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SARS-CoV-2 infection has become an urgent public health concern worldwide, severely
affecting our society and economy due to the long incubation time and high prevalence. People
spare no effort on the rapid development of vaccine and treatment all over the world. Amongst
the numerous ways of tackling this pandemic, some approaches using extracellular vesicles
(EVs) are emerging. In this review, we summarize current prevalence and pathogenesis of
COVID-19, involving the combination of SARS-CoV-2 and virus receptor ACE2, endothelial
dysfunction and micro thrombosis, together with cytokine storm. We also discuss the ongoing
EVs-based strategies for the treatment of COVID-19, including mesenchymal stem cell (MSC)-
EVs, drug-EVs, vaccine-EVs, platelet-EVs, and others. Thismanuscript provides the foundation
for the development of targeted drugs and vaccines for SARS-CoV-2 infections.
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OVERVIEW OF COVID-19

Current Prevalence of COVID-19
COVID-19, named Coronavirus Infectious Disease 2019 by the World Health Organization (Zhou,
et al., 2020a; Zhu, et al., 2020), is an infectious disease caused by the severe acute respiratory syndrome
coronavirus type 2 (SARS-CoV-2), which was first reported in Wuhan, China, in December 2019.
COVID-19 infection is now a pressing global public health problem. As of today, 23March 2021, more
than 124 million people have been infected with SARS-CoV-2 and more than 2.7 million have died. In
addition to having an unprecedented impact on global health care systems, COVID-19 has profound
socioeconomic consequences (Nicola, et al., 2020).

Clinically, COVID-19 mainly affects the lungs. Although the majority of COVID-19 victims may show
asymptomatic or mild symptoms, interstitial pneumonia (IP) and acute respiratory distress syndrome
(ARDS) requiring mechanical ventilation in the intensive care units can occur in approximately 15% of cases
(Cascella, et al., 2021), especially in the elderly and individuals with underlying diseases. COVID-19 also has
systemic manifestations, affecting multiple organ systems containing cardiovascular, gastrointestinal,
hematopoietic, renal, and immune systems (Yi, et al., 2020). In severe cases, COVID-19 can lead to
severe cytokine storm or cytokine release syndrome (CRS) (Cascella, Rajnik, 2021), sepsis, multiple organ
failure and even death.
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SARS-CoV-2 is by far the seventh human coronavirus
discovered to date. Four viruses (HCoV-NL63, HCoV-229E,
HCoV-OC43, and HKU1) persist in human population and
cause mild common cold symptoms (Fung,and Liu, 2019). The
other two are similar to SARS-CoV-2, named SARS-CoV and
Middle East Respiratory Syndrome (MERS)-CoV, and both of
them lead to acute respiratory disease (Cui, et al., 2019). SARS-
CoV-2 is a spherical or pleomorphic enveloped virus particle with
a typical diameter range of 80–120 nm. This virus contains a
30 kB positive single-stranded RNA which surrounded by a
membrane embedded with a variety of viral proteins,
especially the Spike (S) protein (Mousavizadeh, and Ghasemi,
2020). Studies shown that the Spike protein in SARS-CoV-2
shared a high degree of structural homology with that in SARS-
CoV (Li, et al., 2005; Xu, et al., 2020b). SARS-CoV-2 virus infect
into human cells by recognizing the angiotensin converting
enzyme 2 (ACE2) receptor of host cells. A recent study by
Wan et al. reported that SARS-CoV-2 had a stronger binding
ability with ACE2 than with SARS-CoV, promoting the infection
and transmission capacity of the virus (Wan, et al., 2020).

Pathogenesis of COVID-19
ACE2 Plays a Key Role in SARS-CoV-2 Invasion
In 2020, using cryopreserved electron microscopy, Zhou Qiang
Laboratory of Westlake University successfully analyzed the full-
length structure of ACE2 (Yan, et al., 2020), the receptor protein
of SARS-CoV-2. This is the first time of the world that the full-
length structure of ACE2 has been resolved. As SARS-CoV-2
invades the body, ACE2 acts like a “doorknob,” the virus grabs it
and opens the door to the recipient cells. In addition,
interestingly, it has recently been demonstrated that
transmembrane protease serine 2 (TMPRSS2) incises the Spike
protein during the internalization of SARS-CoV-2 which fuses
with host cell membrane (Scheller, et al., 2019). This process is
necessary for SARS-CoV-2 to enter into recipient cells (Devaux,
et al., 2020). After fusing with the human cell membrane, the
virus genome enters into the recipient/host cell. The virus then
begins to replicate, mature and leave the host cells to infect new
healthy cells. SARS-CoV-2 enters the respiratory system from the
upper respiratory tract and eventually infects alveolar cells,
causing angiectasis of alveolar cells, increased capillary
permeability, decreased pulmonary surface active substances
with infiltration of lymphocytes and monocytes. As ACE2 and
TMPRSS2 are abundant in type II alveolar and endothelial cells
(Hamming, et al., 2004), pulmonary vessels are susceptible to
SARS-CoV-2-induced inflammation and injury (Zhao, et al.,
2020). Other than the respiratory tract, SARS-CoV-2 infection
can cause parts of the body damage, such as the cardiovascular
system. Therefore, COVID-19 patients may present with severe
forms of myocarditis and endocarditis besides respiratory
dysfunction (Guzik, et al., 2020).

ACE2 is located in various types of epithelial cells (lung,
kidney, heart, intestinal) and endothelial cells. In recent years,
studies have shown that ACE2 played roles in the cardiovascular,
renal and respiratory system, and was associated with
hypertension and diabetes. ACE2 has a protective effect on a
variety of lung diseases, such as acute lung injury, asthma, ARDS,

pulmonary hypertension and chronic obstructive pulmonary
disease (Jia, 2016). More importantly, ACE2 was identified as
a SARS-CoV and SARS-CoV-2 receptor, which played a
protective role in the pathogenesis of SARS and COVID-19.
As the first homolog of ACE, ACE2 regulates the renin
angiotensin system (RAS) by balancing the ACE activity. The
binding complex of Spike protein with ACE2 can induce the cell
membrane ACE2 down-regulation (Glowacka, et al., 2010),
contributing to the imbalance of ACE and ACE2 activity, and
therefore leading to acute lung injury (Zhang, et al., 2020a).

