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Hemocyanin from horseshoe crab in its active form is a homo-hexameric protein. It exists in
open and closed conformations when transitioning between deoxygenated and
oxygenated states. Here, we present a detailed dynamic atomistic investigation of the
oxygenated and deoxygenated states of the hexameric hemocyanin using explicit solvent
molecular dynamics simulations. We focus on the variation in solvent cavities and the
formation of tunnels in the two conformational states. By employing principal component
analysis and CVAE-based deep learning, we are able to differentiate between the
dynamics of the deoxy- and oxygenated states of hemocyanin. Finally, our results
identify the deoxygenated open conformation, which adopts a stable, closed
conformation after the oxygenation process.
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INTRODUCTION

Hemocyanins (HCNs) are large type-3 metalloproteins that transport oxygen in the blood of
invertebrates like arthropods and molluscs (Van Holde and Miller, 1995; Terwilliger, 1998;
Burmester, 2002; Pick et al., 2008; Rehm et al., 2012; Marxen et al., 2014; Pinnow et al., 2016).
Their binuclear active site coordinates copper as metal and accommodates oxygen as a peroxide ion,
due to which copper oxidizes from (I) to (II) oxidation state (Himmelwright et al., 1978, 1980;
Magnus and Ton-That, 1991; Jaenicke et al., 2012). Besides oxygen transportation, they have also
been found to play a major role in diverse physiological functions like homeostasis, transportation of
hormones (Prosser and Brown, 1961), in the development of immunity via activation of
phenoloxidases protein that plays a major role in the formation of their exoskeleton formation
and melamine pigments, as well as wound recovery (Lei et al., 2008; Coates et al., 2011; Coates and
Nairn, 2014; Zhong et al., 2016; Coates and Talbot, 2018). In addition, HCNs also possess
microbicidal property by enhancing the production of reactive oxidative (ROs) species that can
develop an immediate defense mechanism against microbes. Furthermore, HCNs have also been
reported to have antibacterial and antifungal properties (Dolashka et al., 2016; Qin et al., 2018). The
Horseshoe crab (Limulus polyphemus) blue blood is being increasingly used in biotechnology and
biomedical applications (Gibson III and Hilly, 1992; Riggs et al., 2002; Del Campo et al., 2011;
Arancibia et al., 2012; Coates and Nairn, 2014; Gesheva et al., 2014; Kumar et al., 2015; Zhong et al.,
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FIGURE 1 | The structure of hemocyanin (HCN) from Limulus polyphemus in oxygenated (Oxy) and deoxygenated (Deoxy) states. (A,B) The structure is made up of
six identical monomers. Each monomer consists of three domains. Domain II contains the copper binding site (grey spheres) that coordinates oxygen atoms (red
spheres). (C) The monomers from Oxy and Deoxy states differ primarily in the conformation of the loops. (D,E) The structure is composed of two concentric layers of
homotrimers and arranged as a “dimer-of-trimers.”Monomer subunits in each top trimer are represented in a different color. The bottom trimer units are colored in
green (Oxy-HCN) and blue (Deoxy-HCN).

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 7106232

Bux et al. MD Simulation of Hemocyanin Hexamers

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


2016; Besser et al., 2018). The copper rich blood contains
amebocytes, which have an analogous role to the white blood
cells in humans and are involved in the defense against
pathogens. Thus, blue blood is used to produce Limulus
amebocyte lysate (LAL), which has the potential to dysregulate
the pathogenicity and virulence effects of pathogenic bacteria by
reacting with their endotoxins that cause severe infections in the
circulatory systems of humans. Moreover, HCNs have also been
found to boost up the immune system of mammals by inducing
the potent Th1-dominant immune response (Hanyecz et al.,
2004). This property is being exploited in their use as immune
stimulants and immune-modulators in cancer (Riggs et al., 2002;
Matsushima et al., 2003; Arancibia et al., 2012; Becker et al., 2014;
Gesheva et al., 2014; Zhong et al., 2016; Guncheva et al., 2019;
Mora Román et al., 2019). More specifically, HCNs from
Megathura crenulata (keyhole limpet hemocyanin) have
shown anti-cancer properties in murine models of colon
carcinoma, while being used as immuno-stimulants (Harris
and Markl, 1999; Musselli et al., 2001; Miles et al., 2011). In
addition, blue blood is widely used in the pharmaceutical industry
to control the contamination of their products and medicines and
in the development of antibodies and vaccines (Fellers andHarris,
1940; Levin and Bang, 1968; Levin et al., 1970; Berkson and
Shuster Jr, 1999; Rutecki et al., 2004; Odell et al., 2005; Mazzotti
et al., 2007; Bayer, 2016; Krisfalusi-Gannon et al., 2018; Maloney
et al., 2018; Owings et al., 2019).

