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Although macrochirality of peptides’ supramolecular structures has been found to play
important roles in biological activities, how macrochirality is determined by the molecular
chirality of the constituted amino acids is still unclear. Here, two chiral peptides,
Ac-"KHH- QKL FRARK-NH,  (KK-11) and Ac-PKPHPHPQPKPL PVPFPFPAPK-NH,
(KKd-11), which were composed entirely of either L- or D-amino acids, were designed
for studying the chiral characteristics of the supramolecular microstructures. It was found that
monocomponent KK-11 or KKd-11 self-assembled into right- or left-handed helical
nanofibrils, respectively. However, when they co-assembled with concentration ratios
varied from 1:9 to 9:1, achiral nanowire-like structures were formed. Both circular
dichroism and Fourier transform infrared spectra indicated that the secondary structures
changed when the peptides co-assembled. MD simulations indicated that KK-11 or KKd-11
exhibited a strong propensity to self-assemble into right-handed or left-handed nanofibrils,
respectively. However, when KK-11 and KKd-11 were both presented in a solution, they had
a higher probability to co-assembile instead of self-sort. MD simulations indicated that, in their
mixtures, they formed nanowires without handedness feature, a good agreement with
experimental observation. Our results shed light on the molecular mechanisms of the
macrochirality of peptide supramolecular microstructures.

Keywords: amyloid peptide, chirality, self-assembly, co-assembly, macrochirality

INTRODUCTION

Chirality is a universal phenomenon in biological systems (Hegstrom and Kondepudi, 1990;
Goldanskii and Kuzmin, 1991; Bada, 1995; Liu et al., 2015). It has been a consensus that the
chirality of biomolecules plays important roles in biometabolic processes and biological activities
(Mason, 1985; Barron, 1986; Meiring, 1987; Mason, 1988; Avetisov et al., 1991; Compton and Pagni,
2002; Valev et al., 2013; Wang et al., 2013). Molecular chirality in amino acids, peptides, or proteins is
essentially critical as they are the structural and functional basis of the organism (Kondepudi and
Nelson, 1985; Mason, 1986; Goldanskii and Kuzmin, 1988; Campbell, 1990; Bonner, 1991;
Chelaflores, 1994; Friedman, 1999). In recent years, in addition to the chirality at the molecular
level, the effects of the chirality of the supramolecular structures of proteins and peptides are
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attracting increasing attention due to discoveries of a series of
extraordinary phenomenon (Gutman et al., 1988; Surewicz and
Mantsch, 1988; Fassihi, 1993; Boyd et al., 2011; Caglioti et al.,
2011; Taniguchi et al,, 2011; Gleiser and Walker, 2012; Ariga
et al., 2020). For example, it has been found that the chirality of
peptide nanofibers in hydrogel could affect cell adhesion and
proliferation (Das et al., 2013; Liu et al., 2014).

Understanding the chirality of the peptide supramolecular
structure is an important issue (Quack, 2002; Deamer et al., 2007;
McKellar, 2009; Wang et al., 2013). Many isomeric peptides with
the same amino acid composition have shown different self-
assembly behaviors, which resulted in different supramolecular
morphologies (Dzwolak et al., 2007; Rubin et al., 2008; Adhikari
etal, 2011; Wang et al., 2017). A lot of works have been done on
revealing the relationship between the chirality of the amino acids
in peptide sequences and the macrochirality of the peptide’s
supramolecular structures. It is generally accepted that amino
acid conformations control the morphological and chiral features
of the self-assembled peptide nanostructures (Zhou et al., 2019).
Some studies reported that L-peptides (peptides comprised of
L-amino acids) self-assembled into left-handed nanostructures,
while the D-peptides (peptides comprised of D-amino acids)
formed right-handed nanostructures (Rubin et al., 2008; Adhikari
et al., 2011). It was also found that the homochiral tripeptides
(*F"F"V and PFPFPV) exhibited poor self-assembling properties;
however, the heterochiral peptides (°F*F“V and “FPF°V) were
able to self-assemble into chiral nanofibrils (Marchesan et al.,
2014). In another example, peptides with sequences of Ac-
*I,YK-NH, (X = L, D, La, Da; Y = L, D) were designed and it
was experimentally demonstrated that the chirality of the
C-terminal lysine residue (K) determined the helical chirality
of the assembled peptide nanofibrils, while the N-terminal
isoleucine residue (I) determined the characteristic circular
dichroism (CD) signals of the assemblies (Wang et al., 2017).
It was found that a heterochiral dipeptide ("F"F) exhibited a high
propensity to form fibrillar structures independently of the
solvent composition, whereas the morphologies of the
assemblies of homochiral dipeptide (“F'F) changed with the
environment (Gil et al, 2020). Another study reported that
equimolar mixtures of enantiomeric amphipathic peptides (L-
and D-(FKFE)2) did not self-sort but rather co-assemble into
fibrils that contained alternating L- and D-peptides in a rippled f3-
sheet orientation (Swanekamp et al., 2012a). Although there are
plenty of literature (Cornelissen et al., 2001; Dzwolak et al., 2007;
Adhikari et al., 2011; Volpatti et al., 2013; Zhao et al., 2013; Zhou
et al., 2016; Wang et al,, 2017; Yue and Zhu, 2019; Zhou et al,,
2019) reporting the factors that influence the macrochirality of
self-assembled peptide supramolecular structures, currently it is
still not thoroughly understood how the macrochirality is
determined. Therefore, investigation on hierarchical self-
assembling peptides comprising of chiral amino acids would
shed light on the formation mechanism of macrochirality.