COVID-19 Is Associated With Endothelial Dysfunction
and Micro-thrombosis
Patients with COVID-19 have a high incidence of thrombotic
events (Berger, et al., 2020). About the mechanism of thrombosis
in COVID-19, there are a lot of speculations, such as coagulation
and platelet activation, endothelial cell activation, inflammation
and complement system activation, etc (Mackman, et al., 2020).
Varga and colleagues demonstrated that SARS-CoV-2 presented
in the endothelial cells of various human organs (Varga, et al.,
2020). In addition, evidence of alveolar capillary micro-
thrombosis and endothelial injury associated with intracellular
viruses has been noted in autopsy analyses of infected lungs
(Ackermann, et al., 2020). Due to ACE2 show high-expression in
vascular endothelial cells, viral infection of the circulatory system
directly leads to excessive coagulation in COVID-19 patients
(Varga, Flammer, 2020). In addition, the number of peripheral
blood mononuclear cells decreased significantly in patients with
respiratory failure 7–14 days after the onset of SARS-CoV-2
infection (Yi, Lagniton, 2020). High level of D-dimer was
found to presence for the moment, which was associated with
severe hypercoagulation and indicated a poor prognosis (Yi,
Lagniton, 2020). As a major activator of the coagulation
cascade (Grover, and Mackman, 2018), several studies have
speculated that the induction of tissue factor (TF) might play
an important role in the COVID-19-related thrombosis
(Bautista-Vargas, et al., 2020; Grover and Mackman, 2018;
Mackman, Antoniak, 2020). Axel Rosell et al. developed a
method to determine the activity of TF in plasma EVs in 100
patients with moderate to severe COVID-19. The results showed
that the level of EVs-TF activity was significantly higher in
COVID-19 patients than in the normal individuals. In
addition, the level of EVs-TF activity was associated with
disease severity, mortality, and several plasma markers,
including D-dimer. These findings suggest that SARS-CoV-2
infection induces the release of TF-positive EVs into the
circulation, and possibly cause thrombosis in patients infected
with COVID-19 (Rosell, et al., 2020).

Cytokine Storm: Immune Response to SARS-CoV-2 Is
a Major Driving Force of Disease Severity
Because SARS-CoV-2 entry into cells depend on binding to its
receptor, ACE2, the RAS and various inflammatory cascades are
connected with the pathobiology of COVID-19 (Bourgonje, et al.,
2020). The SARS-CoV-2 can also activate the innate and adaptive
immune response in patients with COVID-19 (Yang, et al.,
2020a). The immune effector cells release a large amount of
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proinflammatory cytokines and chemokines (Tukmechi, et al.,
2014), such as tumor necrosis factor (TNF), interleukin 1 (IL-1),
interleukin 6 (IL-6), interleukin 7 (IL-7) and granulocyte colony
stimulating factor (Pedersen and Ho, 2020), inducing an
uncontrolled CRS, and leading to various clinical
manifestations, such as high fever, hepatosplenomegaly,
cytopenia, central nervous system abnormalities,
hypoalbuminaemia and capillary leakage (England, et al., 2021;
Gao, et al., 2021). A previously published study showed that
identifying circulating protein biomarkers in COVID-19 patients
used an ultra-high-throughput serum and plasma proteomics
technology (Messner, et al., 2020). Recently, Balaji
Krishnamachary et al. indicated that EVs from patients
affected by the SARS-CoV-2 might alter the pro-inflammatory
response, blood coagulation disorders, and endothelium damage.
They found that EVs of serious cases of COVID-19 carried higher
levels of cytokines, including the IL-6 family, TNF superfamily,
chemokines (MCP-1 and CXCL16), and proteases and peptidases
(Cathepsin L1), compared with that of patients with moderate
COVID-19 or asymptomatic individuals (Krishnamachary, et al.,
2020). Therefore, the use of appropriate immunosuppressive and
immunomodulatory agents to address the potential inflammatory
complications of COVID-19 is currently being explored, which
might improve clinical outcomes and ultimately reduce COVID-
19 mortality (Stebbing, et al., 2020). Because ACE2 receptors are
widely distributed in human alveolar type II cells and capillary
endothelial cells (Hamming, Timens, 2004), the lungs are
exceptionally sensitive to SARS-CoV-2 infection. In fact,
recently published researches have shown that a substantial
portion of the lungs were impacted by this disease, leading to
an extensive damage that could subsequently result in permanent
change of lung function. A recentMRI study in a 59-year-old man
who diagnosed with COVID-19, suggested that this disease was
not restricted to any specific area in the lung, but spread to the
entire lung. In fact, this symptom is not composed directly arouse
the SARS-CoV-2 virus, but a host immune response that causes a
resistless cytokine storm in lungs. Overexpression of cytokines
such as the interleukin family (IL-2, IL-6, IL-7), GSCF, IP10,
MCP1, MIP1A, and TNF-α leads to edema and impairs oxygen
exchange, which may lead to ARDS with potential acute cardiac
injury, secondary infection and death (Huang, et al., 2020a).