The X-ray structure of arthropod HCN is homo-hexameric
(Figure 1). Two concentric rings, each consisting of three
identical subunits, sit on top of another forming a dimer-of-
trimers (Hazes et al., 1993; Magnus et al., 1994). Each subunit
consists of three subdomains; 1) the C-terminal domain consists
of residues 1 to 154; 2) the N-terminal domain contains residues
from 380 to 628; and 3) the metal binding domain that lies
between N- and C-terminal domains contains residues ranging
from 155 to 379 along with binuclear copper-containing active
site (Volbeda and Hol, 1989; Hu et al., 2000; Hundahl et al., 2003;
Matsushima et al., 2003). Each copper (I) atom forms a
coordination bond with ε nitrogen of three histidine residues,

namely, His173, His177, His204 and His324, His328, His364.
This represents the deoxygenated form of HCN (Deoxy-HCN).
In the oxygenated form (Oxy-HCN) copper reversibly binds with
oxygen resulting in the formation of the dicopper peroxo complex
(Figure 2). There is subsequent oxidation of copper from Cu(I) to
Cu(II) while retaining the coordination between three histidine
residues and copper as observed in Deoxy-HCN (Decker and
Tuczek, 2000; Hu et al., 2000).

The oxygenation mechanism of multimeric HCN is a complex
phenomenon. Previous studies have reported on the detailed role
of water in the oxygenation process, including its key role as an
allosteric modulator of oxygen accessibility to the binuclear
copper site of HCN (Hazes et al., 1993; Hundahl et al., 2003).
Some studies have also reported that water in close proximity to
copper (II) can also play an intimate role by replacing dioxygen
molecule at the active site of HCN (Karplus and McCammon,
2002; Naresh et al., 2015; Bux et al., 2018). Furthermore, the
formation of large solvent cavities at the interface of subunits has
also been reported. It is via these cavities that the movement of
oxygen up to the active site is possible (Magnus et al., 1994). The
oxygenation process is also allosterically regulated such that the
HCN structure acquires different conformational states (higher
and lower oxygen affinity states) to attract oxygen to the active
site. The allosteric changes are further dependent upon the
dynamic behavior of protein that is entirely orchestrated by
inter-residual dynamics of the subunits (Volbeda and Hol,
1989; Hazes et al., 1993; Magnus et al., 1994). HCNs have a
negatively charged electrostatic surface, which makes solubility
and subsequent hydration of HCNs in water possible (Coates and
Nairn, 2013). A consequence of the hydration phenomenon is
that it prevents the association of HCNs with other negatively
charged entities that may affect the physiological function of the
protein (Coates and Nairn, 2013).

The biological function of large biomolecules like HCN is
dependent upon its conformational arrangement and cannot be
explained solely on its structural description. Investigating the
dynamic behavior of large biomolecules is, therefore, a key factor
to understanding function. Experimental methods like X-ray

FIGURE 2 | Binuclear copper-containing metal binding site in (A) deoxygenated form and (B) oxygenated form of each monomer subunit within the hexamer.
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crystallography are of great value in structural elucidation, but
they are quite restricted in exploring the dynamical behavior
because of its limitation in time and space resolution (Ohtaki and
Radnai, 1993; Ma, 2005; Neutze, 2014). Theoretical and
computational methods like molecular dynamics simulations
(MD), on other hand, have emerged as the most reliable
method to evaluate both structural and dynamical features of
biomolecules (Sagui and Darden, 1999; Karplus andMcCammon,
2002). In addition, conformational changes that mediate the
oxygenation of HCN are entirely a dynamics dependent
phenomenon. Therefore, a method that could provide
microscopic insights into the dynamic behavior of the HCNs
and variations as a function of time needs to be employed.