In this paper, the characteristics of the supramolecular

microstructures of two chiral peptides, Ac-
IK'H'HEQ'K'L'"VIF'FFA'K-NH,  (KK-11) and  Ac-
PKPHPHPQPKPL  PVPEPFPAPK-NH, (KKd-11), were

studied. The KKd-11 and KK-11 were previously developed in
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our group for long-term inhibiting the formation of biofilms
(Guo et al., 2021). Here, it was found that the microscopic
morphology of the assembled peptide structure was highly
related to the intrinsic chirality of the peptides, in which KK-
11 self-assembled into right-handed helical nanofibrils, whereas
KKd-11 self-assembled into left-handed helical nanofibrils.
However, when the two peptides were mixed to co-assemble
in molecular ratios ranging from 1:9 to 9:1, only achiral
nanowire-like structures were observed. Through theoretical
simulations, it was found that the hybrid interacting structures
of KK-11andKKd-11 were more stable than the structures formed
by the monocomponent peptides. Besides, simulations also
revealed that the self-assembled structures of monocomponent
peptides exhibited a strong propensity to twist. In contrast, the
co-assembled structures exhibited no handedness propensity, a
good agreement with experimental observations. Our studies
shed light on the molecular mechanisms of the macrochirality
of peptide supramolecular microstructures.

MATERIALS AND METHODS

Materials

The peptides KK-11 and KKd-11 were purchased from China
Peptides Co., Ltd. The peptides had a purity of 97% which was
verified by high-performance liquid chromatography (HPLC)
and mass spectrum (MS). The peptide powder was store at
—20°C before use. Phosphate Buffer Saline (PBS), hydrochloric
acid (HCl), sodium hydroxide (NaOH), and medium were
purchased from Sinopharm Chemical Reagent (China). All
aqueous solutions were prepared with deionized (DI) water
from Milli-Q-Water (Millipore Corp, 18.2 MQ/cm at 25°C).

Peptide Co-assembly

KK-11 and KKd-11 powers were mixed and dissolved in PBS for
co-assembly under varied peptide concentration ratios. The total
peptide concentration was set at 5 mg/ml unless otherwise stated.

Atomic Force Microscopy

A commercial AFM instrument (Nanoscope VIII, Bruker)
equipped with a 100-pum scanner was used to measure the
morphology of the assembled peptide structures. A silicon
nitride cantilever (XSC-11, MIKROMASCH) with a nominal
force constant of 7 N/m was used. Experiments were carried
out in the air in Peak Force Quantitative Nano Mechanical AFM
(PF-QNM) mode. Newly cleaved mica was used as a substrate. All
images were analyzed using the Nanoscope Software (Nanoscope
Analysis Version 1.40) supplied by the AFM manufacturer.