EVS ARE THE PROMISING NEW
THERAPEUTIC MEANS OF COVID-19

There is currently no specific therapeutic for COVID-19.
Conventional treatment includes infection prevention,
supportive care that invloving supplement of oxygen and
mechanical ventilation support (Grasselli, et al., 2020; Marini,
and Gattinoni., 2020). Currently, drugs against COVID-19 are
evaluated worldwide, including antiviral drugs, anti-malarial
drugs and anti-inflammatory drugs, such as radecivir (Beigel,
et al., 2020), chloroquine (Zhou, et al., 2020b) and
hydroxychloroquine (HCQ) (Soy, et al., 2020), anthropoized
anti-IL-6 receptor antibody tocilizumab (Perrone, et al., 2020;
Toniati, et al., 2020; Xu, et al., 2020c), recombinant human IL-1

receptor antagonist Anakinra (Cavalli, et al., 2020; Huet, et al.,
2020), etc. Although these treatment strategies improved patient
recovery and survival, they do not definitively restore lung
damage caused by the virus. In addition, a range of anti-
inflammatory drugs have been tested to inhibit the cytokine
storm and multiple organ failure caused by the worsening
immune response in severe patients, but the effect has not
been significant. In recent years, increasing researches reported
that the role of EVs in the treatment of inflammation (Lasser,
et al., 2016; Martinez-Bravo, et al., 2017), injury (Lanyu, and
Feilong, 2019), and lung and respiratory viral infection (Scheller,
Herold, 2019; van Dongen, et al., 2016; Yoshikawa, et al., 2019). It
was reported that EVs promoted the pathogenesis of diseases
such as in infectious diseases and cancers (Fleming, et al., 2014;
Han, et al., 2019). The interesting interaction between EVs and
the virus provides a new perspective on the treatment of COVID-
19 (Dogrammatzis, et al., 2020). Viral infection may affect the
exosomal-loading mechanisms of the host cells, resulting in
changes in protein and nucleic acid content of EVs. It means
the infected cells release modified EVs, not rely on virus contents.
Therefore, compared with EVs without infected cells, these
modified EVs may modulate the host immune response.
Besides, EVs may act as a negatively regulatory element in the
transmission of viral infection, and induce the immune system to
respond to the virus. There are three types of EVs, including
exosomes (20–150 nm), microvesicles (MVs) (100–1,000 nm in
diameter), and apoptotic vesicles (1,000–5,000 nm) (Maione,
et al., 2020; Raposo and Stoorvogel, 2013). EVs, as a carrier
for cell-to-cell transfer of biomolecules, is an important mode of
cell-to-cell communication (Huang, et al., 2020b). EVs are
present in a variety of biological fluids, such as blood, tissue
fluid, pleural fluid, bronchoalveolar lavage fluid (BAL), peritoneal
fluid, saliva, urine, breast milk, cerebrospinal fluid, amniotic fluid
and so on (Kowal, et al., 2014; Rezaie, et al., 2019). EVs can be
transported or accumulated not only in biological liquids but also
in solid tissues. In solid tissue, EVs deliver their contents, such as
proteins, miRNAs, mRNAs, and lncRNAs, to adjacent or distant
cells and reprogram the target cells in fate, function, and
morphology, resulting in physiological or pathological effects
(Kowal, Tkach, 2014; Maas, et al., 2017; Statello, et al., 2018).

Exosomes, also referred to as intraluminal vesicles (ILVs), are
a subtype of EV formed by an endosomal route, which are
surrounded by a phospholipid bilayer, and have been found in
biological liquids (Raposo and Stoorvogel, 2013). Exosomal
vesicles form through inward budding of the limiting
membrane of early endosomes, which mature into
multivesicular bodies (MVBs) (Huang, Yan, 2020b). MVBs
play a significant role in the endocytic and trafficking
functions of the cell material, such as protein sorting,
recycling, storage, transport, and release (Babaei, and Rezaie,
2021). Release of exosomes into the extracellular space is
facilitated by the fusion of the MVB limiting membrane with
the plasma membrane. Researches showed that exosomes
participated in cell communication, cell maintenance, and
tumor progression (Rezaie, et al., 2021). Balaji
Krishnamachary et al. explored EVs isolated from plasma of
patients with COVID-19 to identify some potential biomarkers
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which influence the disease severity and to analyze its role in the
pathogenesis of this disease (Krishnamachary, Cook, 2020).
Plasma-derived EVs were separated from 53 COVID-19
patients in hospital and compared depending on the severity
of their disease. Analysis of inflammation and cardiovascular
protein loading in large EVs suggested significant differences in
protein expression across disease subgroups. Prominently, the
TNF superfamily and IL-6 family members were upregulated in
severe and moderate disease patients who need oxygen
supplement. EVs in severe patients also shown enhancement
of prothrombotic or endothelial injury factors (TF, t-PA, and
VWF) and cardiovascular pathology-related proteins (MB,
PRSS8, REN, and HGF). There were significantly higher levels
of TF, CD163, and EN-RAGE has been observed in EVs from
patients with severe disease compared to moderate disease. EVs
also play a key role in transmitting viral infection (Owczarek,
et al., 2018). It was found that EVs and viruses shared similar
physicochemical properties. They are small in size and have
common biogenesis and cell entry mechanisms (van Dongen,
Masoumi, 2016). The virus enters the uninfected cell via the
endocytosis pathway and then exits the host cell by budding
directly through the cell membrane. A new study found that EVs
acted as the tool of virus export to cell, and the EVs depend virus
entry mechanisms for cargo transport. EVs are the delivery
vectors of viral contents. EVs released from virus-infected cells
can infect healthy cells by transferring viral components, for
example, virus-derived miRNAs and viral proteins, etc. (Ali, et al.,
2010; Arenaccio, et al., 2015; Nolte-’t Hoen, et al., 2016). EVs
separated from infected cells may also activate humoral and
cellular immune responses by transferring viruses and
autoantigens in the host (Fleming, Sampey, 2014;
Gunasekaran, et al., 2017). In addition, EVs release from
virus-infected cells can also transfer viral receptors and pro-
inflammatory factors to the recipient cells, leading to the
transmitting of viral infection and worsening of tissue damage
(Mack, et al., 2000). Studies have shown that the number of EVs
secreted from the SARS-CoV-2 infected cells increased
significantly during the virus infection, and EVs still played an
important role in the pathogenesis of diseases (Yoshikawa,
Teixeira, 2019). Lanyu et al. emphasized the role of EVs play
which secreted by lung cells and alveolar epithelial cells in lung
injury and inflammation (Lanyu and Feilong, 2019). According to
report, EVs secreted from broncho alveolar lavage fluid are
involved in the pathogenesis of idiopathic pulmonary fibrosis
through the signaling regulation mediators such as Wnt5a
(Martin-Medina, et al., 2018). The latest research showed EVs
derived from epithelial cells which transduced by lentiviral
overexpressing SARS-CoV-2 gene could transfer viral genes to
recipient cardiomyocytes, leading to increased expression of
inflammatory genes (Kwon, et al., 2020).