Many experimental studies have been reported for HCNs
(Decker et al., 1988; Volbeda and Hol, 1989; Magnus and
Ton-That, 1991; Hazes et al., 1993; Magnus et al., 1994;
Jaenicke et al., 2012; Saito and Thiel, 2014; Naresh et al., 2015,
2015; Bux et al., 2018). Most of the up-to-date work commonly
discusses the structural features of protein in its monomeric form
and rarely in its biologically active hexameric form (Volbeda and
Hol, 1989). Very few theoretical and computational studies have
been reported for HCNs. Recently, in a combined QM/MM
approach, the reversible binding of dioxygen at the binuclear
copper active site was reported (Fariselli et al., 1999; Saito and
Thiel, 2014). The study mainly focused on the active site of the
protein and provides little insight into the structural dynamics of
the multimeric protein. A previous study used MD simulations to
report insights into the oxygenation mechanism of HCNs and the
role of solvent via tunnel formation with the help of neighboring
amino acid residues of the metal site (Bux et al., 2018). Again, the
study was conducted using just one single subunit of HCN
instead of the biologically active hexameric form.

Here, we present a detailed atomistic investigation of the
hexameric HCN using MD simulations, with a focus on the
conformations that the HCN adopts in oxygenated and
deoxygenated states. By following the variation in solvent
cavities and tunnels, we are able to identify residues that are
involved in tunnel formation in Deoxy- and Oxy-HCN. Finally,
our principal component analysis and CVAE-based deep learning
results are able to differentiate between the global dynamics of
these complex systems.

METHODOLOGY

Modeling of the Hexamer
The biologically active state of Limulus polyphemus (Atlantic
horseshoe crab) HCN is homo-hexameric. Oxygenated (PDB id
1OXY; Hazes et al., 1993) and deoxygenated (PDB id 1LLA;
Magnus et al., 1994) monomeric forms of HCN are available,
while the hexameric form is yet to be reported. There are several
missing loop residues in the monomeric form. Therefore, we first
built the complete monomeric form using the Panulirus
interruptus (California spiny lobster) structure as a template
(PDB id 1HC1; Volbeda and Hol, 1989), which displays 62%
sequence homology. The modeled monomeric HCNs were then
used to build a hexameric structure by structurally superimposing

each subunit from horseshoe crab on hexameric spiny lobster
structure. The loops were modeled using Modeller 9v23 (Webb
and Sali, 2016) implemented in the Chimera suite (Pettersen
et al., 2004).

Active Site Modeling
The active site of HCN is composed of two binuclear copper
atoms each of which is coordinated to three histidine amino acid
residues His172, His177, His204 and His324, His328, His 364. As
a result of the bond between copper atoms and ε nitrogen NE of
the three histidine residues, the geometry of the copper
coordination site becomes tetrahedral. The copper adopts
oxidation state one Cu(I) in the deoxygenated form of the
protein (Magnus and Ton-That, 1991; Hazes et al., 1993;
Magnus et al., 1994; Fariselli et al., 1999). In the oxygenated
form, the geometry of the binding site changes from tetrahedral to
trigonal pyramidal. The oxidation state of copper changes from
Cu(I) to Cu(II) upon binding of oxygen as a peroxide. In the
present study, the active site in each subunit was modeled by
constructing a bond between two copper atoms and the ε-NE
atom in the imidazole rings of each six histidine residues, three on
each side, in its both deoxygenated and oxygenated form
(Figure 2).

Force Field Parameterization of Copper
Cluster
The force field parameters for the copper-containing binuclear
active site of the hexamer were constructed for the AMBER
ff14SB force field using the bonded approach (Wang et al.,
2004; Hornak et al., 2006). The bonded parameters for
tetrahedral geometry for Cu(I) in deoxygenated and trigonal
bi-pyramidal coordination for Cu(II) in an oxygenated state
were taken from our previously reported study (Bux et al.,
2018). Since HCNs are homo-hexameric, all six subunits
contain the same residues in both deoxygenated and
oxygenated states.

Molecular Dynamics Simulations
The ionization states of the amino acid side chains were
determined at pH7.0, using propKa implemented in the play
molecule (Martínez-Rosell et al., 2017). The system was described
using the ff14SB force field and further processed to run MD
simulations with Desmond 3.6 (Bowers et al., 2006). The overall
charge was neutralized by manual addition of 150 Na + ions to
both systems that were subsequently solvated by adding TIP3P
water molecules. In total, 77,896 (Deoxy) and 77,848 (Oxy) water
molecules were present in a solvation box with edges set at least
12 Å from the solute atom.

