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Automatic and accurate segmentation of breast lesion regions from ultrasonography is an
essential step for ultrasound-guided diagnosis and treatment. However, developing a
desirable segmentation method is very difficult due to strong imaging artifacts e.g., speckle
noise, low contrast and intensity inhomogeneity, in breast ultrasound images. To solve this
problem, this paper proposes a novel boundary-guided multiscale network (BGM-Net) to
boost the performance of breast lesion segmentation from ultrasound images based on
the feature pyramid network (FPN). First, we develop a boundary-guided feature
enhancement (BGFE) module to enhance the feature map for each FPN layer by
learning a boundary map of breast lesion regions. The BGFE module improves the
boundary detection capability of the FPN framework so that weak boundaries in
ambiguous regions can be correctly identified. Second, we design a multiscale
scheme to leverage the information from different image scales in order to tackle
ultrasound artifacts. Specifically, we downsample each testing image into a coarse
counterpart, and both the testing image and its coarse counterpart are input into
BGM-Net to predict a fine and a coarse segmentation maps, respectively. The
segmentation result is then produced by fusing the fine and the coarse segmentation
maps so that breast lesion regions are accurately segmented from ultrasound images and
false detections are effectively removed attributing to boundary feature enhancement and
multiscale image information. We validate the performance of the proposed approach on
two challenging breast ultrasound datasets, and experimental results demonstrate that our
approach outperforms state-of-the-art methods.
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1 INTRODUCTION

Breast cancer is the most commonly occurring cancer in women
and is also the second leading cause of cancer death Siegel et al.
(2017). Ultrasonography has been an attractive imaging modality
for the detection and analysis of breast lesions because of its
various advantages, e.g., safety, flexibility and versatility Stavros
et al. (1995). However, clinical diagnosis of breast lesions based
on ultrasound imaging generally requires well-trained and
experienced radiologists as ultrasound images are hard to
interpret and quantitative measurements of breast lesion
regions are tedious and difficult tasks. Thus, automatic
localization of breast lesion regions will facilitate the process
of clinical detection and analysis, making the diagnosis more
efficient, as well as achieving higher sensitivity and specificity Yap
et al. (2018). Unfortunately, accurate breast lesion segmentation
from ultrasound images is very challenging due to strong imaging
artifacts, e.g., speckle noise, low contrast and intensity
inhomogeneity. Please refer to Figure 1 for some ultrasound
samples.

To solve this problem, we propose a boundary-guided
multiscale network (BGM-Net) to boost the performance of
breast lesion segmentation from ultrasound images based on
the feature pyramid network (FPN) Lin et al. (2017). Specifically,
we first develop a boundary-guided feature enhancement (BGFE)
module to enhance the feature map for each FPN layer by
learning a boundary map of breast lesion regions. This step is
particularly important for the performance of the proposed
network because it improves the capability of the FPN
framework to detect the boundaries of breast lesion regions in
low contrast ultrasound images, eliminating boundary leakages in
ambiguous regions. Then, we design a multiscale scheme to
leverage the information from different image scales in order
to tackle ultrsound artifacts, where the segmentation result is
produced by fusing a fine and a coarse segmentation maps
predicted from the testing image and its coarse counterpart,
respectively. The multiscale scheme can effectively remove
false detections that result from strong imaging artifacts. We
demonstrate the superiority of the proposed network over state-
of-the-art methods on two challenging breast ultrasound datasets.

2 RELATED WORK

In the literature, algorithms for breast lesion segmentation from
ultrasound images have been extensively studied. Early methods
Boukerroui et al. (1998), Madabhushi and Metaxas (2002),
Madabhushi and Metaxas (2003), Shan et al. (2008), Shan
et al. (2012), Xian et al. (2015), Gómez-Flores and Ruiz-
Ortega (2016) mainly exploit hand-crafted features to
construct segmentation models to infer the boundaries of
breast lesion regions, and can be divided into three categories
according to Xian et al. (2018), including region growing methods
Kwak et al. (2005), Shan et al. (2008), Shan et al. (2012)
deformable models Yezzi et al. (1997), Chen et al. (2002),
Chang et al. (2003), Madabhushi and Metaxas (2003), Gao

et al. (2012), and graph models Ashton and Parker (1995),
Chiang et al. (2010), Xian et al. (2015).