EVs may contribute to the infection, internalization and
transmission of SARS-CoV-2 virus. Some components such as
miRNAs, viral proteins and viral receptor ACE2 could be packed
into EVs (Wang, et al., 2020), that render the recipient cells
sensitive to viral invasion (Figure 1). In this review, we discuss the
current EVs based COVID-19 treatment strategies, including

MSC and its EVs, EVs based drug delivery systems, EVs based
vaccine, platelet EVs and inhibition of EVs intake, etc.

EVS-BASED COVID-19 THERAPY

MSC and MSC-EVs
MSCs are heterogeneous cells, including stromal cells, progenitor
cells, fibroblasts, and stem cells (Dominici, et al., 2006; Galderisi and
Giordano, 2014). The MSCs can be isolated from many tissues, such
as bone marrow, placenta, adipose tissue, and umbilical cord blood.
They are currently used as therapeutics at the present time, and
meanwhile being tested in multiple clinical trials across the world
(Meng, et al., 2020). MSCs are safe and possess immunomodulatory
and tissue regeneration capabilities (Gao, et al., 2016; Thompson,
et al., 2020). Studies suggested that the prospective therapeutic
products based on MSCs were success, despite the apparent
heterogeneity origin and lacking in specific biomarkers to predict,
once implanted, MSCs could show strong regulate ability in
immunomodulatory, antioxidant, and angiogenesis. MSCs and
MSC-EVs have emerged as promising novel therapies that can
not only reduce inflammation, but also regenerate and repair lung
damage, and may therefore be used alone or in combination with
other therapeutic agents to benefit patients with COVID-19.

Due to MSCs lack the expression of membrane bound
molecules involved in immune rejection which enable their
allogenic transplantation, the clinical applications of MSC-
based therapy have witnessed an outstanding achievement
(Ahmadi and Rezaie, 2021). Nevertheless, in the long-term
follow up, safety issues regarding MSCs-based therapy are still
a matter of debate. It is worth noting that MSCs have the capacity
to differentiate into endothelial cells and to create a capillary
network, and the inhibitory effect ofMSCs in anti-tumor immune
response results an increased tumor growth, which promotes
tumor growth and metastasis (Kolios and Moodley, 2013). In
addition, it was reported that local microenvironment in which
MSCs engraft contained factors that induced unwanted
differentiation of transplanted MSCs in vivo. Therefore, several
factors and signaling pathways regarding MSCs therapy after
their in vivo administration should be focused. Medical staff
should abide by moral and ethical norms, so that the public and
government administrators can clearly comprehend the nature
and functions of MSCs, and understand the potential risks of
treatment, and avoid deviating by non-standard clinical trials
(Volarevic, et al., 2018).

The membrane of MSC-EVs is rich in cholesterol,
sphingomyelin, ceramide and lipid raft proteins, which enables
membrane fusion with target cells. After fusion, MSC-EVs may
trigger signaling pathways through the receptor ligand
interaction, or be internalized by endocytosis to deliver
contents, such as mRNAs, miRNAs, enzymes, cytokines, etc.
(Harrell, et al., 2019). Compared with homocellular transport,
MSC-EVs overcome safety concerns regarding the long-term
survival of engrafted MSCs due to its composition (Rezaie,
et al., 2018). Thus, MSC-EVs therapy is a new remedy in cell-
free treatment of autoimmune and inflammatory diseases.
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Application of MSCs in Pulmonary Diseases
Inflammatory cytokines play a leading role in the development of
COVID-19-caused lung injury (Figure 2). Immunotherapy that
reduce the cytokine storm could be the key treatment option.
However, traditional immunotherapy usually targeted one or two
factors and may not produce enough response. MSCs have been
shown to have powerful and extensive immunomodulatory and anti-
inflammatory capabilities (Abdi, et al., 2008; Wada, et al., 2000).

BonemarrowMSCs therapy has evolved from preclinical trials
to clinical trials for different diseases states in recent years. In
animal models, MSCs significantly improve lung pathological
change (Cruz and Rocco, 2020) and inhibit immune cell-
mediated inflammation induced by influenza virus (Khatri,
et al., 2018). Bhattacharya et al. demonstrated that bone
marrow MSCs could stabilize endothelial cells and maintain
alveolar-capillary barrier function, which is essential for

FIGURE 1 | The role of EVs in SARS-CoV-2 virus internalization and infection. EVs may contribute to the transmission of SARS-CoV-2 virus. The virus may enter the
recipient cells through internalization. Virus components, such as miRNAs, viral proteins and viral receptor ACE2, are packaged into the EVs and make the healthy cells
sensitive to viral invasion.