Equilibration of the hydrated systems was then carried out in
an NPT ensemble for 50 ns. Using the last frame from the
equilibration, the production step was run in the NVT
ensemble for both Oxy- and Deoxy-HCN systems. The
SHAKE algorithm was used to simulate all bonds of hydrogen
atoms in rigid and constrained form (Kräutler et al., 2001). Short
bonded and nonbonded interactions were treated using RESPA
integrator at the average time interval of about 2 fs (Tuckerman
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et al., 1992) but longer time step of about 4 fs to simulate the long
range interactions using Particle Mesh Ewald algorithms (Cerutti
et al., 2009). The production step was run as 10 replicates of 100
ns each for both systems.

Structural Analysis
The trajectories were visualized using VMD (Humphrey et al.,
1996). All analysis was carried out using GROMACS tools
(Abraham et al., 2015) and pytraj (Roe and Cheatham, 2013)
on the last 40 ns of each replicate, which was considered
equilibrated after conventional RMSD analysis. The RMSD
analysis was carried out using MDLovofit (Martínez, 2015).
The radius of gyration (Rg) was used to assess the
compactness of the hexameric structure. The structural figures
were generated in VMD (Humphrey et al., 1996) and Protein
Imager (Tomasello et al., 2020).

Dynamics Cross-Correlation Matrixes
(DCCM) Analysis
The dynamic behavior of hexameric HCN is a function of the
correlated motions of individual subunits. The dynamic cross-
correlation matrices (DCCM) analysis investigates the correlated
motions of amino acids that influence the dynamics of a protein
(Kasahara et al., 2014). Bio3D suite (Grant et al., 2006) was used
for DCCM analysis through which correlation motion was
estimated by the projection of covariance matrix σ between
2 Cα atoms i and j of proteins applying the following equation:

σ ij � 〈Δri(t) · Δrj(t)〉���������������������
〈‖Δri(t)‖2〉

����������
〈
����Δrj(t)����2〉√√ . (1)

In the above equation, ri(t) defines the projected vector of atom i
as a function of time, whereas ensemble over average time is
represented by 〈“〉 and change in position of Cα atoms, i and j
with respect to their original position at a given time that is
symbolized as Δri(t) and Δrj(t). Correlation movements that were
projected via estimation of matrices were then subsequently
visualized through two-dimensional cross-correlation maps.
The variation in correlative motion on these dynamics cross-
correlation maps was interpreted in terms of correlation
(positive) and anti-correlation (negative) movements with
respect to color appeared over maps. The last 40 ns from each
trajectory were used for DCCM analysis.

Principal Component Analysis (PCA)
PCA is able to identify dominant motions and maximize
variation during protein flexibility (Balsera et al., 1996). The
results are presented as variations in the values of a small number
of collective coordinates. The Cα coordinates were used as an
input for PCA. More specifically, PCA was carried out to provide
a quantitative and comparative analysis between the two states of
the HCN hexamers. The dimensionality reduction was carried
out using the PyPcazip program (Shkurti et al., 2016) and the
porcupine plots were generated using in-house scripts (Haider
et al., 2008). All the trajectories were combined so that all share

the same subspace and comparisons can be made. A dot product
matrix between the eigenvectors identified by the PCA on the
Deoxy- and Oxy-HCN is calculated.

Solvent Accessible Surface Area
Solvent accessible surface area (SASA) can be used as a tool to
assess the relative changes in conformational dynamics of homo-
and heterodimers or multimer unit proteins (Marsh and
Teichmann, 2011). The experimental studies have reported
that HCN can exist in two different states; open, before
oxygenation, and closed after oxygen passes to the binding
site. These acquired states are entirely dependent on the
conformational integrity of the hexamer. Thus, an estimation
of SASA allows us to observe changes in the conformation of
individual subunits and the hexamer as a whole. SASA was
calculated using the “gmx sasa” module as implemented in the
GROMACS tools (Abraham et al., 2015).

Interface Accessible Surface Area (IASA)
The interactions at the interface of the top and bottom trimers in
the dimer-of-trimers were evaluated by means of estimation of
interface size or interface area through calculating the subsequent
buried accessible surface area (ASA) upon complex formation
among interface amino acid residues of individual subunits (Chen
et al., 2013). Similarly, interactions at the interface of two dimers
of trimers in hexamer were assumed to affect the entire interfacial
dynamical properties of the whole protein.

