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Personalized medicine is probably the most promising area being developed in modern
medicine. This approach attempts to optimize the therapies and the patient care based on
the individual patient characteristics. Its success highly depends on the way the
characterization of the disease and its evolution, the patient’s classification, its follow-
up and the treatment could be optimized. Thus, personalized medicine must combine
innovative tools to measure, integrate and model data. Towards this goal, clinical
metabolomics appears as ideally suited to obtain relevant information. Indeed, the
metabolomics signature brings crucial insight to stratify patients according to their
responses to a pathology and/or a treatment, to provide prognostic and diagnostic
biomarkers, and to improve therapeutic outcomes. However, the translation of
metabolomics from laboratory studies to clinical practice remains a subsequent
challenge. Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry
(MS) are the two key platforms for the measurement of the metabolome. NMR has several
advantages and features that are essential in clinical metabolomics. Indeed, NMR
spectroscopy is inherently very robust, reproducible, unbiased, quantitative, informative
at the structural molecular level, requires little sample preparation and reduced data
processing. NMR is also well adapted to the measurement of large cohorts, to multi-sites
and to longitudinal studies. This review focus on the potential of NMR in the context of
clinical metabolomics and personalized medicine. Starting with the current status of NMR-
based metabolomics at the clinical level and highlighting its strengths, weaknesses and
challenges, this article also explores how, far from the initial “opposition” or “competition”,
NMR and MS have been integrated and have demonstrated a great complementarity, in
terms of sample classification and biomarker identification. Finally, a perspective
discussion provides insight into the current methodological developments that could
significantly raise NMR as a more resolutive, sensitive and accessible tool for clinical
applications and point-of-care diagnosis. Thanks to these advances, NMR has a strong
potential to join the other analytical tools currently used in clinical settings.
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CLINICAL METABOLOMICS AND
PERSONALIZED MEDICINE

Amongst “omics” approaches, metabolomics is generally
presented as the last that appeared in terms of occurrence and
development, but also as the final biological and biochemical
stones in the complex networks of organisms. Indeed, this
approach aims at identify and quantify organic low molecular
weight molecules (<1,500 Da) belonging to different classes of
metabolites (Nicholson and Lindon, 2008; Patti et al., 2012).
These metabolites form the metabolome, which is composed of
endogenous but also exogenous biochemicals coming from
environment, life-style, food, medicines, microbiome and
which could be involved in catabolic and anabolic reactions
(Figure 1). Metabolomics is clearly correlated with the
functionality of the organism, while the other “omics” such as
genomics, transcriptomics and proteomics, are closest to its
capabilities (Figure 1). While the applications of metabolomics
are numerous and varied in areas such as food and natural
products quality controls (Lee et al., 2017; Li et al., 2021),
environmental studies (Viant, 2009; Bedia et al., 2018) or
agriculture (Kumar et al., 2017), the most highlighted and
probably the most promising application fields of this
methodology are clinical metabolomics and personalized
medicine (Wishart, 2016; Li B. et al., 2017; Kohler et al., 2017;
Nielsen, 2017; Tolstikov et al., 2017; Trivedi et al., 2017; Jacob
et al., 2019; Pang et al., 2019). Clinical metabolomics is a general
terminology that deals with all the applications of this approach
that involve human subjects. It includes fundamental studies of
diseases (Nielsen, 2017), searches for new biomarkers discovery
(Kohler et al., 2017) as well as for new therapeutic targets and
drug development processes (Powers, 2014; Cuperlovic-Culf and
Culf, 2016; Frédérich et al., 2016), epidemiology (Moayyeri et al.,
2013; Chan et al., 2017; Yu et al., 2019) and, recently, appears as
an interesting tool in the development of personalized or
precision medicine (Wishart, 2016; Li B. et al., 2017; Trivedi

et al., 2017; Jacob et al., 2019). Indeed, medical care is
continuously evolving toward a more patient-centered approach.

Personalized medicine is probably the most important
paradigm change in medical care that occurred during the last
few years and is clearly the future of modern medicine (Di Sanzo
et al., 2017; Elemento, 2020). This approach attempts to optimize
the therapies and the patient care based on the individual patient
characteristics (i.e., genetic dispositions, phenotype, life-style,
environmental parameters . . . ) and is expected to improve
treatment efficacy and the quality of life of the patients. The
keystone of this approach is linked to the ability of the clinicians
1) to precisely characterize the disease, 2) to stratify the patients
(i.e., according to genotype but also to phenotype), 3) to select the
right treatments adapted to the disease and the patient conditions
and 4) to follow the pathology and the treatment outcomes and to
predict their evolutions. Thus, the classical clinical tools currently
used must be improve so personalized medicine can reach such
ambitious objectives. Modern and innovative approaches are
instrumental to propose more robust and trustworthy
preventive/prognostic solutions, in order to measure, integrate
and model informative data that could help clinicians to select the
best option for the patient care. In this way, biomarker discovery
andmeasurement for longitudinal patient follow-up appear as the
cornerstones of personalized medicine (Kohler et al., 2017)

Given all these demands and needs, it is clear that clinical
metabolomics should play an important role in changing the way
patient care is approached. Patients’ metabolic profiles are very
dynamic and can be influenced by external or internal stimuli,
lifestyle and clinical changes and can be used to monitor and
explore cellular or tissue homeostasis as well as physiological and
pathological conditions (Wishart, 2016; Tolstikov et al., 2017). A
robust, quantitative and reproducible study of their metabolome
is then essential to accurately define their phenotype (Jacob et al.,
2019). Moreover, human pathologies are often complex, with
multiple molecular pathogenesis and heterogeneous clinical
pictures between patients and are not only driven by genetics

FIGURE 1 | Metabolomics in the field of other omics.
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but can also be strongly influenced by the function or dysfunction
of different metabolic and biochemical networks. These networks
are highly controlled by several internal but also external patient
parameters, and therefore, the identification and integration of
these parameters is essential for a better understanding of the
mechanisms that led to the causality and the development of a
pathology. Since it allows measuring the occurrence and
variations of metabolites in organs, tissues and biofluids to be
reported in a spatial and temporal manner, clinical metabolomics
is to be an essential tool and will play a major role for the search
for biomarkers, the identification of biochemical pathways
involved in a pathology, the study of the environment and
lifestyle influences and the treatment follow-up. However,
there are still many obstacles and challenges to overcome in
order to bring this approach from the laboratory to the clinical
practice (Pinu et al., 2019).

The study of the metabolome and the monitoring of
metabolites can be considered through two approaches: non-
targeted approach and targeted approach. Non-targeted (or
untargeted) metabolomics could be defined as the
comprehensive and extensive measurement of a larger number
of metabolites without a selection based on chemical class or
biological activity. This approach is most commonly used for
without a priori exploratory studies of pathologies and for the
discovery of new specific biomarkers. Targeted or biology-driven
metabolomics is the analysis of selected, chemically similar or
groups of biochemically annotated metabolites such as known
clinical biomarkers. It deals with quantitation or semi-
quantitation of a set of known metabolites. It currently
requires prior knowledge of the chemical or spectral properties
of the metabolites of interest. This approach is used to study
particular pathways, chemical families or biological activities and
is mandatory for validating the metabolites identified by an
untargeted strategy. Targeted metabolomics is particularly

suited to the longitudinal studies and monitoring of patients
and treatments that are essential in personalized medicine. Some
classes of metabolites have led to the development of specific
metabolomics fields. Lipids, which are considered an essential
and crucial class of compounds, led to an “omics” approach
named lipidomics, while sugars are studied in glycomics. Going
one step further, fluxomics, which is the analysis of metabolic
fluxes relying on labeled metabolic precursors, represents a very
interesting approach for the in-depth study of the intracellular
metabolism as well as the biochemical and metabolic pathways of
an organism.

The classical workflow of a metabolomics study consists of
several steps, as shown in Figure 2. The first step starts with the
biological and/or clinical questions and leads to the experimental
design, the choice of models and samples to be collected and
analyzed (biofluids, biopsies, cells). The second important step is
the measurement and analysis of the collected samples using
high-throughput technological platforms. After the measurement
and pre-processing of the data, statistical analyses are necessary to
extract the most relevant information to interpret the results
biologically and to identify metabolites or patterns that could be
considered as biomarkers of the pathology of interest. Depending
on the structure of the data, this usually requires reducing the size
of the data via multivariate statistical analysis or applying classical
univariate approaches. As these analyses deal with variance, all
experimental and analytical variabilities must be minimized in
order to reduce noise, avoid confounding factors and maximize
response. Finally, the features that have been identified can be
correlated to biochemical pathways and interpreted in the light of
the original question and/or hypothesis. Metabolomics is thus a
highly collaborative field that requires interaction between
biologists, analytical chemists and statisticians.

The accurate and complete measurement of the metabolome is
not an easy task at the analytical level (Kohler et al., 2017). Indeed,

FIGURE 2 | Workflow of a metabolomics study.
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the great diversity of metabolites both at the physico-chemical
level, the broad range of concentrations (up to mmol/L at best for
the most concentrated metabolites) as well as the associated
dynamic range detection issues represent probably the most
important and specific challenges for the classically used
analytical methods. Moreover, the analysis of complex
biological matrices is further hampered by the presence of
proteins, high ionic strength and the sample heterogeneity.
Therefore, pre-treatment of the samples is often necessary to
reduce these problems and to adapt the samples to the analytical
method. However, it is obvious that the more complex and time-
consuming this treatment is, the higher the risk of altering the
sample (in terms of metabolites composition) and the higher the
risk of introducing experimental variability.