FIGURE 2 | Pathogenesis of COVID-19. The combination of SARS-CoV-2 and virus receptor ACE2, endothelial dysfunction and micro thrombosis, together with
cytokine storm leads to COVID-19, causing a series of clinical manifestations such as lung injury, ARDS, and even systemic multiple organ failure.
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maintaining or reducing inflammation-induced lung
permeability, thereby mitigating the development of interstitial
pulmonary edema (Bhattacharya and Matthay, 2013). Li et al.
reported that MSCs could alleviate acute lung injury caused by
H9N2 andH5N1 viruses in mice by reducing the secretion of pro-
inflammatory chemokines and cytokines, and inhibiting
migration of inflammatory cells to the lungs (Li, et al., 2016).
Currently, there are several ongoing clinical trials using MSCs for
a variety of pulmonary diseases, such as obstructive bronchiolitis
idiopathic pulmonary fibrosis (NCT02013700), chronic
obstructive pulmonary disease (NCT01849159), and bronchial
dysplasia (NCT01175655) (Wecht and Rojas, 2016), as well as for
ARDS (NCT02097641) (Matthay, et al., 2019) and septic shock
(NCT02421484) (McIntyre, et al., 2018). Specifically, Leng et al.
found that there were no ACE2 and TMPRSS2 receptors express
in MSCs, which indicated that the virus should not infect this cell
population (Leng, et al., 2020). In a rat model of hyperoxia-
induced lung injury, MSCs reduced overexpression of hyperoxia-
induced angiotensin and angiotensin type 1 receptor (AT1R), and
reduced ACE to normal level (Chen and Chou, 2018). Recently,
Simonson et al. reported a long-term follow-up study on two
severe ARDS patients, who required ECMO support and
combined mechanical ventilation during the acute phase
(Simonson, et al., 2020). After receiving a single systemic
infusion of allogeneic MSCs, both patients fully recovered
their physical and mental abilities. Remarkably, a dual-energy
CT scan showed no signs of pulmonary fibrosis after 5 yr of MSCs
treatment.

Application of MSCs in the Treatment of COVID-19
MSCs therapy is considered a promising strategy for the treatment
of COVID-19. The potential ofMSCs for the treatment of COVID-
19 is based on two benefits: 1) induction of the regenerative
program of lung epithelial and endothelial cells, and 2)
synchronous modulation of the inflammatory response. MSCs
secrete multiple kinds of cytokines and paracrine factors which
interact with immune cells directly, including T cells, B cells,
dendritic cells, macrophages, and natural killer cells. This
combined effect enables MSCs have immunomodulatory
capability, which contributes to suppressing overactivation of
the immune system. By producing and recruiting different
growth factors such as vascular endothelial growth factor
(VEGF), epidermal growth factor (EGF) and transforming
growth factor (TGF), MSCs promote tissue regeneration and
thus improve the microenvironment (Atluri, et al., 2020). It
prevents uncontrolled inflammatory cascades while reducing
pulmonary fibrosis and pulmonary dysfunction following
COVID-19 infection (Mo, et al., 2020; Sun, et al., 2020; Thille,
et al., 2013). Particularly, the lacking of ACE2 ensures the injected
MSCs achieve immunomodulatory effects free from being
destroyed by virus. MSCs from human umbilical cord origin
were reported in a recent clinical trial, compared to the placebo
group, they were associated with the increase of peripheral
lymphocyte count and the decrease of systemic inflammatory
biomarkers (ChiCTR2000029990) (Leng, et al., 2020). MSC
infusion alleviated cytokine storm syndrome and significantly
improved outcomes in patients with severe COVID-19.

Application of MSC-EVs in Lung Diseases
Most of the therapeutic progress of MSCs are achieved through
paracrine mechanisms, including EVs secretion that contain cell
protective factors such as keratinocyte growth factor (KGF), anti-
inflammatory mediators (PGE2 or lipid A4), anti-osmotic factors
(Ang1) and others (Doorn, et al., 2012; Gnecchi, et al., 2008; Li,
et al., 2014; Silini, et al., 2017). There have been reports of some
limitations of using MSCs. For instance, intravenous
administration of MSCs may induce particle aggregation
leading to embolism; and some MSCs, especially those from
embryonic tissues, may carry a risk of mutagenicity and
tumorigenicity. Therefore, MSC derivatives such as
SECRETOME (Bari, et al., 2019) and EVs (Tsiapalis and
O’Driscoll, 2020) have been suggested as alternatives to MSC
therapy. In addition, account of the low immunogenicity and
tumorigenicity, simplicity of operation, and low cost, MSC-EVs
therapy has significant advantages over MSC therapy. According
to the report recently published, MSC-EVs could be administered
by inhalation or injection (Bari, Ferrarotti, 2019). Preliminary
studies have shown that MSC-EVs might also be effective against
COVID-19 (Bari, et al., 2020). MSC-derived EVs have been
demonstrated to induce similar influence to parent cells. In
animal models, they can be store for a longer time safely
without losing their biological function, on the other hand,
they have been indicated similar or better indications than
MSCs (Tsiapalis and O’Driscoll, 2020).