Region growing methods start the segmentation from a set of
manual or automatic selected seeds, which gradually expand to
capture the boundaries of target regions according to the
predefined growing criteria. Shan et al. Shan et al. (2012)
developed an efficient mehtod to automatically generate
region-of-interest (ROI) for breast lesion segmentation, while
Kwak et al. Kwak et al. (2005) utilized common contour
smoothness and region similarity (mean intensity and size) to
define the growing criteria.

Deformable models first construct an initial model and then
deform the model to reach object boundaries according to
internal and external energies. Madabhushi et al. Madabhushi
and Metaxas (2003) initialized the deformable model using
boundary points and employed balloon forces to define the
extern energy, while Chang et al. Chang et al. (2003) applied
the stick filter to reduce speckle noise in ultrasound images before
deforming the model to segment breast lesion regions.

Graph models perform breast lesion segmentation with
efficient energy optimization by using Markov random field or
graph cut framework. Chiang et al. Chiang et al. (2010) employed
a pre-trained Probabilistic Boosting Tree (PBT) classifier to
determine the data term of the graph cut energy, while Xian
et al. Xian et al. (2015) formulated the energy function by
modeling the information from both frequency and space
domains. Although many a priori models haved been designed
to assist breast lesion segmentation, these methods have limited
capability to capture high-level semantic features in order to
identify weak boundaries in ambiguous regions, leading to
boundary leakages in low contrast ultrasound images.

In contrast, Learning-based methods utilize a set of manually
designed features to train the classifier for segmentation tasks
Huang et al. (2008), Lo et al. (2014), Moon et al. (2014), Othman
and Tizhoosh (2011). Liu et al. Liu et al. (2010) extracted 18 local
image features to train a SVM classifier to segment breast lesion
regions, and Jiang et al. Jiang et al. (2012) utilized 24 Harr-like
features and trained Adaboost classifier for breast tumor
segmentation. Recently, convolution neural networks (CNNs)
have been demonstrated to achieve excellent performance in a lot
of medical applications by building a series of deep convolutional
layers to learn high-level semantic features from labeled data.
Inspired from this, several CNN frameworks Yap et al. (2018), Xu
et al. (2019) have been developed to segment breast lesion regions
from ultrasound images. For example, Yap et al. Yap et al. (2017)
investigated the performance of three networks: a Patch-based
LeNet, a U-Net, and a transfer learning approach with a
pretrained FCN-AlexNet, for breast lesion detection. Lei et al.
Lei et al. (2018) proposed a deep convolutional encoder-decoder
network equipped with deep boundary supervision and adaptive
domain transfer for the segmentation of breast anatomical layers.
Hu et al. Hu et al. (2019) combined a dilated fully convolutional
network with an active contour model to segment breast tumors.
Although CNN-based methods improve the performance of
breast lesion segmentation in low contrast ultrasound images,
they still suffer from strong artifacts of speckle noise and intensity

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 6983342

Wu et al. BGM-Net

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


inhomogeneity, which typically occur in clinical scenarios, and
tend to generate inaccurate segmentation results.

3 OUR APPROACH

3.1 Overview
Figure 2 illustrates the architecture of the proposed approach.
Given a testing breast ultrasound image I, we first downsample I
into a coarse counterpart J, and then input both I and J into the
feature pyramid network to obtain a set of feature maps with
different spatial resolutions. After that, a boundary-guided
feature enhancement module is developed to enhance the
feature map for each FPN layer by learning a boundary map
of breast lesion regions. All of the refined feature maps are then
upsampled and concatenated to predict a fine SI and a coarse SJ
segmentation maps for I and J, respectively. Finally, the
segmentation result Sf is produced by fusing SI and SJ so as to
leverage the information from different image scales. By
combining enhanced boundary features and multiscale image
information into a unified framework, our approach precisely
segments the breast lesion regions from ultrasound images and
effectively removes false detections resulting from various
imaging artifacts.

3.2 Boundary-Guided Feature Enhancement
The FPN framework first uses a convolutional neural network to
extract a set of feature maps with different spatial resolutions and
then iteratively merges two adjacent layers from the last layer to
the first layer. Although FPN improves the performance of breast
lesion segmentation, it still suffers from the inaccuracy of
boundary detection because of strong ultrasound artifacts. To
solve this problem, we develop a boundary-guided feature
enhancement module to improve the boundary detection
capability of the feature map for each FPN layer by learning a
boundary map of breast lesion regions.