Transmission Electron Microscopy

TEM images were taken by a Tecnai G2 F20S-TWIN
microscope under a high vacuum. To prepare the sample, a
drop of peptide solution (5 puL) was first placed on a carbon-
coated copper grid and adsorbed for 1 min. Then the remained
sample residual was removed by a filter paper. The loaded grid
was washed with double distilled water, then stained with 2%
(w/v) uranyl acetate.
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Scanning Electron Microscopy

Characterization

Silicon wafer was used as the substrate for sample preparation. A
gold film was sprayed on the silicon wafer after the sample was
deposited on it. SEM instrument model: Carl Zeiss AG, LEO
1530VP.

Circular Dichroism Spectroscopy

CD spectra were recorded over the wavelength range of
190-260 nm by using a Chirascan (Applied Photophysics,
United Kingdom) with a 0.1 cm path length sample cell. All CD
measurements were performed at room temperature using a
bandwidth of 1.0 nm, a step interval of 1 nm, and a scanning
speed of 50 nm min~". Each CD spectrum was averaged from three
scans, and the corresponding baseline of buffer was subtracted from
the sample spectrum. The secondary structures of peptide samples
were analyzed using the CDNN 2.1 program.

Fourier Transform Infra-Red Spectroscopy
The peptide solution was processed and placed on clean BaF, glass. The
FTIR spectra were recorded using a Nicolet 6700 FTIR spectrometer
with a Continuum XL FTIR microscope (Thermo Fisher Scientific,
United States) at a spectral resolution of 4 cm™". Infrared spectra were
recorded between 1800 and 1200cm™". All resulting spectra were
corrected for the blank background around sample absorption.

Macrochirality of Supramolecular Peptide Structures

Spectra were processed using the OMNIC 9.2 (Thermo Fisher
Scientific, United States) for smoothing and normalization.

Thioflavin T Fluorescence Measurement
The assembly kinetics of KK-11 and KKd-11 peptide were
monitored using a dye ThT, the fluorescence of which was
dependent on the formation of amyloid aggregates/fibrils. ThT
fluorescence measurement was performed at 37°C using a
Thermo Scientific Fluoroskan Ascent (Thermo Fisher
Scientific, United States) in quiescence. The excitation and
emission wavelengths were 440 and 484 nm, respectively.
Fluorescence was measured immediately after the mixture was
made with the reaction mixture containing 10 uM ThT. At least
three different samples were independently measured to get an
average fluorescence intensity.

Molecular Dynamics Simulation Methods

In this work, a system of two KK-11 and two KKd-11 peptides
starting from extended conformations solvated in water was first
constructed. TIP4P explicit water model (Jorgensen et al., 1983)
was used to solvate the peptides. Five independent 1-ps instances
were simulated, with the numbers of water molecules range from
6,775 to 6,794. Besides, 12 chloride ions were added to neutralize
the systems. The ion strength in such a system was close to that in
the 0.01M PBS buffer that we used in experiments. The
simulations were conducted in a constant NPT ensemble at a

FIGURE 1 | (A) Chemical structures of Ac-"K"H-H-Q-KHLAVHF-FEASK-NH, (KK-11) and Ac-PKPHPHPQPKPLPVPFPFPAPK-NH, (KKd-11). (B, C) AFM and TEM
images of the assembled nanofibrils formed by KK-11 (B) and KKd-11 (C), respectively. (D, E) Sketch maps of helical nanofibrils formed by KK-11 (D) and KKd-11 (E).
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pressure p = 1 atm and a temperature T = 300 K. The simulation
box was initially set as 6nm x 6nm X 6nm. During the
simulation, they stayed almost constant with the volume
averages range from 213.3 to 214.5 nm® and a root mean
square deviation (RMSD) of 0.7 for all instances. The system
temperature was kept constant by a Nosé-Hoover thermostat
(Hoover, 1985) with a coupling time of 0.1 ps, and the system
pressure was kept constant by a Parrinello-Rahman barostat
(Parrinello and Rahman, 1981) with a coupling time of 0.5 ps
The electrostatic interactions were treated with the particle-mesh-
Ewald method (Darden et al.,, 1993; Essmann et al., 1995), and
both the cut-off of the van der Waals (VDW) interactions and the
cut-off of the electrostatic interactions in real space were set to be
1.2 nm.