Some researchers have demonstrated the immunomodulatory
effects of MSC-derived EVs in vitro (Budoni, et al., 2013; Del
Fattore, et al., 2015; Di Trapani, et al., 2016; Henao Agudelo, et al.,
2017; Liu, et al., 2012), and have shown significant anti-
inflammatory and regenerative abilities in several diseased
animal models (Fierabracci, et al., 2015; Phinney and
Pittenger, 2017). Specifically, researchers showed
demonstration that in animal models of lung injury, the
efficacy of MSC-EVs was effective like in hyperoxia (Braun,
et al., 2018; Porzionato, et al., 2019; Willis, et al., 2018), severe
bacterial pneumonia (Monsel, et al., 2015), and viral pneumonia
(Khatri, Richardson, 2018). In addition, MSC-EVs has beneficial
effects on lung perfusion ex vivo with severe E. coli pneumonia
(Park, et al., 2011). Finally, MSC-EVs can effectively repair
marginal donor lungs through several methods, the first one is
dose-dependently increasing the clearance of alveolar fluid; the
second one is reducing lung weight after perfusion and
ventilation; and the third one is improving airway and
hemodynamic parameters (Ragni, et al., 2017). On the basic of
these useful and promising results, the role of MSC-EVs in
alleviating and repairing ARDS lung injury is gaining
increasing attention (Lee, et al., 2019; Li, Huang, 2014;
Monsel, Zhu, 2015; Shah, et al., 2019). Notably, fibrosis
sequelae with reduced pulmonary function have been reported
in patients recovering from COVID-19 pneumonia. Indeed, there
is an increased risk of idiopathic pulmonary fibrosis following
viral infection (Sheng, et al., 2020), as a long-term complication, it
has been reported in parts of SARS infected patients (Zhang, et al.,
2020b). MSC-EVs prevent fibrosis following experimental lung
injury, which is similar to the cells of their origin (Cargnoni, et al.,
2009; Mansouri, et al., 2019). In fact, there is a growing interest in
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the new potential application of EV as a disease treatment
strategy. EVs are considered safe, easy and cheap to produce,
isolate, store and manage (Muraca, et al., 2017), which could
reduce costs and improve product availability. It is worth
mentioning that EVs seem to be a very generic product that it
has application diversity and can be modified by various
technologies, for example, manipulating their parent cells use
genetic engineering, and then integrated into the secreted EVs by
introducing exogenous substances (Armstrong, et al., 2017;
Vader, et al., 2016; Wiklander, et al., 2019). A similar method
has been demonstrated to deliver exogenous miRNA-Let-7c to
alleviate renal fibrosis via MSC-EVs in the mice model of
unilateral ureteral obstruction (Wang, et al., 2016). On the
other hand, studies also suggested that EVs could be loaded
with therapeutic molecules form a polymer complex to improve
its targeting activity (Cappariello, et al., 2018; Pascucci, et al.,
2014; Vader, Mol, 2016; van der Meel, et al., 2014).

The pulmonary pathology of COVID-19 critically ill patients
includes the exudation and proliferation phase of diffuse alveolar
injury, and microvascular thrombosis that suggest early ARDS
(Wichmann, et al., 2020; Xu, et al., 2020d). The pathogenesis
includes change of alveolar permeability and neutrophils
infiltration (Zemans and Matthay, 2017). Several studies
showed that MSC-EVs could reduce alveolar permeability and
increase alveolar fluid clearance, in an vitro model of human
perfusion lung injury with severe E. coli pneumonia (Gennai,
et al., 2015; Lee, et al., 2009; Park, et al., 2019). Interestingly, there
were antibacterial substances in the culture medium of the
bacteria-stimulated MSCs (Krasnodembskaya, et al., 2010). In
a mouse sepsis model, treatment with MSCs could increase
bacterial clearance, part of the reason is it increased
phagocytic activity of host immune cells (Mei, et al., 2010). In
addition, MSC-EVs demonstrated antiviral activity in vitro by
inhibiting replication of influenza virus in lung epithelial cells,
meanwhile by reducing viral load in an influenza-induced lung
injury model of pigs (Khatri, Richardson, 2018).

Application of MSC-EVs in the Treatment of COVID-19
Recently, Sengupta, et al. published the safety and efficacy of
allogeneic bone marrow MSC-derived EVs in 24 patients with
COVID-19 severe pneumonia that they have been treated with
hydroxychloroquine and azithromycin (Sengupta, et al., 2020). It
was interesting to note that inflammatory biomarkers and
absolute neutrophilic counts were decreased prominently,
while the counts of total lymphocyte and CD8+ were increased
prominently within 5 days after EVs injection. In addition,
D-dimer was significantly reduced. Although this EVs
treatment resulted about 71% of patients recovery to health, it
is not clear whether the recovery was attributable to EVs
treatment, because of the lack of a matched control group and
the lack of reported protein or microRNA composition of EVs
used in the study. In summary, we would like to underline that
there has been currently no approved MSC-based approach in
preventing and treating the COVID-19, either with MSCs or
MSCs-derived EVs. Clinical trials using EVs should be carried out
with great caution, as their cargo determines the functional
impact. Consequently, before MSC-derived EVs used in clinic,

standardized protocols need to be developed, including mass
production, isolation, functional evaluation, and batch-to-batch
consistency. Some clinical trials using MSC-EVs in COVID-19 is
currently underway and are summarized in Table 1.

Preliminary studies demonstrated that intravenous injection
of MSCs and MSC-EVs possessed an enormous potential in
treatment for COVID-19 patients. So far, no adverse events
were found during MSCs and MSC-EVs treatment and follow-
up period, suggesting that this therapy is safe and effective for
COVID-19 patients (Akbari and Rezaie, 2020). However, MSCs
express tissue factors and accumulate mainly in pulmonary
capillaries, which may increase the risk of pulmonary
embolism and other thromboembolic events. The effects of
administration time, dose, frequency and route of MSCs and
MSC-EVs need further study. Though clinical outcomes are
promising, the limited literature still warrants more studies to
establish safety and efficacy of MSCs and MSC-EVs to treat and
manage symptoms associated with COVID-19 infection
(Hamdan, et al., 2021).

Drug-EVs
One interesting approach of using EVs as therapeutic agents is its
drug delivery potential (Gnecchi, et al., 2006; Lamichhane, et al.,
2016; Lv, et al., 2012). EVs have a cellular origin, such as MSCs,
and therefore offer greater safety and stability than other delivery
systems such as liposomes (Malhotra, et al., 2016). Selectable
compounds or genetically engineered molecules may loading
with EVs in the nanocarriers to enhance the targeting ability
for tissue/cell infection, suggesting that EVs-based nanocarriers
can be used to treat infectious diseases. Some studies have used
EV as an effective carrier of tumor-targeted anticancer drugs
curcumin, doxorubicin, and paclitaxel (Kim, et al., 2016).
Therefore, an EV-based drug delivery system has great
potential to increase drug loading in targeting cells and inhibit
off-target effects. EVs may be used to deliver therapeutic drugs or
biomodulators to inhibiting the spread and replication of virus in
the recipient cells (Romagnoli, et al., 2014). The development of
safe and efficient nanocarriers is the main goal of nanomedicine.
Therefore, the development of EVs-based nanocarriers offers a
promising opportunity for therapeutic drug delivery. However,
most of the studies have been conducted in vitro and in vivo
experimental models, but it remains a mystery of the safety,
specificity, and efficiency of the method in clinical trials.