Although the first work identified as relating to metabolomics
involved GC-MS in the 70th (Zlatkis and Liebich, 1971), Nuclear
Magnetic Resonance (NMR) quickly appeared to be a powerful
analytical technique in this field. This is mainly due to the fact
that NMR is a highly robust, reproducible and non-destructive
method that can be straightforwardly adapted to the analysis of
complex media (Emwas et al., 2019; Wishart, 2019; Sahoo et al.,
2020). Largely in minority before the 2000s, the use of mass
spectrometry (MS), coupled with chromatographic techniques
(Gas or liquid chromatographies- GC or LC) for metabolome
analysis has also been developed (Gowda and Djukovic, 2014;
Beale et al., 2018; Cui et al., 2018; Rampler et al., 2021). Indeed,
the need to better understand and characterize the metabolome,
as well as the advent of concepts such as biological systems and
metabolic networks and the use of metabolomics in the
discovery of disease-specific biomarkers, have made it
necessary to increase the number of metabolites identified,
especially those present in lower concentrations. In this
context, mass spectrometry coupled with chromatographic
techniques naturally appeared to be the most suitable
analytical platform, thanks to its favorable limit of detection.
This is mainly due to the rapid technological progress of this
technique, the accessible cost of routine instrumentation as well
as its impressive sensitivity compared to NMR. This have
progressively reversed the situation to the point where at
present the use of MS is applied in the majority of
metabolomics studies. This technological evolution inevitably
raises the question of the future of NMR in metabolomics and
more particularly in clinical metabolomics. On the one hand, if
one looks at the basic opposition of the two techniques by
comparing their sensitivity and the number of metabolites
detected, it’s a done deal. On the other hand, if we look in
more details at the situation, at the real needs in clinical
metabolomics, and if we humbly remember that no single
analytical technique can answer 100% of the questions, nor
cover 100% of the needs, it is possible to consider these two
approaches as perfectly complementary and equally essential,
each with its advantages, covering the deficiencies of the other
(this complementarity will be discussed in detail later in the
article). The right tool(s) for the right biological question(s)
must be the rule. Besides NMR and LC-MS (and to a lesser
extent GC-MS), which are the two most widespread platforms,
other approaches have also been or are being explored, such as

vibrational spectroscopy (i.e., FT-IR and Raman) (Du et al.,
2020; Sherman et al., 2020) and capillary electrophoresis
coupled or not with a MS detector (Maier and Schmitt-
Kopplin, 2016; Sasaki et al., 2019).

There are many studies comparing the advantages and
disadvantages of NMR and MS in the field of metabolomics
and it is not our intention here to add one more (Frédérich et al.,
2016; Kohler et al., 2016; Emwas et al., 2019; Wishart, 2019).
Instead, we want to focus on what NMR can bring to clinical
metabolomics and personalized medicine, how it can address the
challenges of these fields and how its use provides them with a
new opportunity and an added value (Markley et al., 2017; Emwas
et al., 2019; Takis et al., 2019; Giraudeau, 2020). Thus, the three
following chapters respectively highlight the current position of
NMR in clinical metabolomics, the complementarity of NMR
with MS and the recent and future developments of NMR in the
same field.

NUCLEAR MAGNETIC RESONANCE IN
CLINICAL METABOLOMICS AND
PERSONALIZED MEDICINE

To fully understand the role that NMR can play in clinical
metabolomics and personalized medicine, it is important to
keep in mind the weaknesses and strengths of this technique
in these particular applications. With this in mind, we will
examine how this analytical approach has been used
advantageously and successfully in a wide range of research
and projects and how its weaknesses can be improved.

Initial Limitations of Nuclear Magnetic
Resonance Approach
When discussing NMR and comparing it to other analytical
techniques, particularly MS, its lack of sensitivity and resolution
are often highlighted. In fact, despite significant technical
improvements in recent years, the limit of detectable and
quantifiable concentrations for hydrophobic metabolites in NMR
is often in the micromolar range, - a few tens of micromolar at best
on the typical metabolomics platforms. Moreover, the absence of
separative techniques preceding the NMR analysis often leads to the
overlapping of certain signals, which sometimes drastically reduces
the resolution, especially in 1D-NMR. While multi-dimensional
NMR techniques greatly improve the resolution (see Recent and
Future Developments in Nuclear Magnetic Resonance-Based
Metabolomics), sensitivity remains the main weak point of
NMR. Knowing that many metabolites in biofluids have
concentrations often close to or below the detection limit of
NMR, it is obvious that this technique can only visualize a small
part of the metabolome. However, this limitation should be
counterbalanced, on the one hand, because the part of the
metabolome that can be visualized and quantified by NMR is
often of crucial importance, and on the other hand because reliable
metabolomics analysis can be multiple and should not be boiled
down to the detection of a maximum number of metabolites.
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Advantages and Specificities of the Nuclear
Magnetic Resonance Approach and Its
Applications
Although the limitations of NMR have been briefly stated, we
must keep in mind some of its interesting characteristics to
understand why NMR is an analytical technique of choice in
the field of clinical metabolomics (Figure 3). First, NMR is highly
reproducible, and it has intrinsic quantitative properties. Second,
NMR is non-selective for analytes whose concentration is above
the limit of detection, allowing almost universal detection for all
organic molecules, depending of course of the sample preparation
applied. Third, it provides crucial structural information owing to
the high informative character of chemical shift and J-coupling
information contained in NMR spectra. Fourth, NMR is non-
destructive, which makes it possible to recover precious samples,
and most importantly allows multiple 1D and 2D experiments on
a single sample. As shown in Figure 3, all of these properties,
which will be detailed above, have a positive impact on clinical
metabolomics and enable many valuable NMR-based
metabolomics studies.

Robustness and Reproducibility
The robustness and high reproducibility of NMR relies on the
spectroscopic and physical measurement of samples. This
capability is very important in the context of statistical data
processing to minimize experimental variability and thus
increase the sensitivity of the approach. Furthermore, with an
adapted standardization of the acquisition parameters, NMR
could also potentially allow the comparison and the
integration of datasets from different instruments and/or
performed at several sites. This potential will greatly facilitate

biomarker validation. Indeed, the comparison of different
datasets is one of the challenges that clinical metabolomics
have to address in order to improve the quality and the
robustness of the results and reach the standard required to
enter into clinical practices. Moreover, coupled with automated
samples preparator and changers, NMR, and more especially 1H
NMR, allows high throughput measurements of samples. Thus,
this approach is currently the unique analytical platform that is
adapted to large scale epidemiology but also to longitudinal
studies as described in many recent publications (Jobard et al.,
2017; Locci et al., 2018; Sliz et al., 2018; Welsh et al., 2018; Vignoli
et al., 2019b; Debik et al., 2019; Deelen et al., 2019). For example,
Vignoli et al. analyzed by NMR-based metabolomics the serum
samples of 978 patients collected after an acute myocardial
infarction and that were clinically followed during 2 years. The
aim of this study was to explore if metabolomics profiles of
patients could be correlated with a higher death risk and could
enhance the existing prognostic risk models of death. Authors
demonstrated on both training and validation sets that
metabolomics data were relevant to identify high risk patients
and that combination of these data with existing scoring methods
was able to improve risk classification (Vignoli et al., 2019b). In a
same epidemiologic approach, Deelen & al. measure with a
standardized high-throughput NMR-based procedure, the
metabolome signature of more than 40,000 individuals selected
in several European cohorts. The aim to this study was to identify
metabolites that could predict long term mortality. Using a
stepwise procedure, they identified 14 circulating biomarkers
that are independently associated with all-cause mortality.
These markers could improve the existing score based on
conventional risk factors and could potentially be used to help
clinicians to define individual strategy for at risk patients (Deelen

FIGURE 3 | Properties of NMR that allow specific advantages for clinical metabolomics.
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et al., 2019). In another recent publication, urine NMR
metabolomics has been identified as an interesting pipeline
for large-scale epidemiology studies. This study demonstrated
that it was possible to quantify 43 metabolites and to assigned
more than 100 metabolites using a semi-automated
methodology in a 1,004 individuals’ cohort. Intra-assays
measurement of metabolites concentrations highlighted that
with a coefficient of variation (CV%) less than 5%, urine NMR
could provide highly robust and accurate results. However, the
authors also reported that, as expected, the intra-individuals’
variations in the metabolites over 30 days, as well as inter-
individuals’ variations are very high (respectively CV > 20%
and >40% for most of the metabolites). They conclude that high
throughput urine NMR-based metabolomics could be an
interesting and new base for epidemiologic and genetic
applications (Tynkkynen et al., 2019). At the longitudinal
level, Jobard et al. were able to follow-up by NMR-based
metabolomics two types of treatments of HER-2 positive
breast cancer patients (79 individuals) during 13 weeks (6
time-points). With this approach, the authors identified
which treatment led to the most relevant impact on the
patient’s metabolism and highlighted that this effect is still
observable several weeks after the end of the therapy. This work
demonstrated that metabolomics could be used to predict
clinical response or toxicity and tailored the treatment to
patients (Jobard et al., 2017).

Detection and Quantitation
NMR is often presented as a universal detector. Indeed, any
organic molecule with carbon, phosphorus, nitrogen or protons
present in a solution will give a specific NMR signal or signals. Of
course, for reasons of sensitivity and chemical and physical
characteristics, compounds with one or more protons are the
most easily detectable. Thus, within the detection limits of the
system, NMR can visualize all the molecules present in a sample,
without matrix or ionization effects that could affect the signal of
certain compounds, and depending on the sample preparation
applied. This property makes it possible to quickly visualize all the
samples in a cohort and to easily identify outliers and possible
subgroups. This is crucial for a better understanding of the
structure of cohorts or groups. Moreover, this “universal”
detection can be correlated with one of the most important
properties of NMR, namely that it could be intrinsically
quantitative. Indeed, not only signal intensity is directly
proportional to the concentration of a molecule (taking into
account the number of nuclei in the molecule), but if qNMR
conditions are ensured, such as full relaxation, sufficient signal-
to-noise and proper reference signal, the coefficient of
proportionality is the same for all peaks, making it possible to
quantify multiple analytes with a single internal or external
reference (Holzgrabe et al., 2005). Hence, under controlled
spectral conditions, NMR is one of the few techniques that
allows quantification without the need for reference
compounds or calibration curves. It is probably this feature
that makes NMR unique and a tool of choice for clinical
metabolomics. It is indeed clear that in the context of
personalized medicine, the longitudinal aspect of the

