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Editorial on the Research Topic
Mechanisms of Fluorescent Proteins
This collection of papers for the Research Topic “Mechanisms of Fluorescent Proteins” (FPs) samples a broad range of research on physical mechanisms, applications, and molecular engineering strategies. The papers demonstrate a combination of experimental and computational approaches and are of broad interest to researchers working on FPs, microscopy, and spectroscopy.
In bioimaging with FPs, increasing the penetration depth and decreasing unwanted scattering are desirable, which have motivated efforts for engineered FPs with redder emission and higher brightness (Subach and Verkhusha, 2012; Dedecker et al., 2013). In a combined experimental and computational work (Gorbachev et al., 2020), the green/red photoconversion of EGFP with reducing agents was investigated and a novel green-emitting state only present under low-oxygen conditions was identified. Following photoconversion, the distinct orange and red-emitting forms (565 and 600 nm emission maxima) differ from the reported red-emitting form (607 nm emission) via oxidative reaction. This work showcases a complex interplay between the chromophore and protein environment, generating a neutral quinoid-like green-emitting chromophore (525 nm emission) as an intermediate. This step leads to a zwitterionic form of the photoexcited chromophore via charge transfer that bifurcates into the orange and red-emitting forms. Such a general oxidative mechanism enriches the FP application toolset (Bourgeois and Adam, 2012; Jung, 2012; Krueger et al., 2020; Nasu et al., 2021) with additional tunable “knobs” of oxygen levels and redox-active compounds to control photoconversion and achieve redder emission.
To brighten the generally dim red and far-red FPs, a systematic study of nonradiative relaxation in red FPs (RFPs) (Drobizhev et al., 2021) reveals a dominant role of the twisted intramolecular charge transfer mechanism over the energy gap law. This work substantiates local electrical field control of fluorescence quantum yield (FQY) of RFPs. Aided by one- and two-photon absorption spectroscopy and quantum calculations of seven different RFPs with the same chromophore structure, a spectroscopic method of evaluating local electric fields (amplitude and direction in Ex and Ey) at the protein chromophore enables separation of contributing factors to the nonradiative relaxation rate. A small range of positive or negative values for Ex and Ey (–10 to +10 MV/cm) was revealed to facilitate both a red-shifted absorption and a high FQY, providing rational design principles for site-specific mutagenesis using RFP scaffold like DsRed.
On a fundamental level, the fluorescence mechanism via excited-state proton transfer (Chattoraj et al., 1996; Fang et al., 2009; Tonge and Meech, 2009; Fang and Tang, 2020) is elucidated further by a computational study (Coppola et al., 2020) on the complex hydrogen (H)-bond equilibrium dynamics for neutral, intermediate, and anionic chromophore forms inside GFP. An accurate hybrid QM/MM simulation of the entire protein was performed to enable the intricate correlation between chromophore site-specific single H-bond interactions and the chromophore cavity volume, and noncovalent interactions with distant residues on opposite sides of the pocket. This work showcases the power of ab initio molecular dynamics simulations in hybrid form with density functional theory (DFT) to bridge local and larger-scale effects in FPs.
Most of FPs contain a π-conjugated chromophore, p-hydroxybenzylidene-imidazolinone (HBDI). Typical examples are GFP from Aequorea victoria, and DsRed from Discosoma sp. wherein the HBDI chromophore is amended by an acylimine tail that lengthens π-conjugation and red-shifts the absorption. Targeted engineering for brighter variants was typically driven by linear, one-photon absorption and fluorescence. With the advent of two-photon laser microscopy, the need for bright and photostable FPs has increased. Yet two-photon absorption obeys different quantum-mechanical rules compared with one-photon absorption. Consequently, the brightest FPs with canonical chromophores for one-photon imaging are not necessarily optimized for two-photon excitation. The two-photon cross-sections of ten non-canonical chromophores (nCCs), inserting substituted tyrosines into the DsRed scaffold, were calculated using QM/MM schemes with polarizable embedding and external effective field correction (Rossano-Tapia et al., 2020). Although none of the model proteins shows a two-photon cross-section larger than DsRed (List et al., 2016), the work helps to understand structure-function relationships and design better two-photon-absorbing FPs.