Another attractive treatment option is to use the blood
products of convalescent patients, such as the whole blood,
plasma or serum. The EVs containing neutralizing antibodies
in convalescent blood products were transferred into patients,
and we benefit tremendously with this treatment by promoting
immune regulation and lung tissue wound healing. Kesimer et al.
proved that EVs derived from culture medium of human
tracheobronchial epithelial cells showed a neutralizing effect
on human influenza virus (Kesimer, et al., 2009). Studies have
proved that plasma-derived EVs also carry an amount of cell
growth factors, and these factors could induce the activation of
cellular signaling pathways, change vascular reactivity, induce
angiogenesis and promote tissue repair (Guo, et al., 2017; Tao,
et al., 2017; Torreggiani, et al., 2014).
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EVs Vaccines
The use of EVs as immunogenicity factors in the treatment of SARS
coronavirus infection has been studied. EV might be used as a
vaccine with its advantages of high stability, low toxicity and
immunogenicity in circulation (Zhou, et al., 2020c). Kuate et al.
analyzed exosome-based vaccines which containing the S protein of
SARS-CoV-2. The S proteins-containing exosomes were procured
by replacing the transmembrane and cytoplasmic domains of the S
protein with those of VSV-G, and its immunogenicity and efficacy
were tested in mice. After comparing it to an adenoviral vector
vaccine expressing the S protein, it has been proved that both of the
exosomes and the vaccine could induce neutralizing antibody titers.
After priming with the SARS-S protein exosomal vaccine and
boosting with the adenoviral vector the neutralizing antibody
titers of using SARS-S protein exosomal vaccine exceeded those
observed in the convalescent serum of SARS patients (Kuate, et al.,
2007). In addition, the treatment of EVs has been shown to be more
effective than that of soluble protein subunit vaccines, which might
be due to the fact that the expression of multiple copies of the same
viral protein exposed on the EVs surface promotes the cross-linking
between EVs and the B cell receptor (Gyorgy, et al., 2015).

Platelet-derived EVs
Platelets are small (2–4 µm), and they are the anuclear cellular
fragments of megakaryocytes from bone marrow and lung
(Lefrancais, et al., 2017; Machlus, and Italiano, 2013). There are
almost one trillion platelets patrol in the blood to hold the vascular
system integrity. Once blood vessels are damaged, platelets will form
a thrombus to prevent subsequent hemorrhage (Davi and Patrono,
2007). Platelet mediated thrombosis may also involve EVs (micro
particles ormicro vesicles), that provide anionic phospholipids such
as phosphatidylserine to support the blood coagulation cascade
(Ridger, et al., 2017). In addition to playing a role in hemostasis and
thrombosis, platelets contribute to inducing the immune and
inflammatory response (Kapur, et al., 2015; Li, et al., 2012;
Morrell, et al., 2014; Semple, et al., 2011). The exosmosis and
invasion to inflammatory tissues of neutrophils require interaction

with activated platelets (Imhof, et al., 2016; Sreeramkumar, et al.,
2014). The release of extracellular DNA (NETosis) by neutrophils
was observed in patients with COVID-19 (Barnes, et al., 2020;
Middleton, et al., 2020; Zuo, et al., 2020). NETosis requires platelets
and may result in thrombosis (Constantinescu-Bercu, et al., 2020;
Martinod, and Wagner, 2014). Some immune and inflammatory
molecules have been found to express in platelets, such as IL-1;
besides some immune receptors have been detected, such as CD40L,
Toll-like receptors (TLR), and Fc receptors (Karas, et al., 1982;
Lindemann, et al., 2001; Semple, Italiano, 2011).

Serological findings in patients with symptomatic COVID-19
include severe leukopenia and lymphocytopenia (Arentz, et al.,
2020; Connors and Levy, 2020; Tang, et al., 2020). Low platelet
count is closely associated with an increased risk of death for the
in-hospital COVID-19 patients, although platelet levels are not
generally considered clinically relevant. This finding suggests that
SARS-CoV-2 infection may decrease platelet production and/or
increase the damage of platelet. Patients with COVID-19 are
more likely increase platelet consumption because of the platelet
activation and thrombosis (Al-Samkari, et al., 2020; Liao, et al.,
2020; Lippi and Favalora, 2020a; Lippi, et al., 2020b; Liu, et al.,
2020; Xu, et al., 2020a; Yang, et al., 2020b).

Since thrombus and clotting are mainly controlled by platelets
(Roberts, et al., 2006), it is critical to determine the status of platelets
in COVID-19. Platelet-EVs delivers molecules from the mother
platelet. They transport platelet-derived cytokines and other pro-
inflammatory molecules, such as damage-associated molecular
patterns (DAMPs) (Boudreau, et al., 2014; Maugeri, et al., 2018;
Melki, et al., 2017). SARS-CoV-2 enters the ACE2-expressed
endothelial cells. The loss of endothelial integrity may facilitate
the recruitment of circulating platelets to the infected site, causing
platelet activation and degranulation. Through analysis of platelet
degranulation and cytokine release, Zaid et al. observed an evident
increase in platelet-EVs firstly in platelet-EVs in patients with
COVID-19 (Zaid, et al., 2020). This increase may be due to
increased production of megakaryocytes or platelets, reduced
clearance, or a combination of the two. Surprisingly, the level of

TABLE 1 | Ongoing clinical trials of MSC-EVs in COVID-19.

