy. M&M aims to achieve
both by coupling enhanced sampling and Bayesian Inference.
Here, we assessed the performance of different MetaD setups,
optionally coupled with Metainference, using as test system
chignolin. Chignolin is a 10 residues peptide that is able to
populate three different conformational states with diverse
degrees of compactness and folding thus representing a simple
but realistic test case.

FIGURE 4 | The RMSD free energies (top panels) and the population of the three main chignolin minima (bottom panels) are represented for different simulations
(PB4 or ME2, with either 10 or 100 replicas). The results from the prior simulation, performed with the amber 99sb-ildn force field and no SAXS restraints, are represented
in light grey. The results from the reference simulation, performed with the DES-amber force field and whose back-calculated SAXS intensities were used as target, are
represented in dark grey. The errors are estimated via block-average analysis; the free energies are shifted to set their minimum to 0.

FIGURE 3 | Number of effective replicas as a function of the simulation
time for PB4 (10r), ME2 (10r), PB4 (100r) andME2 (100r) simulations. The dots
represent the value at the exact time, while the straight lines indicate the
cumulative averages.
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In order to assess the statistical precision achievable by diverse
enhanced sampling simulations we run three independent
replicates for three different Metadynamics setups, either
employing PBMetaD or traditional MetaD coupled with
multiple walkers and using different combinations of CVs. We
showed that block averaging is a robust technique to estimate
statistical error, being always a slight overestimation of the
standard error computed from the comparison of the
triplicates. Still, we observed quite strong deviations in the
population values when compared among replicates,
suggesting that quantitative conclusions should be drawn with
care from a single simulation. Importantly, when using averages
calculated over the triplicates, we found an optimal agreement
among the different setups, both concerning the free-energies and
the population estimates. This quantitative agreement is
maintained also with an independent reference simulation
(Piana et al., 2020), performed with simulated annealing.
Thus, as long as the simulations are well converged and
possibly properties are evaluated as averages over independent
copies of the simulations, the choice of the enhanced sampling
technique does not influence the overall results. These
observations support the idea that performing replicates, even
if expensive, should become a more common practice, in
particular when statistical precision is a core message.

Experimental accuracy can be obtained by Metainference via
the introduction of restraints toward a set of experimental data.
Different issues could affect the success of Metainference
simulations, including the quality and quantity of experimental
data (Löhr et al., 2017) and the quality of the forward model, as
also discussed in this special issue (Ahmed et al., 2021). Here, we
highlighted how the combination of MetaD and Metainference
(M&M) could create an additional issue related to the number of
effective replicas. In Metainference, to restrain the simulation, the
experimental data are compared with the same back-calculated
observables, averaged over the replicas: this is done to account for
the conformational heterogeneity of the system. Nevertheless, the
coupling with MetaD, while helping in accelerating the sampling
and achieving better statistical precision, could reduce the
number of effective replicas (NReff) on which this averaging is
performed. Indeed, MetaD modulates the relative weights of the
replicas, where some of them are found in low-energy areas (high
probability) and other are in high energy regions (low relative
weight). In this work, by performing M&M simulations with
either PBMetaD or traditional MetaD setup and using 10 or 100
replicas, we showed how the number of effective replicas is
extremely relevant for the reconstruction of conformational
ensembles. A too small NReff leads to distortions of the prior
ensemble that are very far from the desired target. To keep this

effect under control we suggest monitoring the relative error
caused by σSEMi . The latter represents the statistical error we
introduce when trying to capture the conformational
heterogeneity underlying an experimental observable with a
finite number of replicas. Also, we showed that in the context
of M&M, PBMetaD could be preferred to traditional MetaD, as it
results in a milder reduction in the number of actual replicas.
Indeed, the number of replicas should be high enough to capture
the conformational heterogeneity of the system as detected by an
experimental observable while also compensating to the loss of
effective frames resulting from the combination of Metainference
with Metadynamics.

Concluding, enhanced sampling techniques and integrative
techniques can generate precise and accurate conformational
ensembles. Here we showed that well established enhanced
sampling techniques provide robust results in particular when
performing multiple independent simulations. Moreover, we
improve our understanding of Metainference by suggesting
how to optimally chose the number of simulated replicas
needed to describe correctly the conformational heterogeneity
of an ensemble.
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