The effect of contacts on the inter-subunit dynamics and the
associated dynamical behavior of the hexamer was assessed by
calculating the accessible surface area that is buried as a result of
inter-subunit contacts between dimer-of-trimer in both Deoxy-
and Oxy-HCN via NACCESS (Hubbard and Thornton, 1993).
Estimation of the interface accessible surface area (IASA) was
carried in such a way that each trimer of the hexamer was
assigned as two chains, A and B for which accessible surface
area or change in the accessible area (ΔASA) after complex
formation was separately computed for chain A (ASAA) and B
(ASAB) with subsequently combined computation for both
chains AB (ASAAB) as explained in the following equation:

IASA � ASAChainA + ASAChainB − ASAAB. (4)

The IASA was calculated over from 100 snapshots that were
extracted from the last 40 ns from each replicate simulation.

Solvent Cavity-Pocket Analysis
Water is hypothesized to play a major role in passing oxygen up to
the bi-nuclear copper-containing active site via cavities or tunnels
formed within or at the interface of subunits. Evaluation of solvent
cavities was thus carried out for both Oxy and Deoxy-HCN forms of
the hexamer. Pocket analysis was done by calculating their opening
and closing frequency in each individual subunit and then
subsequently for the complete hexamer. Next, the cavities with
maximum frequency were sorted and their volumes calculated.
200 snapshots from the last 40 ns of each replicate were used for
pocket detection. MDPOCKET suite was used for this analysis
(Schmidtke et al., 2011).
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Tunnel Analysis
The Caver 3.03 beta software (Chovancova et al., 2012) was used
for the effective analysis of tunnels in structures derived from the
molecular dynamics trajectories. This version uses an additional
Voronoi diagram and is useful for the analysis of large
macromolecules. For caver analysis, 330 frames were extracted
from the last 40 ns of the Oxy- and Deoxy-HCN trajectories. The
oxygen atom in Oxy-HCN and copper atoms in the Deoxy-HCN
were selected as the starting point for tunnel identification. The
probe radius was set at 1.0 Å and the clustering threshold value was
kept at 10.0 to evaluate cluster results. The tunnels were ranked
based on their average bottleneck radius (Å) and throughput
values. The bottleneck radius provides the maximal probe size
which can fit in the narrowest part of the tunnel, while the
throughput value reflects the probability that the pathway is
used as a route for transport of the substances using the
formula e-cost, where e is Euler’s number and the cost is a
function defined as

∫L
0

r(l)−2 dl,

where L is the length of a path, r(l) is a function defining the
radius of the largest ball which does not collide with the atoms of
the structure and is centered at the point on the pathways axis in
the distance l from the starting vertex (Stourac et al., 2019).

Convolutional Variational Autoencoder
The convolutional variational autoencoder (or CVAE) was
implemented for analyzing the simulation trajectories. The
CVAE was previously used successfully for multiple different
cases, from analyzing protein folding (Bhowmik et al., 2018) to
enzyme dynamics (Romero et al., 2019; Akere et al., 2020), to
recent COVID-19 relatedmolecular mechanism studies (Acharya
et al., 2020; Cho et al., 2021). This specially built CVAE on the
HPC platform is able to cluster different microstates of any
system based on their subtle difference among 3D structures
influenced by various local or global motions (Yoginath et al.,
2019).

Essentially, the CVAE architecture is driven by a specific deep
learning algorithm. Briefly, the CVAE is built on top of a
traditional autoencoder with a variational approach. An
autoencoder, in general, has an hourglass-like architecture
where the high-dimensional input data is fed. Only the
essential information is captured by the autoencoder as the
high-dimensional data passes through it. The essential
information is then used to reconstruct the original high-
dimensional data to make sure there is no loss of information
during the compression mechanism of the autoencoder. The
added variational approach is a key component that optimizes
the reduced dimension captured data and forces that to be
distributed normally over the latent space, thus ensuring the
efficient utilization of the latent space. Simultaneously this also

FIGURE 3 | CVAE-based deep learning implementation. (A) The CVAE implementation where distance matrix is used as input data for generating the low-
dimensional representations. The input data is initially trained where the quality of training is followed by the different loss values at different dimensions over epochs. (B)
The validation loss is shown at different latent dimensions for determining the optimum values of the low dimension. (C) The training and validation loss are assessed over
epochs at various dimensions. (D) Comparison between original input data and reconstructed data are shown to ensure no loss of essential information during the
compression and reconstruction process
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helps the captured data not to be spreader sparsely and gain the
useful knowledge to generate new conformations if required. In
the end, the convolutional layers or CNN layers are included so
that the local and global information is captured in an efficient
way from the multi-layered complex biomolecular structures.
The complete schematic CVAE architecture is shown in
Figure 3A.