Registration
number

Study title Number
enrolled

Interventions Purposes

NCT04276987 A pilot clinical study on inhalation of mesenchymal
stem cells exosomes treating severe novel
coronavirus pneumonia

24 MSCs-derived exosomes To explore the safety and efficiency of aerosol
inhalation of the exosomes derived from allogenic
adipose mesenchymal stem cells (MSCs-Exo)

NCT04798716 The use of exosomes for the treatment of acute
respiratory distress syndrome or novel
coronavirus pneumonia caused by COVID-19

55 MSC-exosomes
delivered intravenously

To explore the safety and efficacy of an
intravenous injection of MSC derived exosomes

NCT04491240 Evaluation of safety and efficiency of method of
exosome inhalation in SARS-CoV-2 associated
pneumonia. (COVID-19EXO)

30 EXO inhalation To explore the safety and efficiency of aerosol
inhalation of the exosomes

ChiCTR2000030261 A study for the key technology of mesenchymal
stem cells exosomes atomization in the treatment
of novel coronavirus pneumonia (COVID-19)

26 Aerosol inhalation of
exosomes

To inhibit inflammatory factors and enhance the
immunity of the body, promoting the early
recovery of patients and reducing complications

ChiCTR2000030484 HUMSCs and exosomes treating patients with
lung injury following novel coronavirus pneumonia
(COVID-19)

90 Intravenous infusion of
HUMSCs and exosomes

To evaluate the safety and efficacy of the
treatment of human umbilical cord mesenchymal
stem cells (MSCs)

Detailed information can be searched at https://clinicaltrials.gov and http://www.chictr.org.cn.
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platelet-EVs was significantly lower in severely ill patients than in
non-critically ill patients. In severe COVID-19 cases, the number of
platelets decreases. They reported that platelets were at the forefront
of COVID-19 because they release various molecules at different
stages of the disease. Thus, it is possible that platelets, which are
associated with SARS-CoV-2 RNA and are highly activated in
COVID-19, may be involved in the overwhelming thrombosis of
COVID-19. Platelet overactivation may be involved in the systemic
inflammatory response and thrombosis events observed in this
disease. Therefore, inhibition of pathways associated with platelet
activation may improve prognosis during COVID-19.

Giuseppe Cappellano et al. (Cappellano, et al., 2021) showed that
platelet-EVs counts were higher in SARS-CoV-2 positive patients
compared with SARS-CoV-2-negative patients, while platelet
counts were not changed. What is particularly interesting is that
the level of PLT-EVs was strongly associated with SARS-CoV-2
infection by a multivariate analysis, which independent from any
confounding factors (age, sex, comorbidity, etc.). There was a very
good diagnostic performance in ROC curve analysis, with sensitivity
of 75% and specificity of 74%.

Platelet-derived EVs can be used to develop novel treatment
strategies for COVID-19 patients. A study showed that
engineered platelet-derived EVs loaded with TPCA-1 were
effective in treating pneumonia (Ma, et al., 2020). In mouse
models that selectively target inflammatory sites, platelet-
derived EVs suppressed inflammation and reduced local
cytokine storms.

Reduces EVs Secreted by Virus-infected
Cells Into Receptor Cells
EVs secreted from virus-infected cells contribute to promoting
viral infection and inhibiting immune cell response. Therefore, it
may be a new useful method to overcome viral transmission by
inhibiting the uptake of EVs (Li, et al., 2019; Schneider, et al.,
2017).

OPPORTUNITIES AND CHALLENGES

Understanding the roles of EVs in COVID-19 infection could
increase our knowledge of the dynamics of the virus and help
developing effective prevention and treatment modalities. The
above-mentioned findings provide a basis for future research on
the dynamics of SARS-CoV-2 virus infection and its inhibition.
However, it is worth noting that no EVs-based treatment has been
approved to date. Significant barriers remain for the development of
MSC-EVs as a therapeutic tool (Tsiapalis and O’Driscoll, 2020).
Currently, we do not have any information on the possible side
effects of EVs treatment against COVID-19. First, there are the
similarities between EVs and viruses, both of them interact with the
endosomal system which is responsible for synthesis of EVs. Some
viruses may use this mechanism to pack viral proteins and RNA into
vesicles in infected cells, subsequently released into the extracellular
space, then facilitate the spread of the virus to uninfected cells
(Gould, et al., 2003). This process has been demonstrated in HIV

infection, but has not been elucidated in coronavirus infection
(Arenaccio, Anticoli, 2015; Giannessi, et al., 2020). Second, the
heterogeneity of EVs is a big challenge (Tkach, et al., 2018). Up
to now, all published studies using heterogeneous EVs in some cases
using the part size (<200 nm “small” EVs). Because the origin, size,
composition and functional characteristics of the EVs are different,
the source selection should be carefully described when using them
for treatment. It is important to note that different sizes EVs of
dendritic cells can induce the activation of T cells with different
polarization mode (Kowal, et al., 2016). Third, due to the lack of
standardization for accurate counting EV, as well as the current
equipment does not differentiate between vesicles and non-vesicular
granules, the quantitation of EV preparation is also an unsolved
problems (Tkach, Kowal, 2018). For example, Campanella et al.
reported that autologous exosomeswere safer than allogeneic plasma
exosomes in regenerative medicine (Campanella, et al., 2019). Soni
et al. demonstrated that alveolar macrophages produce EVs might
have a proinflammatory or anti-inflammatory effects, depending on
the separation time of EVs in the process of acute lung injury (Soni,
et al., 2016). Fourth, variability of tissue of origin and culture
conditions (Patel, et al., 2018; Pittenger, et al., 2019). Although
the MSCs from different sources have different immunosuppression
and differentiation ability, but the optimal source of
immunomodulation has not yet been determined (Gao, Chiu,
2016). Chance et al. reported that MSC-EVs had higher
thrombotic activity than BMMMSC-EVs (Chance, et al., 2019).
Recently, Inal reported a specific EVs subgroup, especially the
EVs-TF positive might be associated with venous
thromboembolism in COVID-19 patients with hypertension and
diabetes (Inal, 2020). Taken together, it is critical to emphasize that
care should be taken in using EVs for disease treatment (Borger,
et al., 2020). To ensure the curative effect and safety of using EVs for
COVID-19, enormous efforts are required to improve the
technology for the separation and identification of EVs.
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