Figure 3 shows the flowchart of the BGFE module. Given a
feature map F, we first apply a 3×3 convolutional layer on F to
obtain the first intermediate image X, followed by a 1×1
convolutional layer to obtain the second intermediate image Y,
which will be used to learn a boundary map B of breast lesion
regions. Then, we apply a 3×3 convolutional layer on Y to obtain
the third intermediate image Z, and multiply each channel of Z
with B in an element-wise manner. Finally, we concatenate X and

Z, followed by a 1×1 convolutional layer, to obtain the enhanced
feature map F̂. Mathematically, the cth channel of F̂ is
computed as:

F̂c � fconv(concate((Zc × B),X)) , (1)

where fconv is the 1×1 convolutional parameter; Zc is the cth
channel of Z; and concate is the concatenation operation on the
feature map.

3.3 Multiscale Scheme
After the BGFE module, all of the refined feature maps will be
upsampled and concatenated to predict the segmentation map of
the input image. To account for various ultrasound artifacts, we
design a multiscale scheme to produce the final segmentation
result by fusing the information from different image scales.
Specifically, for each testing breast ultrasound image, we first
downsample it into a coarse counterpart with the resolution of
320×320. In our experiment, the training images are all resized to
the resolution of 416×416 according to previous experience, and
thus the testing image is also resized to the same resolution. Then,
both the testing image and its coarse counterpart are input into
the proposed network to predict a fine and a coarse segmentation
maps, respectively. Finally, the segmentation result is produced
by fusing the fine and the coarse segmentation maps so that false
detections from the fine scale can be counteracted by the
information from the coarse scale, leading to an accurate
segmentation of breast lesion regions.

3.4 Loss Fuction
In our study, there is an annotated mask of breast lesion regions
for each training image, which will serve as the ground true for
breast lesion segmentation. In addition, we employ a canny
detector Canny (1986) on the annotated mask to obtain a
boundary map of breast lesion regions, which will serve as the
ground true for boundary detection. Based on the two ground
truths, we combine a segmentation loss and a boundary detection
loss to compute the total loss function L as following:

L � Dseg + αDedge , (2)

where Dseg andDedge are the segmentation loss and the boundary
detection loss, respectively. α is used to balance Dseg and Dedge,
and is empirically set to 0.1. The definitions of Dseg and Dedge are
given by:

FIGURE 1 | Examples of breast ultrasound images. (A–C) Ambiguous boundaries due to similar appearance between lesion and non-lesion regions. (D–F)
Intensity inhomogeneity inside lesion regions. Note that the green arrows are marked by radiologists.
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Dseg � Φ̂ (SI ,Gs) + Φ̂(SJ ,Gs) + Φ̂(Sf ,Gs) , and

Dedge � ∑
k�1

3

Φ̂(Bk,Ge) , (3)

where Gs and Ge are the ground truths for breast lesion
segmentation and boundary detection, respectively. SI and SJ
are the segmentation maps of I and J, respectively, and Sf is the
final segmentation result. Bk is the predicted boundary map of
breast lesion regions at the kth BGFE module. The function Φ̂
includes a dice loss and a cross entropy loss, and is defined as:

Φ̂ � ΦCE + βΦdice , (4)

where ΦCE and Φdice are the functions of the cross entropy loss
and the dice loss, respectively. β is used to balance ΦCE and Φdice,
and is empirically set to 0.5.

3.5 Training and Testing Strategies
Training Parameters
We initialize the parameters of the basic convolutional neural
network by a pre-trained DenseNet-121 Huang et al. (2017)
on ImageNet while the others are trained from scratch noise.

The breast ultrasound images in our training dataset are
randomly rotated, cropped, and horizontally flipped for data
augmentation. We use Adam optimizer to train the whole
framework by 10, 000 iterations. The learning rate is
initialized as 0.0001 and reduced to 0.00001 after 5, 000
iterations. We implement our BGM-Net on Keras and run it
on a single GPU with a mini-batch size of 8.

Inference
We take Sf as the final segmentation result for each testing image.

4 EXPERIMENTS

This section conducts extensive experiments, as well as an
ablation study, to evaluate the performance of the proposed
approach for breast lesion segmentation from ultrasound
images.

4.1 Dataset
Two challenging breast ultrasound datasets are utilized for the
evaluation. The first dataset (i.e., Al-Dhabyani et al., 2020) is from

FIGURE 3 | Flowchart of the BGFE module. F and F̂ are the feature map and the refined feature map, respectively. Best viewed in color.