First, the distance matrix of the two systems (i.e., Oxy-HCN
and Deoxy-HCN) was built separately using the 36 Histidine
residues that coordinate with copper (Figure 2; His172, His177,
His204 and His324, His328, His 364). With the parallelized
version of the CVAE using the Horovod library, the input
distance matrix was directly fed into the CVAE architecture.
The training was performed on the Summit supercomputer with
a fixed number of epochs. This number is determined by the
trade-off between the convergence of loss value and variance bias.
The training data were randomly divided into 80:20 ratio for
training and validation dataset, respectively. The individual batch
size was kept low so that the generalization gap for large-batch
size training could be avoided. In order to select the optimal
values for clustering parameters with the best reconstruction
quality, the training was performed at various latent
dimensions. Figure 3B shows how the loss function varies in
different dimensions. Comparing the different loss values
(Figure 3C) and loss values in different dimensions

(Figure 3B) it is evident that dimension 7 is the best latent
dimension to work with. The comparison between the original
and reconstructed distance map of the system is also shown in
Figure 3D.

RESULTS AND DISCUSSION

The conformational drift of both systems, Deoxy-HCN and Oxy-
HCN, were evaluated by calculating the root mean square
deviation (RMSD). Conventional methods calculate RMSD by
aligning the structure in each frame of the trajectory to a reference
structure. This rigid body alignment has a drawback, in the sense
that if a small region of the structure is highly flexible, then the
RMSD increases for all atoms. This results in an incorrect
quantification of the structural deviations and thus poorly
assesses important motions associated with biological function.
As seen in the case of HCNs, conventional RMSD is unable to
differentiate between the dynamics of the two states. The average
Cα RMSD for Deoxy-HCN (2.55Å ± 0.04) and Oxy-HCN
(2.43Å ± 0.04) are very similar when calculated over the last
40 ns of the trajectories (Figure 4A). To overcome this caveat,
RMSD was calculated using the MDLovoFit algorithm. This
method aligns a fraction of the structure displaying the
smallest displacements and enables mobile structures to be

FIGURE 4 | A comparison of Cα conformational drifts between the deoxygenated and oxygenated hemocyanin hexamers. (A) Average Cα RMSD for Deoxy-HCN
(2.55Å ± 0.04) and Oxy-HCN (2.43Å ± 0.04) are similar when calculated over the last 40 ns equilibrated section of the trajectories. (B) 70% of Cα atoms in the simulation
can be aligned to below 1.41 Å in Deoxy-HCN (black) and 1.27 Å in Oxy-HCN (red). Top and side views of (C)Oxy-HCN and (D) Deoxy-HCN structures, highlighting the
least mobile Cα atoms (70%) that form the core (blue). The regions of the structure, which aremoremobile (red) include the surface loops or short loops that connect
different secondary structure elements together.
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FIGURE 5 | Dynamic cross-correlation matrix (DCCM) maps depicting cross-correlated motion for all six subunits in (A) Deoxy-HCN and (B) Oxy-HCN hexamers.
Boundaries of domains I, II, and III are represented by dotted lines. Domains III and I predominantly show positively correlated motions.
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identified. It was possible to align 70% of Deoxy-HCN to below
1.41 Å and Oxy-HCN to 1.27 Å (Figure 4B). The regions of
low mobility (blue) are the core of the protein, while the
surface loops and loops connecting secondary structure
elements contribute to regions of high (red) mobility
(Figures 4C,D). The lower RMSD in Oxy-HCN was
reasoned to be a result of the collapsed cavities or tunnels
due to enhanced inter- and intra-subunit interactions that
stabilized the oxygenated state. This is consistent with the

experimental finding that the oxygenation process enhances
the stability of the hexamer (Sterner et al., 1995; Bux et al.,
2018).