metabolomics studies is an essential point especially for
patient follow-up and treatment evaluation. Comparison of
metabolic profiles over time is not possible without a solid
baseline and robust values. Moreover, no biomarkers could be
useful without quantitation (Wishart, 2016). For multi-omics
integration, as well as for translational purposes and clinical
applications, absolute quantification appears as a keystone and
a requirement of metabolomics studies (Wishart, 2016; Pinu
et al., 2019). Depending on the biofluid or tissue examined,
several protocols, recommendations and commercial solutions
(such as Bruker IVDr NMR platform) have been proposed that
allow quantification of 50–150 metabolites in one experiment
through 1D NMR spectroscopy and in a range of concentrations
from µM to mM and with a huge reproducibility (Nagana Gowda
et al., 2015a; Emwas et al., 2016; Wallmeier et al., 2017; Jiménez
et al., 2018; Amiel et al., 2019). This number may appear relatively
small compared to the hundreds of metabolites that can be
identified in MS, but it should be borne in mind that we are
talking about quantification and not just identification.
According to the importance of the field, commercial
softwares, algorithms and workflows have been recently
developed to facilitate automated or high throughput NMR
quantification (i.e., Batman, Bayesil, Speaq 2.0, SasMeQ,
AQuA, SigMa, ChenomX) (Hao et al., 2012; Ravanbakhsh
et al., 2015; Jung et al., 2016; Verhoeven et al., 2017; Beirnaert
et al., 2018; Röhnisch et al., 2018; Khakimov et al., 2020). Some
recent publications have demonstrated the interest of
quantification in clinical metabolomics studies. For example,
in a targeted approach, 27 metabolites (mainly amino acids)
serum concentrations have been measured in a cohort of 157
smoker’s patients with and without chronic obstructive
pulmonary disease (COPD) and have highlighted that reduced
amino acid concentrations could be associated with an increase
incidence of respiratory exacerbation (Labaki et al., 2019). In a
longitudinal study of ischemia reperfusion injury in adult cardiac
surgery, NMR-based metabolomics on serum was used to follow-
up patients up to 20 h post-operatively. 57 metabolites were
quantified to get a longitudinal dataset that allow the
exploration of the time-dependent alterations related to
surgical trauma (Maltesen et al., 2020). NMR was also used to
quantify short chain fatty acid (SCFA) in patients stools and
demonstrated good correlations between high levels of SCFA,
hypertension and on non-dipping blood pressure profile. This
study highlighted the capability of NMR to easily quantify
metabolites in stools and to also understand the impact of
microbiota on human disease (Huart et al., 2019; Huart et al.,
2021a).

Metabolite Identification
The development of two-dimensional approaches (COSY,
TOCSY, HSQC, etc), coupled with methodological advances,
should make it possible to increase the number of metabolites
that can be detected and quantified (Féraud et al., 2020;
Martineau et al., 2020). These developments are further
discussed in Recent and Future Developments in Nuclear
Magnetic Resonance-Based Metabolomics. Interestingly, NMR
could also be used to guide MS quantification demonstrating
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the good complementarity between these two analytical platforms
(see Combining Nuclear Magnetic Resonance to Mass Spectrometry
in Clinical Metabolomics). Moreover, NMR is known to be the
technique that provides the most structural information to
characterize organic molecules. This can be extremely important
for the identification of known or still unknown or undescribed
metabolites (Dona et al., 2016; Wang et al., 2019). Accurate
identification of metabolites is obviously essential at different
levels for the accuracy and the relevance of the all the
metabolomics studies. During the last decade, the development of
metabolites databases and automated comparison tools increased
the possibility to assign metabolites by comparing the NMR data
between samples and reference spectra. We can cite HMDB (https://
hmdb.ca), which is probably the most complete in terms of
metabolites, BNL-NMR database (http://www.bml-nmr.org),
BMRB (https://bmrb.io/metabolomics/), Metabolight (https://
www.ebi.ac.uk/metabolights/) and some commercial software and
platforms that allow the identification and quantification of
metabolites (i.e., Bruker IVDr platform and ChenomX
software©). Many of these databases are interconnected to
increase their potency and include more or less complex
identification and search automated systems. Table 1 describes
the main characteristics of the open access and free databases.
Obviously, these spectral databases as well as the comparison,
identification and quantification tools still need to be improved
by adding newmetabolites spectra and data and by the development
of more powerful algorithms for the automation of metabolite
identification and quantification.

Multi-Nuclei Detection
Even if 1H is the most frequently detected atom in NMR-based
metabolomics, 31P and especially 13C can also be used in
metabolomics. Even if the sensitivity of 31P NMR is less than
that of proton, it remains extremely interesting to explore. Indeed,
phosphorus is an essential element in the biochemistry of the
organisms. Phosphorylation or dephosphorylation of enzymes and

proteins via kinases or phosphotransferases plays a key role in
many processes, while certain phosphorylated metabolites and
enzymes (NAD, NADH, NADP, UTP, CTP, ATP, ADP, AMP,
etc.) are the mainstays of the energy machinery of cells. Moreover,
phosphometabolites would represent more than 30% of the
metabolites identified (Mazurek et al., 1997). Phosphorus NMR
is still under-exploited at the moment, but because of its specificity,
it represents a unique tool that is very interesting to develop for
metabolomic applications (Bhinderwala et al., 2020). At the
organic level, carbon is undoubtedly the most interesting
element to examine, especially in NMR because it is present in
all the molecules of interest and its chemical shift range is much
wider than that of the proton, which considerably increases its
resolution and facilitate the identification of the biomarkers.
Unfortunately, 13C NMR suffers from a low sensitivity, owing
to the low natural abundance and gyromagnetic ratio of 13C nuclei.
Moreover, quantification is not as straightforward as with 1H
NMR. Therefore, direct carbon measurement is hardly ever
applied in the field of clinical metabolomics. Still, 13C
spectroscopic information can be obtained with enhanced
sensitivity via two-dimensional heteronuclear correlation
experiments with inverse detection such as HSQC and HMBC.
We have also to mention that 13C and sometime 15N observations
are also very important in fluxomics which aims to quantify fluxes
of metabolic reactions and is extremely important in in vivo and
in vitro fundamental studies of biological systems (Crown and
Antoniewicz, 2013; Niedenführ et al., 2015; Millard et al., 2017;
Giraudeau, 2020). For example, by using labeled substrate (i.e., 13C
labelled glucose or 15N glutamine), this approach allows to follow
the evolution of selected biochemical pathways by observing the
labeled metabolites that are formed over time. NMR is particularly
well suited for monitoring and quantifying the precursors and
products of these biochemical pathways. It also allows to easilymap
the location of stable isotopes and to determine the incorporation
points of markers in metabolites (Massou et al., 2007; Lane and
Fan, 2017).

TABLE 1 | The main free access NMR databases.

Databases NMR data Number of
metabolites

Automation search Quanta Others

HMDB 1D and 2D spectra, experimental
and raw data, chemical shifts list

>100,000 (not all with
measured NMR
spectra)

1D and 2D search according to
chemical shifts

No Multiple information about the metabolites
(concentrations in different fluids, physical
and biological properties, enzymes and
transporters, metabolic pathways . . . )
Very complete

BML-NMR 1D 1H and 2D J-resolved
spectra, experimental and raw
data, different spectral
conditions

208 Possible with J-resolved data Possible with
J-resolved data

Many experimental conditions are
proposed (experiment type, water
suppression, buffer, excitation angle and
relaxation delay)

BMRB 1D (proton and carbon) and 2D
spectra, experimental and raw
data, chemical shifts list

Repository for data 1D and 2D search according to
chemical shifts, to mass, to
solvent and field strength

No Many 1D and 2D spectral types, 3D
structure. Not limited to metabolitesHuge number of

metabolites

Metabolight Mainly 1D proton spectra,
spectral experimental conditions
and raw data

Repository for data According to name No Database containing many metabolomics
datasetsHuge number of

metabolites

aQuantification.
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Sample Preparation
The nature of biological samples analyzed in clinical
metabolomics is often complex and sometimes not directly
compatible with analytical techniques, especially NMR and
MS. This leads to the need to adapt pre-analytical protocols,
for example by precipitating proteins, which considerably
increases the complexity of the analyses by introducing a
significant risk of variability. However, in NMR, it has been
possible to develop spectral techniques that limit the pre-
analytical steps and thus the manipulation of the samples (e.g.,
CPMG pulse sequence to suppress protein signals, pre-saturation
pulse sequences to suppress the water signal). At this level, NMR
is therefore less time consuming and less likely to introduce
undesirable experimental variability (Beckonert et al., 2007;
Emwas et al., 2016; Vignoli et al., 2019a; Giskeødegård et al.,
2019; Snytnikova et al., 2019). The absence of chromatographic
techniques gives more flexibility to this approach and allows the
rapid analysis of classical biofluids (blood, urine, saliva,
cerebrospinal fluid) but also of various samples types (e.g.,
biopsies, cells, feces, bronchoalveolar lavage fluid) (Ciaramelli
et al., 2017; Kim et al., 2018; Romano et al., 2018; Albrecht et al.,
2020; Duarte et al., 2020). Due to the nature of the analytical
platforms used, most metabolomics experiments require the use
of liquid samples. For solid samples such as cells or biopsies, this
necessarily involves the insertion of a lysis step in the sample
preparation process (Beckonert et al., 2007; Matheus et al., 2014;
Kostidis et al., 2017; Mili et al., 2020). This step is sometimes
difficult to implement and can lead to a lack of reproducibility
and a loss of time. Direct observation of solid or semi-solid
samples would limit these drawbacks. The use of high-resolution
magic angle spinning (HRMAS) NMR spectroscopy enables the
measurement of metabolites in intact tissue or cells and the
detection of few dozens of compounds (Gogiashvili et al.,
2019; Ruhland et al., 2019; Tilgner et al., 2019). Even if the
resolution is lower than in classical high-resolution liquid NMR,
this unique application can be particularly interesting at the
clinical level, especially as a rapid diagnostic tool (10–15 min)
for the analysis of biopsies. Moreover, recent progress in the
miniaturization of such approach make it possible to limit its
invasive character, hence promising application perspectives in
clinics (Lucas-Torres et al., 2021).