FIGURE 2 | Schematic illustration of the proposed approach for breast lesion segmentation from ultrasound images. Please refer to Figure 3 for BGFE module.
Best viewed in color.
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the Baheya Hospital for Early Detection and Treatment of
Womenś Cancer (Cairo, Egypt). BUSI includes 780 tumor
images from 600 patients. We randomly select 661 images as
the training dataset and the remaining 119 images serve as the
testing dataset. The second dataset includes 632 breast ultrasound
images (denoted as BUSZPH), collected from Shenzhen People’s
Hospital where informed consent is obtained from all patients.
We randomly select 500 images as the training dataset and the
remaining 132 images serve as the testing dataset. The breast
lesion regions in all the images are manually segmented by
experienced radiologies, and each annotation result is
confirmed by three clinicians.

4.2 Evaluation Metric
We adopt five widely used metrics for quantitative comparison,
including Dice Similarity Coefficient (Dice), Average Distance
between Boundaries (ADB, in pixel), Jaccard, Precision, and
Recall. Please refer to Chang et al. (2009), Wang et al. (2018)
for more details about these metrics. Dice and Jaccard measure
the similarity between the segmentation result and the ground
truth. ADBmeasures the pixel distance between the boundaries of
the segmentation result and the ground truth. Precision and
Recall compute pixel-wise classification accuracy to evaluate the
segmentation result. Overall, a good segmentation result shall
have a low ADB value, but high values for the other four metrics.

4.3 Segmentation Performance
Comparison Methods
We validate the proposed approach by comparing it with five
state-of-the-art methods, including U-Net Ronneberger et al.
(2015), U-Net++ Zhou et al. (2018), feature pyramid network
(FPN) Lin et al. (2017), DeeplabV3+ Chen et al. (2018) and
ConvEDNet Lei et al. (2018). For consistent comparison, we
obtain the segmentation results of the five methods by the public
code (if available) or by our implementation, which is tuned for
the best result.

Quantitative Comparison
Tables 1, 2 present the measurement results of different
segmentation methods on the two datasets, respectively.
Apparently, our approach achieves higher values on Dice, Jaccard,
Precision and Recall measurements, and lower value on ADB
measurement, demenstrating the high accuracy of the proposed
approach for breast lesion segmentation from ultrasound images.

Visual Comparison
Figure 4 visually compares the segmentation results obtained by
our approach and the other five segmentation methods. As shown
in the figure, our approach precisely segments the breast lesion
regions from ultrasound images despite of sevious artifacts, while
the other methods tend to generate over or under-segmentation
results as they wrongly classify some non-lesion regions or miss
parts of lesion regions. In the first and second rows where high
speckle noise is presented, our result shows the highest similarity
against the ground true. This is because the boundary detection
loss in our loss function explicitly regularizes the boundary shape
of the detected regions using the boundary information in the
ground true. In addition, non-lesion regions are greatly removed
even though there are ambiguous regions with weak boundaries,
see the third and fourth rows, since the multiscale shceme in our
approach effectively fuses the information from different image
scales. Moreover, our approach accurately locate the boundaries of
breast lesion regions in inhomogeneous ultrasound images
attributing to the boundary feature enhancement of the BGFE
module, see the fifth and sixth rows. In contrast, segmentation
results from the other methods are inferior as these methods have
limited capability to cope with strong ultrasound artifacts.

4.4 Ablation Study
Network Design
We conduct an ablation study to evaluate the key components of
the proposed approach. Specifically, three baseline networks are
considered and their quantitative results on the two datasets are

TABLE 1 | Measurement results of different segmentation methods on the BUSZPH dataset. Our results are highlighted in bold.

Method Dice ADB Jaccard Precision Recall

U-Net Ronneberger et al. (2015) 0.7819 15.6556 0.6990 0.8055 0.8429
U-Net++ Zhou et al. (2018) 0.7895 11.3389 0.7092 0.8408 0.8029
FPN Lin et al. (2017) 0.8597 5.6913 0.7829 0.9001 0.8518
DeeplabV3+ Chen et al. (2018) 0.8418 6.6364 0.7583 0.8870 0.8289
ConvEDNet Lei et al. (2018) 0.8368 5.7943 0.7540 0.8987 0.8249
Our approach 0.8688 4.7966 0.7961 0.9080 0.8603

TABLE 2 | Measurement results of different segmentation methods on the BUSI dataset. Our results are highlighted in bold.