Three other FPs with nCCs containing Cl-, Br-, and nitro-substituted tyrosine were prepared from sfGFP scaffold and studied using a combination of femtosecond transient absorption and stimulated Raman spectroscopy (FSRS) (Oscar et al., 2020). The FSRS measurements were supported by DFT calculations of vibration normal modes for accurate assignments. The high spectral and temporal resolution obtained by FSRS and transient absorption allowed delineation of the chromophore protonation state and isomeric structure. Longer vibrational relaxation times in the excited state of Cl-sfGFP (4 ps) and Br-sfGFP (11 ps), compared with the parent sfGFP (1.2 ps), were correlated with the increased FQY. Moreover, FPs with halogenated chromophores exhibit advantageous redshifts in their absorption and emission spectra, rendering them great candidates for bioimaging applications (Pantazis and Supatto, 2014).
Among the most exciting applications of FPs is their use in single-molecule and super-resolution fluorescence microscopy. Such applications necessitate FPs with superior properties such as high FQY, fraction of time remaining fluorescent, outstanding photostability, and structural stability (Bourgeois and Adam, 2012; Nienhaus and Nienhaus, 2016; Woodhouse et al., 2020). In this issue, a bilirubin-activated photoswitching protein called eUnaG was developed with the highest bulk fluorescence to date, comparable to organic dyes (Ko et al., 2021). The superior performance of eUnaG is primarily due to its increased stability, leading to reduced aggregation and fewer labeling artifacts. eUnaG promises to support state-of-the-art performance for high-resolution microscopy.
From this exciting line of inquiries decoding fluorescence mechanisms of FPs, particularly targeting redder and brighter emissions, we foresee the interdisciplinary spectroscopy, microscopy, theoretical, and computational communities to continue joining forces to paint a comprehensive portrait of FPs and implement these molecular machines in ever-expanding applications. Nature has evolved FPs for millions of years, while GFP has revolutionized molecular and cellular biology just for several decades (Shimomura et al., 1962; Chalfie et al., 1994; Tsien, 1998). Much remains to be learned and developed, and we hope this special Research Topic in Front. Mol. Biosci. (https://www.frontiersin.org/research-topics/10542/mechanisms-of-fluorescent-proteins#articles) has captured the essence of this field and will inspire future innovations and breakthroughs in both the understanding and applications of FPs.
AUTHOR CONTRIBUTIONS
All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.
FUNDING
CF acknowledges the US National Science Foundation (NSF) grants MCB-1817949 and CHE-2003550. MD acknowledges the NIH/NINDS BRAIN grants U01 NS094246 and U24 NS109107. HN was funded by the US NSF CAREER Award MCB-1833181. PP is a Royal Society Wolfson Research Merit Award holder and acknowledges support from the BBSRC (BB/T017929/1 and BB/T011947/1).
REFERENCES
 Bourgeois, D., and Adam, V. (2012). Reversible Photoswitching in Fluorescent Proteins: A Mechanistic View. IUBMB Life 64 (6), 482–491. doi:10.1002/iub.1023 
 Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., and Prasher, D. (1994). Green Fluorescent Protein as a Marker for Gene Expression. Science 263 (5148), 802–805. doi:10.1126/science.8303295 
 Chattoraj, M., King, B. A., Bublitz, G. U., and Boxer, S. G. (1996). Ultra-Fast Excited State Dynamics in Green Fluorescent Protein: Multiple States and Proton Transfer. Proc. Natl. Acad. Sci. USA 93 (16), 8362–8367. doi:10.1073/pnas.93.16.8362 
 Coppola, F., Perrella, F., Petrone, A., Donati, G., and Rega, N. (2020). A Not Obvious Correlation between the Structure of Green Fluorescent Protein Chromophore Pocket and Hydrogen Bond Dynamics: A Choreography from Ab Initio Molecular Dynamics. Front. Mol. Biosci. 7, 569990. doi:10.3389/fmolb.2020.569990 