Nuclear Magnetic Resonance-Based
Lipidomics
Lipids are a large group of biomolecules, classified, due to their
molecular weight, among the metabolites. Different subgroups
are often distinguished including fatty acids, glycerolipids,
phospholipids, sterols and more specifically, ceramides,
sphingolipids, acyl-carnitines, lipoproteins. They play a key
role in many biological processes since they can act as energy
reservoir, signal molecules, protein traffickers and of course main
constituents of plasma membranes (Gross and Han, 2011). Many
diseases (such as cancer, diabetes, cardiovascular diseases) and
pathological conditions are often accompanied by lipid
dysregulation (Lydic and Goo, 2018; Guo et al., 2020). Initially
included in metabolomics, the importance of this field, linked to

the physicochemical specificities of these compounds, to their
very huge number and to their essential biological role quickly led
to the appearance of a distinct approach called lipidomics
(Dennis, 2009). The analysis of lipids can face several critical
issues: 1) the complexity of the samples, the huge number of
compounds and their broad diversity of concentrations, 2) their
nature and the high number of isomers and isobaric lipids and 3)
their physicochemical properties. Mass spectrometry, generally
coupled with liquid or gas separative techniques, is currently the
analytical technique of choice for lipidome analysis, especially
since the development of devices providing additional separation
via ion mobility (Paglia et al., 2015; Jurowski et al., 2017; Leaptrot
et al., 2019). Due to its lack of sensitivity and resolution, the use of
NMR for lipidomics has been limited for a long time to
fundamental studies such as 1) determining the structure of
lipids of biological interest, 2) studying the structure and the
composition of plasma membranes using 13C-labeled precursors
and 31P NMR, 3) monitoring the impact of pathological
conditions on lipid metabolism. More recently, NMR
demonstrated its ability to be useful in classical lipidomic
analyses and to be a very interesting and complementary tool
to MS (Li J. et al., 2017; Gil et al., 2019). For example, 31P
spectroscopy could be chosen to monitor selectively and
quantitatively phospholipid classes. Moreover, even if it does
not allow, like MS, to finely separate lipids, proton NMR can
nevertheless be used to carry out quantitative studies of lipids
belonging to the different major classes. Several studies have thus
demonstrated the interest of this approach in clinical lipidomics
(Ouldamer et al., 2016; Curtarello et al., 2019; Bruzzone et al.,
2020; Huart et al., 2021b) and specific workflows and tools
(i.e., Lipspin) have been developed for semi-automated
profiling (Barrilero et al., 2018; Amiel et al., 2019; Johnson
et al., 2021). Recent developments in two-dimensional NMR
also open new perspectives to increase the resolution and the
identification of lipids (Marchand et al., 2018; Wang et al., 2020).
Another specific aspect related to NMR is its ability to profile
lipoproteins in blood (Soininen et al., 2015; Kostara et al., 2017;
Jiménez et al., 2018). Lipoproteins are supramolecular lipid
transporters classified by density ranging from Very Low-
Density Lipoproteins (VLDL) to chylomicrons. These particles
and more specifically their profile of distribution between the
different subclasses is particularly important to measure in
different pathological status such as cardiovascular diseases,
metabolic syndrome neuropathologies and degenerative
diseases (Catapano et al., 2016; Lambert et al., 2020). As
described in different papers of the literature, 1H NMR is
probably the most adapted methodology to obtain fine
quantitative profiles of lipoproteins (Jiménez et al., 2018).

Nuclear Magnetic Resonance
Metabolomics and Personalized Medicine
Personalized medicine is a new paradigm in patient care and thus
is still under development. It will be based on a better
characterization of the patient, his physiological state and his
response to treatment. Because it allows the discovery of
biomarkers and the stratification of patients, metabolomics, as
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well as pharmacometabolomics which evaluates their response to
treatment, are and will certainly be part, with genomics,
transcriptomics and proteomics of the key tools in this new way
of approaching pathologies (Wishart, 2016; Jacob et al., 2019; Beger
et al., 2020; Ashrafian et al., 2021). Its characteristics of
reproducibility, robustness, speed and its ability to quantify
metabolites, certainly position NMR as an analytical technique
of choice in metabolomics-based personalized medicine, especially
because longitudinal aspect is essential (Everett, 2017; Jacob et al.,
2019). As mentioned previously, clinical metabolomics and
personalized medicine approach are clearly connected.
Therefore, most of the recent studies in clinical metabolomics
are clearly oriented towards this personalization. Oncology is
certainly the field of application where personalized medicine
using “omics” is the most advanced (Yu and Snyder, 2016).
Indeed, a fine classification of patients, a better evaluation of
the efficacy of treatments and a clear vision of prognoses are
essential for effective patient management. Thus, several recent
studies and papers have demonstrated that NMR-based
metabolomics can be effectively applied to precision oncology
(Palmnas and Vogel, 2013; Hu et al., 2021; Vignoli et al., 2021).

Fingerprinting Approach and Application in
Clinical Biology
Among all the possible approaches developed in metabolomics,
fingerprinting is probably the one that has been applied first. It
refers to the non-targeted and without a priori metabolomics
studies that led to the identification of specific spectral or
chemical patterns that could be related to a pathological or a
particular status without identification of the metabolites
(Kosmides et al., 2013). This approach is obviously not
incompatible with the identification and quantification of
biomarkers, but it is focused on a more holistic view of the
metabolome and its possible transformation over time or under
the effect of a pathology. The possible diagnostic application of
fingerprinting is immediately obvious. However, it is equally
obvious that such an application inevitably implies
reproducibility, robustness, standardization of analytical
methods and capability for high throughput analyses as it is
the case in clinical biology. These are precisely among the
strengths of NMR. As previously mentioned, NMR is indeed
particularly well adapted to the study of large cohorts and thus to
fingerprinting (Amathieu et al., 2014; Rzeznik et al., 2017; Takis
et al., 2019). This approach faces several challenges and requires
obviously the development of specific workflows and
methodologies, especially for the multivariate analyses of the
raw data (Zacharias et al., 2018; Markley et al., 2019). Besides
the diagnostic models that metabolomic fingerprints can
generate, it could also be very useful in a preventive
framework, essential in the personalized approach to
treatment. Indeed, regular observation of the metabolomic
profile of patients would undoubtedly allow early identification
of deviations that could be linked to the onset of certain
pathologies (Takis et al., 2019).

Another important question concerning NMR-based
metabolomics is its interest and its capacity to become one of

the tools used in clinical practice and its interest compared to the
techniques used until now in clinical biology. The numerous
examples found in the literature demonstrate the strong potential
of metabolomics in clinics, but the transition from laboratory to
clinical practice is still a major challenge (Pinu et al., 2019). It can
only be filled by the transition of metabolomics to the standards
of quality, robustness and reproducibility required in clinical
biology and NMR certainly has an important role to play
(Ashrafian et al., 2021). It is clear that one of the first clinical
applications of metabolomics remains the discovery of new
biomarkers but that this approach, because of its holistic
aspect, can bring much more to the understanding of
pathologies, the prediction of their evolution, the stratification
of patients and the evaluation and adaptation of treatments. Far
from competing with existing tools, clinical metabolomics, once it
masters and standardizes its analysis and data processing
protocols, will undoubtedly provide essential information for
improving patient care. NMR, thanks to its analytical qualities,
its robustness and its ease of automation is undoubtedly a
technological platform that will find its place among other
instruments capable of providing clinicians with the data
necessary for diagnosis and monitoring of patients.

For the sake of completeness, we should also highlight in vivo
Magnetic Resonance Spectroscopy (MRS) which consists in
localized NMR spectroscopic acquisitions performed within
Magnetic Resonance Imaging (MRI) systems. It is the only
technique that allows in vivo investigation of the human
metabolome. (Rhodes, 2017; van de Weijer and Schrauwen-
Hinderling, 2019). In this review, we have focused on classical
high-resolution NMR spectroscopy without detailing in vivo or
imaging applications, which are vast areas of clinical interest and
would deserve a dedicated review. We will describe in the
following sections how NMR limitations have been or will be
challenged, what are the methodological and technological
evolutions that will allow NMR to evolve in the near future
and to remain a powerful analytical platform in metabolomics.
We will also examine how this technique can be advantageously
combined with other analytical approaches and why this
complementarity may represent a solution for improving our
knowledge and exploration of the metabolome.

COMBINING NUCLEAR MAGNETIC
RESONANCE TO MASS SPECTROMETRY
IN CLINICAL METABOLOMICS

The previous section demonstrated the strong potential that
NMR spectroscopy has within the field of clinical
metabolomics. However, it is well-known that NMR-based
metabolomics has some drawbacks, namely its lack of
sensitivity and the non-negligible signal overlap in routine 1D
1H experiments of complex biological samples. This limits its
application within several fields, including personalized
medicine. Indeed, signal overlap makes the difficult task of
metabolite identification and the subsequent biomarker
discovery even more difficult. As such and as explained
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previously, mass spectrometry based metabolomics became more
popular than NMR spectroscopy in a vast majority of
metabolomics applications (Letertre et al., 2021). However, MS
techniques come with their set of drawbacks as well: lack of
robustness and repeatability, and the difficulty to identify the
biomarkers corresponding to the numerous features detected in
MS spectra. These drawbacks are not to be ignored in clinical
research, as the discovery of biomarkers of a given pathology, or
biomarkers of an exposition to a therapeutic treatment, request
robust and repeatable methods for intra and inter-laboratory
comparison. To overcome the respective drawbacks of each
techniques and to combine their strengths, the
complementarity between both NMR spectroscopy and MS-
based metabolomics techniques has been discussed several
times in the past 15 years (Pan and Raftery, 2007; Marshall
and Powers, 2017; Letertre et al., 2021). In the following
section, different examples of studies combining both NMR
and MS-based metabolomics applied in clinical settings are
presented, and their advantages and drawbacks are discussed.

Nuclear Magnetic Resonance Hardware
Hyphenation to Mass Spectrometry
Hardware
Combining NMR with liquid chromatography (LC-NMR) and
further with MS (LC-NMR-MS) through hardware hyphenation
has been long done, especially in natural products analysis and the
different ways of doing it have been nicely described recently
(Gebretsadik et al., 2019). This approach has also been found useful
for drug metabolism (Shockcor, 2002) and pharmaceutical
research (Lindon et al., 2000; Lindon et al., 2002). For instance,
the combination HPLC-NMR with an ion-trap MS made the
identification of paracetamol metabolites and endogenous
compounds in human urine possible (Shockcor et al., 1996). By
successfully detecting phenylacetylglutamine, which was not
possible by using only 1H NMR, this triple-hyphenated system
overcame the NMR signal overlap issue. One the other hand, the
NMR part of the system was an essential tool to determine which
isomers of the paracetamol-glucuronide conjugate was present in
the sample (Shockcor et al., 1996). A similar investigation applied
this system to characterize ibuprofen metabolism in human urine
(Clayton et al., 1998). LC-NMR-MS was also used in parallel to 19F
NMR spectroscopy to investigate the metabolism of fluorinated
novel drug candidates (Dear et al., 1998) or drug intermediates
(Scarfe et al., 1999; Scarfe et al., 1998) within urine samples of
animal models and without requesting specific radiolabeling.
However, the community has lost interest in LC-NMR-MS
since the past decade, most certainly due to the technical
difficulties encountered by combining techniques coming with
orthogonal analytical requirements (Silva Elipe, 2003).