Three assembled f-strands systems were then constructed.
Corresponding to the experimental part, these were the KK-11,
KKd-11, and mixed KK-11/KKd-11 systems. For each system, the
box was set as 25 nm X 25 nm x 100 nm and was kept constant
during the simulations. A total of 162 peptides were used to
construct the initial structures. Solvent effects were taken into
account by the GBSA implicit-solvent model (Onufriev et al,
2004). The system temperature was initially set to 10 K and then
increased to 203 K. After 500 ps equilibration, the temperature
was raised to 293 K and kept constant for at least 1 ns using the
Berendsen thermostat with a time constant of 0.1 ps

All MD simulations were carried out by using the GROMACS
4.6.7 software package (Hess et al., 2008). Both KK-11 and KKd-
11 peptides were modeled by the OPLS-AA force field (Kaminski
etal,, 2001). Since the force field parameters were independent of
chirality, the parameters originally derived from L-amino acids
were directly applied to D-amino acids.

Macrochirality of Supramolecular Peptide Structures

RESULTS AND DISCUSSION

KK-11 or KKd-11 Self-Assembled Into

Helical Nanofibrils

The KK-11 or KKd-11 peptides (Figure 1A) were dissolved in
PBS and then incubated with rotation at 900 rpm under 37°C for
3 days. AFM and TEM studies revealed a right-handed helical
nanofibril structure formed by the KK-11 and a left-handed
helical nanofibril structure by the KKd-11 (Figures 1B,C).
TEM and AFM studies showed that these nanofibrils had a
dimension of several micrometers in length, tens of
nanometers in height, and tens of nanometers in width. Some
nanofibrils tangled with each other and formed higher-level
fibers. Interestingly, the helical chirality of such fibers was
consistent with the fibrils that formed them, with the right-
handed helix for the KK-11 fibers and the left-handed helix
for the KKd-11 fibers (Figures 1B-E), respectively. Obviously,
in our systems, the macrochirality of the assembled nanofibrils
was determined by the chirality of the amino acids (L- or D-type)
that composed the peptide (KK-11 or KKd-11).

KK-11/KKd-11 Peptides Co-assembled Into

Achiral Nanowires

When KK-11 and KKd-11 were mixed at a concentration ratio of
1: 1 and the mixture was incubated with rotation at 900 rpm
under 37°C for 3 days, it was found that the two kinds of peptides
co-assembled into linear nanostructures (Figure 2). However,
unlike the nanofibrils formed by monocomponent peptides, both
AFM and TEM revealed that the linear nanostructures were in a
smooth, uniform but an achiral nanowire-like feature. AFM

A 300§
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FIGURE 2 | Peptide nanowire structures co-assembled by KK-11 and KKd-11 in a concentration ratio of 1:1. (A) AFM images (upper) and linear section analysis of
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measurements indicated that the nanowires had a height of about
9 nm. TEM images and AFM showed that these nanowires had a
dimension of several micrometers in length and tens of
nanometers in width.

In order to explore the effects of the concentration ratio of the
two peptides on the co-assembled nanostructures, peptide
mixtures in different ratios including 1: 2, 1: 6, 1: 9, 2: 3, 2: 5,
2:7,3:4,3:7,2:1,6:1,9:1,3:2,5:2,7: 2,4: 3,7: 3 (KK-11: KKd-
11) were studied. The experimental results indicated that the two
kinds of peptides co-assembled into similar linear nanowires
without helix in all the studied ratios (Figure 3).

Secondary Structures

CD and FTIR were employed to characterize the secondary
structures of the peptides assembled into nanostructures. The
CD spectra of KK-11 and KKd-11 showed almost mirrored
curves concerning the horizontal axis (Figure 4A), which
reflect their chiral characteristics. However, the CD spectra did
not show the characteristic bands of the specific secondary
structures, most likely due to the superposition of the bands of
multiple secondary structures. Therefore, the CD spectrum was
quantitatively analyzed through a CDNN program (Greenfield,

Macrochirality of Supramolecular Peptide Structures

2006). The results showed that the main secondary structures
were f$-sheet and a-helix. The proportion of the two secondary
structures was calculated and normalized, and the change of §-
sheet content was shown in Figure 4B. Infrared spectroscopy is
one of the important techniques to measure the protein’s
secondary structures (Surewicz and Mantsch, 1988; Dunbar
et al, 2011). In our experiments, a characteristic peak at
1,628 cm 'was observed (Figure 4C), suggesting the existence
of f8-sheet in the peptides.