The flexibility of both systems was assessed by calculating the
root mean square fluctuations (RMSF) of Cα atoms of protein
from the last 40 ns of the trajectories (Supplementary Figure S1).
Each subunit within the HCN hexamer showed comparable
flexibility in both forms of Deoxy- and Oxy-HCN states. Each
monomeric unit consists of three domains: domain I comprising

FIGURE 6 | Principal component analysis (PCA). (A) Projections 1 and 2 from Deoxy-HCN represented as a heat map. (B) Top and side view of principal
component 1 from Deoxy-HCN. (C) Projections 1 and 2 from Oxy-HCN represented as a heat map. (D) Top and side view of principal component 1 from Deoxy-HCN.
(E) A scree plot comparing the eigenvalue versus eigenvector index in the two systems. (F) A subspace analysis between Deoxy-HCN and Oxy-HCN.
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amino acid residues from 1 to 154, II that ranges from 155 to 380,
and III that contains amino acid residues from 381 to 628. Of
these, domains III and I were found to show more flexibility as
compared with domain II in Oxy-HCN. The lower flexibility of
domain II was reasoned to be due to the presence of oxygen in the
metal binding site within this domain and also due to its spatial
position, being sandwiched between domains III and I. In Deoxy-
HCN dynamics, three subunits showed an increase in flexibility in
domain II, suggesting that residues can be flexible in the absence
of oxygen. This observation warranted further investigation into
the correlated motions of each domain within the subunits. This
was assessed by means of estimating correlated motions across
each domain of the subunits individually along with the collective
approximation of the individual subunits in the hexameric
protein for both Deoxy-HCN and Oxy-HCN systems (Figure 5).

The dynamic cross-correlation maps between Deoxy-HCN
and Oxy-HCN are comparable (Figure 5). Domains III and I in
each subunit displayed positive correlated motions and smaller
anti-correlated motions. Domain II in each subunit displayed
more anti-correlated motions. The observations from the
dynamic cross-correlation analysis highlight the relationship
between oxygenation and associated changes observed between

the three domains in the hexameric protein. This is suggestive of
the dynamic equilibrium between different conformational states
that makes the passage of oxygen possible in each subunit within
the hexamer.

Further quantification into the similarities and differences in
the global motion of the hexameric protein was assessed using
principal component analysis (PCA). PCAwas able to extract and
filter dominant motions from a set of sampled conformations and
define their respective essential space. The topmode was analyzed
and is illustrated as a porcupine plot (Figure 6).

The dominant mode (PC1) in Deoxy-HCN is the rotation of
the top trimeric ring with respect to the bottom. The three
subunits in the top ring move clockwise and the bottom three
anticlockwise. The PC1 in Oxy-HCN is dominated by a clam-
shell-like movement between two adjacent subunits in each ring
(Figure 6). A pairwise comparison between the Deoxy-HCN and
Oxy-HCN states was made by calculating the dot product matrix
between the eigenvectors identified from PCA of their
corresponding states. Such comparison allows quantitative
assessment of similarity between the dynamics in the two
different systems. Deoxy-HCN and Oxy-HCN simulations
have a subspace overlap of ∼45.7% and an average maximum

FIGURE 7 | (A) Solvent accessible surface area (SASA) for Deoxy-HCN (black) and Oxy-HCN (red) of all subunits (dashed) and their average (bold). (B) Interface
accessible surface area (IASA) buried due to inter-residual contacts for Deoxy-HCN (black) and Oxy-HCN (red) of 100 snapshots extracted from the last 40 ns of each
trajectory. (C) The radius of gyration versus Cα-RMSD correlation plot for Deoxy-HCN (black) and Oxy-HCN (red).
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dot product of 0.26. The most significant similarity observed
between Deoxy-HCN and Oxy-HCN is when comparing PC1 of
Deoxy-HCN and PC4 of Oxy-HCN, with an inner dot product of
0.39 (Figure 6). The motion in this PC is dominated by loop
interactions at the interface of the two concentric rings. The
presented analysis suggests that the Deoxy-HCN and Oxy-HCN
simulations occupy only ∼50% of the same conformational
(essential dynamics) subspace, though not always sampling the
same regions in that space. Such observations from PCA also
supported the assumption regarding large-scale dynamic changes
when the proteins move from a deoxygenated state to a more
stable oxygenated state. Moreover, the variation in the motion of
the Deoxy-HCN and Oxy-HCN systems observed in PCA also
indicated that the inter-residue contacts at the interface of each
subunit might play an important role in the dynamics of the
hexamer.