Combining Nuclear Magnetic Resonance
and Mass Spectrometry Datasets
To Increase Metabolic Coverage
Rather than hyphenating their respective hardware, combining
the datasets of NMR and MS-based metabolomics workflows has

had more success. The most obvious reason to use both NMR and
MS-based metabolomics is to increase the metabolic coverage,
thus increasing the chance of identifying new biomarkers. Indeed,
it is well emphasized within themetabolomics community that no
tools whatsoever offer a full coverage of the metabolic landscape.
Several studies nicely supported this assessment by using a Venn
diagram, which shows how the metabolite identification overlays
between the different platforms used. One of the most famous
example is a study of Human Serum Metabolome (Psychogios
et al., 2011). By using five analytical platforms (NMR
spectroscopy, LC-ESI-MS/MS, GC-MS, DFI-MS and TLC-GC-
FID), the authors were able to identify 3,764 compounds, from
which only 200 were commonly detected by at least two
platforms. Furthermore, this effort was completed by
quantitative data for some of the detected metabolites, and
although some of the results differed between platforms, good
agreement overall were found (Psychogios et al., 2011). The
combination of GC-MS, LC-MS and NMR was also applied to
explore a NIST standard reference material for human plasma
and its application in clinical laboratories. A total of 353
metabolites were identified, and whilst GC-MS was the
analytical technique showing the most of unique identification
(65), and that LC-MS and NMR identifications were found to
overlap, NMR still allowed to detect small sugars which were not
directly accessible by LC-MS (Simón-Manso et al., 2013). Similar
to the Human Serum Metabolome, a study focused on the mouse
skeletal muscle metabolome by combining NMR, FIA-MS, GC-
MS and LC-HRMS, highlighted 132 discriminant metabolites,
from which only 17 were detected by more than one analytical
platform (Bruno et al., 2018). Importantly, the analytical
approach proposed in this article was aimed to be easily
adapted for human clinical trials. In a final example, the effect
of therapeutic treatment on human gastric cancer cells was
assessed by metabolomics and lipidomics by using three
analytical platforms (NMR spectroscopy, GC-MS and LC-MS).
Once again, out of the 111 compounds detected, only 21 were
commonly highlighted by at least two analytical techniques
(Goulitquer et al., 2018). This proves the importance of using
multiple platforms if the aim of a given study is to capture the
metabolome as broadly as possible, or to carefully chose the
appropriate platform if only a specific subpart of the metabolome
is of interest, as the different requirements in term of sample
preparation as well as the very essence of the analytical platform
selected will give access only to a limited part of the metabolome.

To Correlate Variables Detected by Nuclear Magnetic
Resonance and Mass Spectrometry Techniques
Another way to show the limited overlap that can be observed
between NMR and MS datasets is to correlate their respective
signals, as it was done in a study focusing on colorectal cancer and
polyps serum samples that were analyzed by NMR spectroscopy
and targeted LC-MS/MS (Deng et al., 2016). It is clear that in
Figure 4B, the correlation taking into consideration only the
variables that were commonly detected by both NMR and MS
techniques represented only a small subset of all the features
detected either by NMR orMS (Figure 4A). However, correlating
the intrinsic covariance of signals detected by each of the
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analytical techniques can also serve as a tool to confirm
metabolite annotation made by one analytical technique, or to
acquire deeper knowledge on biomolecular reactions and thus to
enhance biomarker discovery. The first tool based on this
methodology was the so-called SHY (statistical
heterospectroscopy), based on a Pearson correlation method.
Crockford et al. showed positive or negative correlations
between NMR with LC-MS signals measured within urine
samples of rats treated with hydrazine as a proof-of-concept
(Crockford et al., 2006). This approach was further applied to
human urine samples, for instance to highlight biological
processes of inborn errors of metabolism by correlating NMR
and DESI-MS signals (Pan et al., 2007) or to successfully
investigate the xenometabolome of a random subset of an
epidemiological study (Crockford et al., 2008). In this last
study, new drug metabolites were discovered thanks to the
correlation between NMR and MS signals but also to the use
of MS tools to investigate ion fragmentations, such as MSE and
different collision energies (Crockford et al., 2008).

To Improve Statistical Models Through Multi-Block
Data Integration
The second advantage of combining NMR and MS-based
metabolomics datasets is to produce more robust and
trustworthy multivariate statistical models. To do so, multi-
block data fusion, or data integration, is gaining in popularity
within the metabolomics community (Doeswijk et al., 2011;
Boccard and Rudaz, 2014). Three levels are available to apply
data integration, often referred as low-, mid- and high-levels. The
difference between these levels have been clearly explained
previously (Boccard and Rudaz, 2014). Briefly, low-level data
fusion consists in taking the matrices obtained by each of the
analytical technique as they are, without performing multivariate
statistics on the individual blocks beforehand. Mid-level consists
in reducing the individual matrices before integration (e.g., by

selecting the most discriminant variables), and high-level data
fusion integrates only the global outputs of the individual
statistical models. Once the fusion matrix has been produced,
chemometrics can be applied, in a very similar way as for the
individual matrix, by using unsupervised and supervised
statistical analysis (Boccard and Rudaz, 2014).

In a first example which aimed at determining metabolic
differences between serum samples from breast cancer patients
and healthy controls, a mid-level data fusion approach was used
to enhance the discriminative performance of unsupervised
analyses and limit the misclassification of the supervised
analyses performed on the individuals NMR and the direct
analysis in real time (DART-MS) models (Gu et al., 2011). In
that end, another supervised analysis was performed by setting up
the Y variable to the first component of the unsupervised NMR
model, which performed better than the MS model, and the X
matric was set as the DART-MS dataset, containing more
variables. The resulting model performed better in term of
both discriminative and misclassification performances.
However this is not always the case, as shown in another
example where the discriminative power of supervised models
based on the combined NMR and GC-MS datasets did not
outperform the supervised models of the individual datasets
(Teul et al., 2009). Still, correlations between the discriminant
features of the multi-block model, which were detected by both
the NMR and GC-MS datasets, offered a better understanding of
the metabolic alterations lying in the plasma samples of patients
suffering from stable carotid atherosclerosis compared to controls
(Teul et al., 2009). This proves the benefits of combining those
two techniques to either help increasing the metabolic coverage,
improving multivariate analysis performance or have a deepest
understanding of the biological processes.

This is also well exemplified in a study which investigated the
metabolic profiles of human dopaminergic neuroblastoma cells
treated with different neurotoxins and analyzed by both NMR

FIGURE 4 | Increasing the metabolic coverage of serum samples from patients suffering from colorectal cancer and polyps, by using both NMR and MS analytical
platforms. (A)Correlation between all NMR andMS variables. (B)Correlation between the subset of metabolites (labeled in the figure) that can be detected by both NMR
and MS. The X axis provides an index of all NMR variables in the data matrix, and the Y axis provides an index of all MS variables in the data matrix. Reproduced with
permission from (Deng et al., 2016).
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and high-throughput direct-ionization electrospray ionization
MS (DI-ESI-MS) (Marshall et al., 2015). Firstly, the sample
preparation was optimized to propose a dual analysis of the
same sample which thus prevented extra sample handling.
Secondly, the discriminant power of the multi-block principal
component analysis (PCA) model which integrated the NMR
dataset with the DI-ESI-MS dataset through a low-level approach,
was clearly higher than the single NMR or DI-ESI-MS-based PCA
models. Finally, the metabolite identification of the discriminant
features were facilitated by accurate mass measurements and
fragmentation patterns obtained by tandem MS experiments
(Marshall et al., 2015). From top to bottom, this demonstrates
how it is possible to successfully combined NMR and MS dataset
to explore the effect of a specific treatment relevant to Parkinson’s
disease, and further clinical applications will most certainly be
observed in the coming decade. However, careful attention
should be paid to single block formatting during multi-block
integration, especially through a low-level approach. Indeed, the
aim is not to give too much weight to some variables or to one of
the block considered for the integration (Boccard and Rudaz,
2014). In the study discussed previously combining NMR with
DI-ESI-MS, each block were scaled to unit variance and by the
square root of its variable count (Marshall et al., 2015).

As highlighted by the above examples, data integration has a lot
of potential in clinical metabolomics, as the NMR and MS datasets
can be fused with metadata describing life-style factors from large
human cohorts. This was done in a study which aimed at observing
metabolic alterations in human plasma samples from patient
suffering from three different chronic diseases (acute coronary
syndrome, breast and colon cancers) (Acar et al., 2017). The
samples were analyzed by NMR and LC-MS (positive and
negative ionization) and the integration of these three blocks
with the metadata (Figure 5A), by using multiple kernel
learning, provided a model which outperformed the individual
models when it came to acute coronary syndrome (Figure 5B).
However, the fusion of the different datasets did not improve the
performance of the individual NMR model for the breast cancer
samples, and of none of the individual models for the colon cancer
samples (Figure 5C). In fact, the integration of the metadata can be
useful, as it can help picking up novel confounding factors, as it was
shown for metabolites linked to coffee consumption and smoking
habits (Acar et al., 2017), but these very same confounding factors
can also influence the selection of discriminative variables. This is a
problem often encountered in metabolomics and even though
several methods have been proposed to optimize the variable
selection step, such as the one based on sparse multi-block
PLSR for biomarker discovery (Karaman et al., 2015) or
backward variable elimination from PLS-DA models combined
with Monte Carlo Cross-Validation (Deng et al., 2016), this issue
remains a current limitation of data fusion.