Method Dice ADB Jaccard Precision Recall

U-Net Ronneberger et al. (2015) 0.7696 33.4737 0.6777 0.8451 0.7833
U-Net++ Zhou et al. (2018) 0.7622 30.6443 0.6685 0.8222 0.7861
FPN Lin et al. (2017) 0.8267 16.6268 0.7409 0.8479 0.8539
DeeplabV3+ Chen et al. (2018) 0.8268 16.2611 0.7348 0.8720 0.8337
ConvEDNet Lei et al. (2018) 0.8270 17.3333 0.7357 0.8490 0.8551
Our approach 0.8397 12.5637 0.7597 0.8931 0.8345
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reported in comparison with our approach. The first baseline
network (denoted as “Basic”) removes both the BGFE modules
and multiscale scheme from our approach, meaning that both
boundary feature enhancement andmultiscale fusing are disabled
and the proposed approach degrades to the FPN framework. The
second baseline network (denoted as “Basic + Multiscale”)
removes the BGFE modules from our approach, meaning that
boundary feature enhancement is disabled while multiscale fusing
is enabled. The third baseline network (denoted as “Basic +
BGFE”) removes the multiscale scheme from our approach,
meaning that multiscale fusing is disabled while boundary
feature enhancement is enabled.

Quantitative Comparison
Tables 3, 4 present the measurement results of different baseline
networks on the two datasets, respectively. As shown in the table,
both “Basic + BGFE” and “Basic + Multiscale” perform better
than “Basic” by showing higher values on Dice, Jaccard, Precision
and Recall measurements, but a lower value on ADB
measurement. This clearly demonstrates the benifits from the
FPN module and the multiscale scheme. In addition, our
approach achieves the best result compared with the three
baseline networks, which validates the superiority of the
proposed approach by combining boundary feature
enhancement and multiscale fusing into a unified framework.

FIGURE 4 | Comparison of breast lesion segmentation among different methods. (A) Testing images. (B) Ground truth (denoted as GT). (C–H): Segmentation
results obtained by our approach (BGM-Net), ConvEDNet Lei et al. (2018), DeeplabV3+ Chen et al. (2018), FPN Lin et al. (2017), U-Net++ Zhou et al. (2018), and U-Net
Ronneberger et al. (2015), respectively. Note that the images in first three rows are from BUSZPH, while the images in last three rows are from BUSI.

TABLE 3 | Measurement results of different baseline networks on the BUSZPH
dataset. Our results are highlighted in bold.

Method Dice ADB Jaccard Precision Recall

Basic 0.8496 6.9231 0.7665 0.8840 0.8553
Basic + Multiscale 0.8578 6.3899 0.7816 0.8853 0.8600
Basic + BGFE 0.8619 6.1084 0.7855 0.9006 0.8602
Our approach 0.8688 4.7966 0.7961 0.9080 0.8603

TABLE 4 | Measurement results of different baseline networks on the BUSI
dataset. Our results are highlighted in bold.

Method Dice ADB Jaccard Precision Recall

Basic 0.8158 13.9902 0.7325 0.8641 0.8253
Basic + Multiscale 0.8246 16.6773 0.7385 0.8831 0.8117
Basic + BGFE 0.8300 12.4873 0.7503 0.8669 0.8329
Our approach 0.8397 12.5637 0.7597 0.8931 0.8345
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Visual Comparison
Figure 5 visually compares the segmentation results obtained by
our approach and the three baseline networks. Apparently, our
approach better segments breast lesion regions than the three
baseline networks. False detections resulted from speckle noise
are observed in the result of “Basic + BGFE”, while “Basic +
Multiscale” wrongly classifies a large part of non-lesion regions
due to unclear boundaries in ambiguous regions. In contrast, our
approach accurately locates the boundaries of breast lesion
regions by learning an enhanced boundary map using the
BGFE module. Moreover, false detections are effectively
removed attributing to the multiscale scheme. Thus, our result
achieves the highest similarity against the ground true.

5 CONCLUSION

This paper proposes a novel boundary-guided multiscale
network to boost the performance of breast lesion
segmentation from ultrasound images based on the FPN
framework. By combining boundary feature enhancement
and multiscale image information into a unified framework,
the boundary detection capability of the FPN framework is
greatly improved so that weak boundaries in ambiguous
regions can be correctly identified. In addition, the
segmentation accuracy is notably increased as false
detections resulted from strong ultrasound artifacts are
effectively removed attributing to the multiscale scheme.
Experimental results on two challenging breast ultrasound
datasets demonstrate the superiority of our approach
compared with state-of-the-art methods. However, similar
to previous work, our approach also relies on labeled
data to train the network, which limits its applications in
scenarios where unlabeled data is presented. Thus, the
future work will consider the adaptation from labeled data

to unlabeled data in order to improve the generalization of the
proposed approach.
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