Besides, ThT, whose fluorescence intensity was dependent on
the transformation of the peptide into the f-sheet structure, was
used to monitor the dynamic assembly of the peptides KK-11 or
KKd-11. As shown in Figure 4D, the ThT fluorescence signal had
little change in the first 5h but began to increase thereafter,
indicating that the peptides were transforming to f§-sheet, which
had a strong tendency to self-assembly. Also, from the CD spectra
and ThT fluorescence intensities, it was found that the contents of
f-sheet in KK-11 and KKd-11 were similar. However, in the
mixtures of KK-11 and KKd-11 with a wide concentration ratio
range (from 1:9 to 9:1), the CD study showed that the content of
f8-sheet structure increased as compared to those of
monocomponent peptides (Figure 4B), which means the

9:1,8:2,5:2,7:2,4:3,7:3).

FIGURE 3| TEM images of the nanowires co-assembled by KK-11 and KKd-11 with different concentration ratios (1: 2, 1:6,1:9,2:3,2:5,2:7,3:4,3:7,2:1,6: 1,
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mixtures were easier to self-assemble. We propose that the
changes of the secondary structures in the mixtures of the two
peptides could be a cause for the change of the morphology of the
assemblies.

MD Simulations
For monocomponent peptides KK-11 and KKd-11, to understand
the molecular basis of the macrochirality of the self-assembled
peptide nanofibrils, a series of MD simulations were carried out.
According to the above spectroscopic results, the peptides were
assumed to take f8-sheet conformations. Several different kinds of
assemblies of KK-11 and KKd-11 were constructed and were then
simulated to test their stability. It was found that the KK-11 and
KKd-11self-assembled into stable single-layered helical fibrils
(Figures 5A-D) rather than bilayered helical fibrils. The fibrils
were either right-handed (KK-11, Figure 5A) or left-handed (KKd-
11, Figure 5C) with a pitch of ~70 nm and a width of ~10 nm,
which are in good agreement with the AFM results (Figures 5E,F).
Peptides KK-11 and KKd-11 could be roughly regarded as the
combination of a hydrophilic part (KHHQK) and a hydrophobic
part (LVFFA). The hydrophobic part was energetically
unfavorable to be solvated, and the hydrophobic interaction
acted as the main driving force for the aggregation of the
peptides. In the fibrils, the peptides assembled into f5-sheet,
and hydrogen bonds were formed between adjacent peptides
at the hydrophobic part (Figures 5B,D). At the same time, the
hydrophilic part of the peptides extended to the solvent.

Interestingly, the hydrophobic part did not form bilayered
structures with another f8-sheet peptide such that the
hydrophobic amino acids could be buried inside the fibril.
After careful examination of the assembled structures, it was
found that the m-m interaction between sidechain of Phes (F)
could partly reduce the water-accessible area of the assembled -
sheet. The intermolecular hydrogen bonds were not maximally
formed as that of other fibrils reported previously (Swanekamp
et al,, 2012b; Wang et al,, 2017). There may be two reasons for
such a construction pattern. First, the hydrophilic amino acids
could still form hydrogen bonds with water molecules when not
forming hydrogen bonds with adjacent peptides, which was
entropic more favorable. Second, the m-m interaction between
Phes also enhanced the stability of this assembled fibril. As shown
in Figures 5B,D, there are five and six hydrogen bonds between
peptides 1, 2, and peptides 2, 3, respectively. In this way, the -
sheets formed by KK-11 and KKd-11 are not symmetrical and
exhibited a strong propensity to twist in right-handed and left-
handed directions, correspondingly.

When KK-11 and KKd-11 were mixed, neither left-handed
nor right-handed structure was formed, indicating that there were
interactions between peptides KK-11 and KKd-11. A series of MD
simulations were then carried out to investigate this
phenomenon. Five systems that each contained two KK-11
(e.g., peptide one and two in Figure 6A) and two KKd-11
(e.g., peptide three and four in Figure 6A) of different initial
conformations were simulated for 1 ps Interestingly, it was found
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that two peptides with opposite chirality preferred to interact with
each other. In Figure 6A, the probability maps of structures
sampled for every two monomers in one of the five simulated
systems are shown. Sample on the super diagonals means these
two monomers are in the closest contact, whereas sample on the
sub diagonals means other monomers are in closer contact with
either one of these two monomers. Among all the probability
maps of two monomers, only peptides one to three and peptides
two to four have high-density areas in the super diagonals,
indicating that peptides one to three and peptides two to four
are contacted with each other most closely.