Using Nuclear Magnetic Resonance and
Mass Spectrometry Strengths to Help
Metabolite Identification
Increasing metabolic coverage and sensitivity also means more
biomarkers to identify, which is obviously of major interest to

understand their roles in specific diseases. The complementarity
of the information that can be gathered by both NMR and MS-
based techniques represents also an advantage when it comes to
identifying biomarkers, especially when high resolution MS
(HRMS) is used to acquire accurate mass measurements from
parent compounds and their fragments in addition to the
structural information obtained by 1D and 2D NMR
spectroscopy. Detailed approaches to combine both have
actually been proposed, such as SUMMIT MS/NMR (Bingol
et al., 2015) or NMR/MS translator (Bingol and Brüschweiler,
2015a). The first one relies on HRMSmeasurements of a complex
sample, from which putative molecular formulas and scaffolds
can be proposed and NMR spectra predicted. Those predicted
spectra are then compared to experimental HSQC NMR spectra,
which have been deconvoluted for each of the sample metabolites
(Bingol and Brüschweiler, 2017). To put it simply, NMR/MS
Translator could be seen as the reverse of SUMMIT MS/NMR, as
it starts with 1D and 2D NMR acquisition, so putative
annotations can be made by comparing the experimental
NMR spectra to databases. For the best hits, the MS spectra
are predicted and then compared to experimental MS spectra
(Bingol and Brüschweiler, 2015a). This last approach allowed the
authors to identify new human urine metabolites which had
never been reported previously. It has also been suggested by the
same group that the SUMMIT MS/NMR approach could be
applied on analytes which remained unidentified even following
the application of the NMR/MS translator approach (Bingol and
Brüschweiler, 2017). Upon the fact that some of the steps of these
two approaches need to be automated in order to make the entire
process more rapid, it could promote the identification of
biomarkers in clinical research (Bingol and Brüschweiler,
2015b), but this has not really been widely applied yet.

Combining Nuclear Magnetic Resonance
and Mass Spectrometry Techniques in a
Quantitative Approach
Once the strengths of NMR and MS have been joined to increase
the metabolic coverage, to provide more powerful statistical
models and to identify new metabolites, new biomarkers of
interest can be highlighted. However, approaches combining
NMR and MS datasets often considers relative concentrations.
Needless to say, that this is not satisfactory for clinical
applications and on the contrary, absolute concentrations are
needed for intra- and inter-laboratory comparison, as well as to
compare data obtained with different analytical strategies. Recent
methods have been proposed toward that goal. One, called «
NMR-guided-MS quantitation », which consist in acquiring the
absolute concentrations of analytes present in a randomly
selected reference sample by NMR, which are then used as
concentrations of reference for the rest of the samples
analyzed by LC-MS/MS (Nagana Gowda et al., 2018). This
method was applied to quantify 30 human serum metabolites
in eight samples, and showed excellent correlations between the
concentrations obtained by NMR and the ones obtained by
NMR-guided MS, and good agreement between the NMR-
guided MS approach and stable-isotope-labelled internal
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standards (SIL IS) measurements by MS. However once
considering each of the metabolites individually, even though
most of them showed good correlations between NMR and
NMR-guided MS (e.g., R2 � 0.989 for proline), some
demonstrated very poor correlations (e.g., R2 � 0.207 for
pyroglutamic acid) (Nagana Gowda et al., 2018). This needs to
be seriously consider when it comes to clinical biomarker
discovery as whatever explanation lying behind those poor
correlations (e.g., glutamine cyclization (Purwaha et al., 2014;
Nagana Gowda et al., 2015a; Nagana Gowda et al., 2015b),
multiple or poor signals, ion suppression . . . ), it proves that it
is wrong to assume that MS can provide stable measurements of
all metabolites. To identify those unstable metabolites, or as an
alternative to labour-intensive calibration curves, the NMR-
guided MS can be of interest. Build on this approach, another
one has been proposed, based on the derivatization of the

reference sample with SIL IS and of the rest of the samples
with unlabelled IS (Fei et al., 2019). This new approach, called the
qNMR-MS, offers the possibility to reduce matrix effect but
presents the drawback of adding additional sample handling,
potentially limiting when large number of samples are
considered.

Nuclear Magnetic Resonance and Mass
Spectrometry Techniques as the Keystones
of Fluxomics
A branch of metabolomics which combines both analytical
platforms which gathered a lot of interest in clinical research
is Stable Isotope-Resolved Metabolomics (SIRM), also referred as
fluxomics analysis. SIRM offers the possibility to quantitatively
apprehend metabolic pathways and fluxes by measuring

FIGURE 5 |Multiblock data fusion applied to study the metabolic alterations in human plasma samples from patient suffering from chronic diseases. (A) Data sets
used in this study: metabolomics measurements (LC–MS and NMR), the metadata set containing life-style information, and the label information corresponding to each
sample. (B) Acute coronary syndrome. (a) Average ROC curves showing the forecasting performance of individual data sets as well as fusion methods for women and
men. (b) Boxplots summarize the performance of different approaches across 100 training/test sets. (C) Average ROC curves illustrating the forecasting
performance of (a) breast cancer and (b) colon cancer. Figure reproduced with permission from (Acar et al., 2017).
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isotopomers, by NMR, and isotopologues, by MS, following
labelling of a precursor molecule with stable isotope tracers.
Most importantly, one of the advantages of fluxomics is that it
can be done either in vitro or in situ. SIRM has thus the potential
to lift the veil on the metabolic mechanism of numerous diseases,
especially cancer (Lane et al., 2011; Lane et al., 2016; Lane et al.,
2019). More active glycolysis and Krebs cycle, as well as an
activated pyruvate carboxylation were for instance found to
promote tumour development in lung tissues (Fan et al.,
2009). The deep gain in knowledge on how diseases actually
work can clearly improve personalized treatment (Fan et al.,
2012). SIRM is probably the metabolomics branch presenting the
finest achievements in combining NMR and MS analytical
technologies to unravel disease understanding, but also the
most complex one. However tremendous efforts have been
done to promote rapid development of new computational
tools to help SIRM and other metabolomics branches to be
implemented in the long term within clinical laboratories.
These computational tools will also certainly help the
integration of SIRM findings, or metabolomics in general, with
other kinds of datasets, such as genomics, transcriptomics,
proteomics or clinical metadata to acquire a more in-depth
knowledge of biomolecular mechanism of a pathology.

Combining Nuclear Magnetic Resonance
and Mass Spectrometry Techniques for
Personalized Medicine: Where Do We
Stand?
Some studies apply both NMR andMS-based analytical strategies
to clinical research to combine the respective biomarkers of
interest, and include them in a common metabolic pathway
analysis, as it was done to study the primary membranous
glomerylonephritis and the subsequent nephrotic syndrome
that it can cause in adults (Taherkhani et al., 2019). Others
use NMR as a primary tool for open-profiling metabolomics,
and then use subsequent LC-MS/MS to confirm the results
obtained by NMR or to quantitatively target a subset of
metabolites. This approach was used to analyze 244 human
serum samples from the ECLISPE study and to identify
biomarkers of chronic obstructive pulmonary disease (Ubhi
et al., 2012), or to analyze 32 neonate urine samples and
identify biomarkers related to late-onset sepsis (Sarafidis et al.,
2017). Through an example of large epidemiological study
performed on 4,680 urinary samples from the INTERMAP
study, 1H NMR was also used for metabolic phenotyping
before applying GC-MS and LC-MS/MS to analyze the urinary
amino acids (Chan et al., 2017). Surprisingly when it comes to
large epidemiological cohorts, in the 47 studies reported in the
COMETS initiative (Yu et al., 2019), relatively few are applying
both NMR and MS-based metabolic profiling approaches. From
those, it is worse mentioning the AIRWAVE study (Elliott et al.,
2014), the MAC study (Chow et al., 2017), the MESA study (Bild
et al., 2002) or the TwinsUK study (Moayyeri et al., 2013). The
same observation can been done when it comes to metabolomics
biomarkers from acute respiratory distress syndrome, chronic
obstructive pulmonary disease and asthma (Bowler et al., 2017).

In another review focusing on preeclampsia, 16 metabolomics
studies were based on MS-data and 12 by NMR, but none were
employing both (Kelly et al., 2017). However and as nicely
pointed out in this review, combining both could provide
more robust and accurate preeclampsia metabolic profile, as
the metabolic coverage accessible with each methods in the
studies reviewed were not always comparable, also because of
the targeted approach often applied in MS which focus only on a
subset of the metabolome (Kelly et al., 2017). The integration of
NMR and MS metabolomics with other OMICS analytical
platforms gathered a lot of interest in the last 3 years in the
field of biomedical sciences (Manzoni et al., 2018), personalized
medicine (Jacob et al., 2019), environmental health (Yao et al.,
2019), microbiome research (Zimmermann et al., 2019) or
toxicology (González-Ruiz et al., 2019). Integration of different
OMICS platforms have even been of interest for personalized
medicine in human space flight (Schmidt and Goodwin, 2013).
Furthermore, optimized extraction protocol to analyzed on the
same sample the metabolites, the proteins and the lipids have
been proposed (Coman et al., 2016), so upon further
computational development, the perspectives of integrating
NMR-based metabolomics with MS-based metabolomics or
other OMICS will certainly promote its application within
clinical settings.

RECENT AND FUTURE DEVELOPMENTS IN
NUCLEAR MAGNETIC
RESONANCE-BASED METABOLOMICS

The first section of this review highlighted themajor role that NMR
plays as an analytical tool in clinicalmetabolomics. The second part
described how this role can be further strengthened by combining
NMR with other analytical techniques, especially MS-based
metabolomics. Nevertheless, there are still major challenges
posed to the NMR spectroscopists in order to further improve
the potential of NMR spectroscopy within clinical metabolomics
Indeed, NMR has well-known limitations. As mentioned in the
previous section, the main limitation is a reduced sensitivity
compared to other analytical methods and particularly MS. The
sensitivity of NMR at high magnetic field (>500MHz) is in the
micromolar range. This is sufficient to detect major metabolites in
biofluids or extracts, but relatively large sample amounts are often
required, and the detection of less concentrated, specialized
metabolites can be a challenge. A second limitation arises from
resolution issues, since it can be difficult to separate overlapping
metabolite signals in crowded spectral regions of the 1H spectrum.
Finally, a third reason whyNMR is less used thanMS in the clinical
world is the relatively high purchase cost of NMR instruments
(>1M€ for a 600MHz spectrometer) and the associated
consumption of cryofluids.