 Dedecker, P., De Schryver, F. C., and Hofkens, J. (2013). Fluorescent Proteins: Shine on, You Crazy Diamond. J. Am. Chem. Soc. 135 (7), 2387–2402. doi:10.1021/ja309768d 
 Drobizhev, M., Molina, R. S., Callis, P. R., Scott, J. N., Lambert, G. G., Salih, A., et al. (2021). Local Electric Field Controls Fluorescence Quantum Yield of Red and Far-Red Fluorescent Proteins. Front. Mol. Biosci. 8, 633217. doi:10.3389/fmolb.2021.633217 
 Fang, C., and Tang, L. (2020). Mapping Structural Dynamics of Proteins with Femtosecond Stimulated Raman Spectroscopy. Annu. Rev. Phys. Chem. 71 (1), 239–265. doi:10.1146/annurev-physchem-071119-040154 
 Fang, C., Frontiera, R. R., Tran, R., and Mathies, R. A. (2009). Mapping GFP Structure Evolution during Proton Transfer with Femtosecond Raman Spectroscopy. Nature 462 (7270), 200–204. doi:10.1038/nature08527 
 Gorbachev, D. A., Petrusevich, E. F., Kabylda, A. M., Maksimov, E. G., Lukyanov, K. A., Bogdanov, A. M., et al. (2020). A General Mechanism of Green-to-Red Photoconversions of GFP. Front. Mol. Biosci. 7, 176. doi:10.3389/fmolb.2020.00176 
 G. Jung (2012). in Fluorescent Proteins II: Application of Fluorescent Protein Technology (Berlin Heidelberg: Springer-Verlag)
 Ko, S., Kwon, J., and Shim, S.-H. (2021). Enhanced UnaG with Minimal Labeling Artifact for Single-Molecule Localization Microscopy. Front. Mol. Biosci. 8, 647590. doi:10.3389/fmolb.2021.647590 
 Krueger, T. D., Tang, L., Zhu, L., Breen, I. L., Wachter, R. M., and Fang, C. (2020). Dual Illumination Enhances Transformation of an Engineered Green‐to‐Red Photoconvertible Fluorescent Protein. Angew. Chem. Int. Ed. 59 (4), 1644–1652. doi:10.1002/anie.201911379 
 List, N. H., Jensen, H. J. A., and Kongsted, J. (2016). Local Electric Fields and Molecular Properties in Heterogeneous Environments through Polarizable Embedding. Phys. Chem. Chem. Phys. 18 (15), 10070–10080. doi:10.1039/C6CP00669H 
 Nasu, Y., Shen, Y., Kramer, L., and Campbell, R. E. (2021). Structure- and Mechanism-Guided Design of Single Fluorescent Protein-Based Biosensors. Nat. Chem. Biol. 17, 509–518. doi:10.1038/s41589-020-00718-x 
 Nienhaus, K., and Nienhaus, G. U. (2016). Photoswitchable Fluorescent Proteins: Do Not Always Look on the Bright Side. ACS Nano 10 (10), 9104–9108. doi:10.1021/acsnano.6b06298 
 Oscar, B. G., Zhu, L., Wolfendeen, H., Rozanov, N. D., Chang, A., Stout, K. T., et al. (2020). Dissecting Optical Response and Molecular Structure of Fluorescent Proteins with Non-canonical Chromophores. Front. Mol. Biosci. 7, 131. doi:10.3389/fmolb.2020.00131 
 Pantazis, P., and Supatto, W. (2014). Advances in Whole-Embryo Imaging: A Quantitative Transition Is Underway. Nat. Rev. Mol. Cel Biol. 15 (5), 327–339. doi:10.1038/nrm3786 
 Rossano-Tapia, M., Olsen, J. M. H., and Brown, A. (2020). Two-Photon Absorption Cross-Sections in Fluorescent Proteins Containing Non-canonical Chromophores Using Polarizable QM/MM. Front. Mol. Biosci. 7, 111. doi:10.3389/fmolb.2020.00111 
 Shimomura, O., Johnson, F. H., and Saiga, Y. (1962). Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59 (3), 223–239. doi:10.1002/jcp.1030590302
 Subach, F. V., and Verkhusha, V. V. (2012). Chromophore Transformations in Red Fluorescent Proteins. Chem. Rev. 112 (7), 4308–4327. doi:10.1021/cr2001965 
 Tonge, P. J., and Meech, S. R. (2009). Excited State Dynamics in the Green Fluorescent Protein. J. Photochem. Photobiol. A: Chem. 205 (1), 1–11. doi:10.1016/j.jphotochem.2009.03.021
 Tsien, R. Y. (1998). The Green Fluorescent Protein. Annu. Rev. Biochem. 67 (1), 509–544. doi:10.1146/annurev.biochem.67.1.509 
 Woodhouse, J., Nass Kovacs, G., Coquelle, N., Uriarte, L. M., Adam, V., Barends, T. R. M., et al. (2020). Photoswitching Mechanism of a Fluorescent Protein Revealed by Time-Resolved Crystallography and Transient Absorption Spectroscopy. Nat. Commun. 11 (1), 741. doi:10.1038/s41467-020-14537-0 
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2021 Fang, Drobizhev, Ng and Pantazis. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




OPS/images/crossmark.jpg
©

2

i

|





OPS/xhtml/nav.xhtml
Contents

		Cover

		Editorial: Mechanisms of Fluorescent Proteins		Author Contributions

		Funding

		References









OPS/images/cover.jpg
* frontiers
in Molecular Biosciences

Editorial: Mechanisms of
Fluorescent Proteins





OPS/images/logo.jpg
, frontiers o
in Molecular Biosciences