To make it clearer, for every two peptides, we counted the
occurring number of the most closely contact (Figure 6B). It was
found that, in 54.5% of the samples, peptide KK-11 and peptide
KKd-11 had the nearest distance, indicating that peptides do have
a preference to interact with a different chiral type of peptide.

The co-assembled structures were designed by split the helical
structures into small segments. As shown in Figure 7, the co-
assembled structures of KK-11 and KKd-11 were composed of
short helical fragments of either KK-11 or KKd-11. Generally,
different ratios of KK-11 and KKd-11 led to different lengths of

the short helical fragments, with no intrinsic difference in nature.
Previous simulations showed that peptide has a preference to
interact with the peptide of a different chirality; however, it is still
not likely to form assembled structures in which L-type and
D-type peptides are alternatively arranged in a one-by-one
fashion, which is entropically unfavorable. Though L-type and
D-type peptides have a preference to co-assemble, they can also
self-sort, and once formed they would not likely dissociate. For
the junction part, there were more hydrogen bonds between KK-
11 and KKd-11 molecules than that in monocomponent peptide
systems (6 vs. 5.5 hydrogen bonds per peptide). Therefore, it is a
little energetically favorable for the peptide to interact with the
peptide with different chirality, which is consistent with the
statistical results in Figure 6. Experimentally, there were no
helical structures observed in the mixed KK-11/KKd-11 system
(Figures 2, 3), even at the very early stage of the co-assembly
process. Combining these results, we propose that the shorter
helical structures were unstable and would soon relax to plain
fibril structures. As for the pure KK-11 or KKd-11 systems, the
helical structure was long enough to endure thermal fluctuation
and would be stable for a much longer time.
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These results provide explanations for the formation of the non-
helical fibers (Figures 2, 3) in the mixed systems. Even when very
few KKd-11 (or KK-11) peptides were mixed with the KK-11 (or
KKd-11) peptides, they could participate in the very early stage of
assembling and formed stable structures with KK-11 (or KKd-11).
In this way, the KKd-11 (or KK-11) peptides split the original
helical structure into small segments, which were only metastable
structures and will soon relax to plain fiber structures. As a result,
achiral nanofibers were formed in the mixed systems even when the
concentrations of the two peptides were remarkably different.

CONCLUSION

In conclusion, the self-assembled morphologies of two chiral
amyloid peptides, KK-11 and KKd-11, with the same amino acid
sequence but different types of chirality of their amino acid
residues were studied. Topological characterizations by AFM
and TEM revealed opposite chiral helixes were formed by KK-
11 and KKd-11, respectively, while in the mixtures of the two
peptides only achiral nanowires were formed in a wide range of
peptide concentration ratios. MD simulations indicated that KK-
11 or KKd-11 exhibited a strong propensity to form right-handed
or left-handed nanofibrils, respectively. However, when KK-11
and KKd-11 were both presented in a solution, they had a higher
probability to interact with each other instead of self-interaction.
By considering the entropic issue, we have constructed the co-
assembled structures of KK-11 and KKd-11, in which the helixes
of a self-sorted peptide were split into small segments by the other
peptide so that the local chiral structures were relaxed to achiral
fiber structures. The morphology and handedness features of the
self-assembled and co-assembled nanostructures are in good
agreement with experimental observations. Our study shed
light on the molecular mechanisms of the macrochirality of
peptides’ supramolecular structures. We believe that this study

Ratio 1:1

a-7 stacking

Ratio 9:1 (KK-11:KKd-11)

KKd-11

d-11

KK-11

FIGURE 7 | The co-assembled structures were composed of short helical fragments of KK-11 and KKd-11. The junction structures are enlarged in the blue
rectangles, in which the hydrogen bonds formed between the hydrophobic region (LVFFA) are shown and the n-r stacking is highlighted with red rectangles. (A) The
sidechains of amino acids protruding to the reader; (B) The sidechains of amino acids protruding to the back. The right three peptides were obtained by rotating the left
three peptides 180° to illustrate both sides of the amino acids’ sidechain clearly, with the side that opposite to the reader colored by light grey.
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can help to better understand the origin of chiral in biosystems
and to explore the applications of complementary-chirality
designs at the molecular and supramolecular levels.
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