NMR spectroscopy would certainly be muchmore widely used
in the clinical world if the above-mentioned limitations were
circumvented. While these challenges are not new, several recent
(<10 years) methodological advances in the NMR community
have laid the foundations for a more sensitive, better resolved and
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more accessible NMR spectroscopy (Giraudeau, 2020). This part
focuses on such recent advances, which, in addition to the high
robustness of NMR spectroscopy, have the potential to provoke a
significant paradigm shift regarding the role of NMR for
biomedical applications. Some of them have already proved
their usefulness in the field while other rather offer mid-term
perspectives, but in our view, all are of interest to the fields of
clinical studies and personalized medicine.

Improving the Sensitivity
The sensitivity of NMR directly results from the level of nuclear
polarization, generally determined by a Boltzmann law at thermal
equilibrium. This results in relatively weak nuclear polarization
levels, for instance, only 0.000008 for 1H at 300 K in a 14 T
magnetic field -the typical NMR metabolomics configuration.
The most direct -but technologically challenging-approach
consists in increasing the static B0 field, since the sensitivity
increases with B0

3/2. NMR metabolomics experiments are
typically performed between 500 and 800 MHz, but magnets
up to 1.2 GHz are now commercially available, providing
impressive results on biofluids (Banci et al., 2019). However,
such very high field magnets only provide a modest sensitivity
gain (a factor 2.8 between 600 MHz and 1.2 GHz) while their cost
is at least ten times higher. On the hardware side, more promising
perspectives probably arise from the development of more
sensitive NMR probes. Cryogenically cooled probes can
provide a signal to noise ratio (SNR) improvement by a factor
3 to 4, however they are expensive and show limited efficiency for
samples with high salinity (Kovacs, 2005). On the one hand,
higher field and cryoprobes are well suited to improve the limit of
detection for a given sample volume, but on the other hand,
numerous small volume probes have been developed to analyze
mass-limited samples without compromising on sensitivity.
These include microprobes that can accommodate sample
volumes of a few tens of µL (Clendinen et al., 2014), but also
recent microfluidic-based probes that can detect metabolites at
sub-millimolar concentrations in sample volumes of ca. 2 µL
(Finch et al., 2016). The incorporation of such microfluidic
devices in NMR experiments also makes it possible to perform
flow experiments, opening great avenues for time-resolved
metabolomics. Patra et al. recently applied this approach to
non-invasive metabolomic monitoring of microfluidic cultures
with as few as 1,250 individual cells (Patra et al., 2021).

In addition to such magnet and probe advances that will
certainly enhance the performance of clinical NMR
metabolomics, great promises arise from hyperpolarization
methods, which have been the focus of many exciting
developments in the NMR community in the last 2 decades.
Indeed, these approaches can enhance the sensitivity of NMR
spectroscopy by up to four orders of magnitude by enhancing the
nuclear polarization to values close to unity. The two most
popular methods for hyperpolarization are para-hydrogen
induced polarization (Duckett and Mewis, 2013) and dynamic
nuclear polarization (Plainchont et al., 2018). Both have been
discovered many decades ago, but only recent developments have
made them applicable to the analysis of complex samples with
metabolomics relevance.

The first approach, para-hydrogen induced polarization, is
based on the transfer of hyperpolarization from H2 in the para
state to the nuclear spins of analytes (Duckett and Mewis, 2013).
While the initial approach involved a chemical hydrogenation
reaction, it was made more versatile and general by the
development of the SABRE technique (signal amplification by
reversible exchange) which involves the addition of a metal-based
complex to reversibly transfer the hyperpolarization to the
analytes (Lloyd et al., 2012). This method is very attractive for
practical applications since it is simple and relatively cheap.
However, it has a certain degree of selectivity since the SABRE
catalyst mainly binds to compounds containing electron-
donating heteroatoms such as nitrogen. SABRE-based
hyperpolarization has already been successfully applied to
quantify metabolites in natural extracts (Hermkens et al.,
2016). Although it has not yet been applied to a metabolomics
study, Tessari and co-workers were recently able to detect
numerous metabolites at nanomolar concentrations in solid
phase extracts of urine, which forms a promising perspective
for metabolomics (Sellies et al., 2019).

Parallel developments in the NMR world have been focusing
on another hyperpolarization technique, dissolution dynamic
nuclear polarization (d-DNP, Figure 6A) proposed in 2003 by
Ardenkjaer-Larsen and co-workers (Ardenkjaer-Larsen et al.,
2003). This approach consists in mixing the sample with small
amounts of free radicals, freezing it in a glass-forming solution at
liquid Helium temperature and in a static magnetic field, then
irradiating it by microwaves at the Larmor frequency of the
unpaired electrons. Under such conditions, the very high
polarization of the electrons is transferred to nuclei, leading to
polarizations close to unity within a few minutes. The frozen
sample is then rapidly transferred to a nearby NMR spectrometer,
where classical spectra can be obtained with sensitivity
enhancements by up to four orders of magnitude. The d-DNP
approach is technically demanding but very general, since all
metabolite signals can be enhanced in a non-selective fashion. A
more fundamental limitation arises from the decrease of
hyperpolarization during sample transfer, which occurs as a
function of nuclear longitudinal relaxation times (T1). As a
consequence, most applications of d-DNP have been focusing
on 13C nuclei, since their T1 can reach several tens of seconds,
especially for quaternary carbons. In the MRI community,
d-DNP has rapidly had a great impact on metabolic imaging,
with the first injection of hyperpolarized pyruvate to humans in
2013 (Nelson et al., 2013), and not less than 25 undergoing
clinical trials reported in 2019 (Ardenkjaer-Larsen, 2019). In
NMR spectroscopy, d-DNP has also been widely used to
investigate metabolic processes in real-time, for instance to get
insight into enzymatic kinetics (Wilson et al., 2010). In this
context, the application of d-DNP to extracts or biofluids
opens promising perspectives to enhance the sensitivity of
NMR metabolomics, and first steps towards this goal have
been reported recently. In 2015, Dumez et al. showed that
d-DNP could be applied to enhance the 13C NMR signals in
plant and cancer cell extracts at natural abundance (Dumez et al.,
2015), and in 2016, the very good analytical repeatability (<4%) of
the method was demonstrated (Bornet et al., 2016). Lerche et al.
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also reported a complementary approach relying on the
incubation of the targeted biological material with a13C-labeled
substrate (Lerche et al., 2017). More recently, in 2020, Dey et al.
demonstrated, on the example of plant extracts, the first
hyperpolarized metabolomics study at natural 13C abundance
(Figure 6B) (Dey et al., 2020). While these recent methods have
not yet been applied to clinical metabolomics, they could pave the
way towards the detection of biomarkers that were not accessible
by NMR so far. In particular, ongoing technological
developments to accelerate the sample transfer (Bowen and
Hilty, 2010) -thus making d-DNP compatible with 1H
detection- and to increase the lifetime of hyperpolarized
samples (Ji et al., 2017) could help spreading this promising
approach in the metabolomics community.

Improving the Resolution
Typical samples of metabolomics relevance are extremely
complex, since they contain a great diversity of metabolites.
Although NMR is not as sensitive as MS, resulting spectra can
be extremely complex and characterized by strong and numerous
peak overlaps that can alter the high analytical performance of
NMR. In a classical untargeted metabolomics workflow, several
NMR signals pertaining to different metabolites can be observed
within a single bucket, making it difficult to identify relevant
biomarkers. When quantitative data are being sought, the
accurate determination of peak areas is hampered by such
overlaps, leading to errors in concentration determination.
Signal processing methods can help deconvoluting individual
metabolite contributions, but such methods often rely on
databases which are specific of a given matrix prepared under
specific conditions (Hao et al., 2012; Lacy et al., 2014;
Ravanbakhsh et al., 2015). One can also rely on the detection
of heteronuclei, such as 13C, that offer a much broader chemical
shift dispersion compared to 1H (Clendinen et al., 2014).
However, due to a limited sensitivity, the routine application
of 13C NMR metabolomics will require highly sensitive detection

methods such as those reported in the previous paragraphs.
Fortunately, in addition to these approaches, many innovative
NMR methods -based on pulse sequence developments-have
been developed to simplify the analysis of complex mixtures,
that were successfully transferred to metabolomics in recent
studies, and there is not much doubt that at least some of
them will become part of the daily clinical metabolomics
workflow in a near future.

The most widely used strategy to better separate overlapping
signals in NMR of complex mixtures is to rely on multi-
dimensional methods such as 2D NMR. Indeed, in 2D NMR
spectra, peaks are spread along two orthogonal dimensions
(typically 1H–1H or 1H-13C), hence reducing peak overlap
while providing crucial information on atomic connectivity.
2D NMR has been used for decades to elucidate the molecular
structure of chemical compounds, including metabolites. In
metabolomics studies, popular experiments such as J-resolved
spectroscopy, COSY (correlation spectroscopy), TOCSY (total
correlation spectroscopy) or HSQC (heteronuclear single-
quantum correlation) are generally applied to a subset of
samples from a given study, or to a purified fraction of a
biological matrix, to elucidate the structure of biomarkers
(Mahrous and Farag, 2015). However, the systematic use of
2D NMR peaks volumes as a raw data in metabolomics
workflow is still far from routine. Nevertheless, this would
provide a great way to better extract individual metabolite
variations, since 2D peaks are much less prone to overlap than
their 1D counterparts. Indeed, early studies have shown the
potential of using 2D NMR in metabolomics. For instance,
Van et al. showed that 2D TOCSY spectra of mice urine
samples allowed to better characterize concentration changes
in low-concentrated metabolites compared to classical 1D
NMR (Van et al., 2008). Since then, 2D spectra have been
used in a number of metabolomics studies that highlighted the
relevance of using 2D NMR data in such context (Robinette et al.,
2011; Féraud et al., 2015; Puig-Castellví et al., 2018). An

FIGURE 6 | Potential of dissolution dynamic nuclear polarization (d-DNP) for highly sensitive 13C NMR metabolomics at natural abundance. (A) d-DNP
experimental scheme, where the sample is first hyperpolarized at liquid He temperature in a glass-forming solvent by microwave irradiation of free radicals, then rapidly
transferred through a magnetic tunnel to a classical NMR spectrometer where conventional detection occurs. (B) First application of this experimental scheme in a
natural abundance 13C metabolomics study, reported in 2020 by Dey et al. Scores plot of the principal component analysis (PCA) obtained from 40 spectral
buckets from hyperpolarized 13C spectra of 16 tomato fruit extracts at different ripening stages (green vs red). Integrals were normalized to Na-TSP-d4 as an internal
reference and to the weight of the sample used for extraction. Mean centering and unit variance scaling were used in PCA. (B) Reproduced from (Dey et al., 2020).
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additional benefit of 2D NMR is that it requires a less advanced
level of pre-processing, since data are already well separated at the
acquisition stage (Féraud et al., 2019).

However, a major obstacle which has limited the systematic
use of 2D NMR in metabolomics has been the long experiment
time needed to record 2D spectra with sufficient sensitivity and
resolution. Indeed, typical 2D NMR experiments may last
between a few tens of minutes until many hours since they
rely on the repetition of numerous 1D experiments with a
slight incrementation of a specific delay in the pulse sequence.
Such durations are not compatible with the high-throughput
analysis of large sample cohorts. They may also not be compatible
with time stability issues of some biological samples. Fortunately,
several methodological developments have been carried out to
accelerate the acquisition of 2D NMR spectra (Rouger et al.,
2016). These include spectral aliasing (Njock et al., 2010), fast
repetition techniques (Schanda, 2009), non-uniform sampling
(NUS) (Mobli and Hoch, 2014) or ultrafast (UF) spectroscopy
(Giraudeau and Frydman, 2014). The reader is referred to the
aforementioned reviews for detailed explanations on the
corresponding methodologies, but in summary, these methods
can accelerate the acquisition of 2D NMR spectra while
preserving a good sensitivity and resolution performance,
leading to reasonable acquisition times. A particularly
interesting feature of fast 2D NMR is that it offers many

different pulse sequences with complementary features that
make it possible to choose, for a given matrix and application,
the best compromise between experiment time, sensitivity and
resolution (Figure 7) (Martineau et al., 2020). Some of these
methods have been successfully applied in metabolomics
workflows. For instance, Marchand et al. showed that UF
COSY and NUS TOCSY applied to pig lipid serum lipid
extracts offered an improved detection of biomarkers
characterizing the administration of a growth promoted
(Marchand et al., 2018). Feraud et al. showed that NUS COSY
spectra recorded in less than 10 min provided a fast and efficient
approach for the profiling of human urine samples (Féraud et al.,
2020). It is also worth highlighting that most 2D NMR
approaches only provide information on relative metabolite
concentration variations between samples. However, when
associated with appropriate analytical procedures, fast 2D
NMR can yield accurate absolute quantitative data, which can
be an interesting alternative to 1D NMR when targeted
quantification of metabolites (Marchand et al., 2017). This
strategy has been applied, for instance, to the quantification of
metabolites in cancer cell extracts (Martineau et al., 2011; Le
Guennec et al., 2012).

Another promising perspective on the pulse sequence
development side arises from pure-shift NMR methods. The
term “pure-shift” refers to an ensemble of methodologies that

FIGURE 7 | Typical fast 2D NMR pulse sequences for high-throughput metabolomics and their corresponding spectrum obtained on a model mixture of
metabolites (A,D) Ultrafast 1H–1H correlation spectroscopy (UF COS)Y (B,E) Z-filter 1H–1H total correlation spectroscopy (ZF-TOCSY) with 50% of non-uniform
sampling in the indirect dimension (C,F) 1H–13C heteronuclear single-quantum correlation (HSQC) with 25% of non-uniform sampling in the indirect dimension. Pulse
sequences offer complementary performances in terms of speed, resolution and sensitivity. Adapted with permission from (Martineau et al., 2020).
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aim at transforming all NMR multiplets into singlets (Castañar,
2017). In the case of 1H NMR, pure-shift NMR provides a great
way of reducing peak overlap in the case of complex mixtures,
while retaining the simplicity of 1D spectra. These methodologies
suffer from a strong sensitivity penalty but could be attractive for
metabolomics workflows. Recent studies demonstrated the
potential of pure-shift NMR in plant metabolomics (Lopez
et al., 2019), and application to samples of clinical relevance
may occur in the coming years.

Finally, an alternative to these pulse sequence approaches to
simplify NMR spectra of complex mixtures is to rely on selective
methods that reduce the number of observable analytes. While
this strategy may seem counter-intuitive in metabolomics, such
methods can be of interest when focusing on a limited set of
targeted metabolites which can be of interest as markers of a given
pathology. Most promising strategies rely on “chemosensing”
methods such as the addition of charged nanoparticles that
selectively suppress NMR signals of metabolites whose charge
is opposite to those of the nanoparticles (Zhang et al., 2016), or
the coating of nanoparticles with ligands that selectively bind to
some classes of metabolites (Salvia et al., 2015).

Improving the Accessibility
A major challenge for a widespread clinical application of NMR
spectroscopy lies in the limited accessibility to NMR instruments
arising from their high cost, heaviness and high level of technicity
-including the regular handling of cryogenic fluids. Very exciting
perspectives arise along this direction from the recent
development of compact NMR spectrometers, which have
been made commercially available for a few years and have
already known a great success in chemistry labs and industries
(Singh and Blümich, 2016). Such spectrometers rely on
permanent magnets that do not require any specific
maintenance and which provide a medium magnetic field
(1–2 T) yielding a 1H resonance frequency between 40 and

100 MHz (Figure 8A) (Kuster et al., 2011). Benchtop NMR
spectrometers are transportable (<100 kg), low-cost (<100,000
€) and most commercial models can easily be used in both static
and flow configurations, which explains their success for chemical
applications. Of course, they also have a reduced performance
compared to high-field NMR spectrometer, with a lower
sensitivity and a limited ability to separate overlapping peaks
(owing to the small frequency range in Hz, while multiplet
structures such as J-couplings are invariant to the magnetic field).

In this context, it goes without saying that benchtop NMR will
not replace high-field NMR in the detection and structure
elucidation of low-concentrated biomarkers. But it could play
a significant role as an affordable and high-throughput metabolic
profiling tool at the point-of-care, especially when sample
amounts are not limited, e.g. urine samples. Along this line,
impressive results have been achieved by Wilson and co-workers,
who demonstrated that a 60 MHz commercial benchtop
spectrometer could detect and even quantify major metabolites
in urine within a few minutes, reaching limits of detection of ca.
25 µM (Percival et al., 2018). They also showed nicely resolved 2D
COSY spectra (Figure 8B) (Leenders et al., 2020), and they
eventually reported an efficient group separation between type
2 diabetes patients and healthy controls (Figure 8C). In another
recent study, Izquierdo-Garcia et al. showed that a tuberculosis
biomarker in urine -previously determined by high-field NMR-
could also be detected by benchtop NMR (Izquierdo-Garcia et al.,
2020).

While these results remain preliminary and will need to be
validated at a larger scale, they highlight how NMR spectroscopy
could soon make its way towards the patient’s bed and help as a
routine tool for rapid and accurate sample classification in a
clinical context. In addition, recent developments have shown
how high-resolution pulse sequences could be implemented on
benchtop spectrometers (Gouilleux et al., 2020). These include
solvent-suppression pulse sequences such as those used in routine

FIGURE 8 | Potential of benchtop NMR spectroscopy to make NMR metabolomics more accessible in a clinical context. (A) Typical benchtop NMR spectrometer
(B) 2D 1H–1H COSY NMR of type 2 diabetes urinary profile acquired at 60 MHz using a benchtop NMR spectrometer. Creatinine blue squares represent the long-range
connectivity cross-peak for this metabolite. Blue squares labelled A represent unassigned, unusual doublet resonances arising from ‘mirroring’ spectral signal located at
δ � 5.13–5.29 ppm (in this case, reflecting the α-glucose cross-peak). (C) Principal component analysis (PCA) scores plot of PC2 (17.04% of total variance) versus
PC1 (64.94% of total variance) for a preliminary investigation of distinctions between healthy control and type 2 diabetic cohorts, and also potential sample outliers.
Colour codings: blue, urine samples collected from healthy controls; green, those from type 2 diabetes participants. The black points represent scores plot centroids for
the two groups explored. PCA was performed using XLSTAT2014 software, and the dataset was TSP-normalised, generalised logarithmically (glog)-transformed and
Pareto-scaled prior to analysis. (A) Courtesy of Magritek GmbH. (B) Reproduced from (Leenders et al., 2020) under Creative Commons Attribution 4.0 International
License. (C) Reproduced from (Percival et al., 2018) under Creative Commons Attribution 4.0 International License.
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high-field NMR metabolomics, as well as methods which have
been described above to improve the resolution such as fast 2D
NMR or pure-shift approaches. Recent results highlighted the
potential of such advanced benchtop NMR methods for sample
classification (Gouilleux et al., 2018), and one can expect that
clinical metabolomics will benefit from such advances in the
coming years.

CONCLUSION

Thanks to intrinsic properties such as high reproducibility, the
possibility to quantify, a high degree of structural information, its
“universal” detection capacity for all organic molecules as well as
its adaptability in the analysis of biological samples, NMR very
early appeared as a platform of choice in clinicals metabolomics.
The numerous publications, works and results based on NMR
attest this fact and keep contributing to the development of this
approach. The recent progresses in mass spectrometry coupled
with liquid or gas chromatography, a more sensitive and higher
resolution technique, have progressively led NMR to play a
“second” role in metabolomic studies, raising the question of
its future in the field. However, the applications of metabolomics
in clinical research and personalized medicine have brought new
needs and challenges for metabolomics, such as the analysis of
large cohorts, the stratification and the longitudinal follow-up of
patients and the identification and quantification of biomarkers.
To face such multiple requirements and needs, NMR has real
assets and opportunities. Indeed, the many recent instrumental
and methodological developments aiming at improving both

sensitivity and resolution, as well as the demonstration of its
excellent complementarity with mass spectrometry, highlight
the leading role of NMR spectroscopy in clinical metabolomics
and in personalized medicine. The translation from laboratory
studies to clinical practice is another challenge that
metabolomics is facing and, in this respect, we are confident
that NMR will be one of the key analytical platforms that can
provide valuable and innovative solutions and opportunities
with a view to a personalized approach to medicine. Considering
the numerous promising perspectives mentioned in this review,
there is no doubt that the recent and future developments will
rekindle the flame of NMR spectroscopy in clinical metabolomics
for the next decades.
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