The dynamic states of the hexamer were then assessed by
calculating the solvent-accessible surface area (SASA) of each
subunit and then averaging it over the hexamer. The changes in
SASA were then correlated with the motions to highlight

variation in structural dynamics. Deoxy-HCN showed a
relatively larger solvent accessible surface area (3337.48 Å2 ±
21.3) as compared to Oxy-HCN (3280 ± 19.9 Å2) hexamer
(Figure 7A). The differences between SASA for the two states
are very similar to draw any conclusive inferences regarding the
dynamics of the systems.

We next analyzed the radius of gyration (Rg) of the hexamer
and correlated it with the RMSD (Figure 7C). Rg allows the
estimation of the compactness of each system. The Rg values
for the two systems are very similar (Deoxy-HCN 47.2Å ± 0.13;
Oxy-HCN 46.9Å ± 0.16) and the global compactness of the
systems is indistinguishable between the two states of the
hexameric protein.

To assess interfacial flexibility, the interface area was
quantified by measuring the buried interface accessible surface
(IASA) that became concealed or buried as a result of interactions
taking place among interfacial residues of two trimeric rings of
dimer in hexamer (Figure 7B). Oxy-HCN was observed to have
relatively larger buried interface area (1.45 × 105 Å2 ± 591.9) as
compared to Deoxy-HCN (0.72 × 105 Å2 ± 401.6). A lower value

FIGURE 8 | (A)Cumulative pocket volumes of cavities facilitating the passage of oxygen within subunits for Deoxy-HCN (blue) and Oxy-HCN (red). The volume was
calculated from 200 snapshots of each system, which was extracted from the last 40 ns of each trajectory (B) Three-dimensional depiction of cavity density (mesh)
spread in the (B) Deoxy-HCN (blue) and (C) Oxy-HCN (red) hexamers. The lower cumulative pocket volume Oxy-HCN (red) indicates a more stable closed state in
Oxy-HCN.
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of buried interface in case of Deoxy-HCN suggested more
flexibility, which increased the chances of inter residue
contacts taking place at the interface of dimer of trimers. In
case of Oxy-HCN, a higher value of the buried interface was

consistent with the diminished flexibility at the interface and
suggested that the dense contacts were a part of the accessible
surface area that became concealed or buried in the oxygenated
state.

FIGURE 9 | Tunnel analysis in Deoxy-HCN and Oxy-HCN. Tunnel clusters identified in each monomer are illustrated with distinct colors. The tunnel formed by the
top cluster is highlighted in green.
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Hemocyanins have been reported to have solvent cavities or
channels within and at the interface of each subunit (Hazes et al.,
1993; Magnus et al., 1994). Thus, investigation of these tunnels or
cavities was also carried out to understand their behavior in their
respective dynamic states (Figure 8). The cumulative pocket
volume calculated in Deoxy-HCN (47.8 × 103 Å3) was greater
than that in Oxy-HCN (28.5 × 103 Å3) (Figure 8).

To further validate the observations drawn from the
cumulative volume of cavities, dynamic tunnel formation was
measured in the simulated systems. A summary of all clusters is
tabulated in Table 1. Clusters were calculated for individual
subunits within the hexamer and compared between the two
states. The identified tunnel clusters are illustrated in Figure 9.
The top cluster is the most important due to the higher
throughput value and average bottleneck radius. The residues
involved in tunnel formation for the top cluster are listed in
Table 2. In Deoxy-HCN, 58 cumulative clusters were identified
while in Oxy-HCN 54, clusters were observed. For each tunnel
cluster, all residues were at least present in one snapshot and
within 2 Å from an individual tunnel cluster. The dynamic
properties of the tunnel were assessed using a bottleneck
analysis. A bottleneck is defined as the narrowest part of the
tunnel and the average ranged between 1.1 and 1.2 Å in Oxy-
HCN. During the course of the dynamics, the constriction formed

TABLE 1 |Dynamic tunnel properties of Deoxy- and Oxy-HCN identified by Caver,
using a probe radius of 1.0 Å and a clustering threshold of 10.0 (BR:
bottleneck radius; TP: throughput).

Oxy-HCN

- A B C D E F

No. of clusters 6 9 8 11 8 12

No. of snapshots 254 37 135 141 111 225

Average BR (Å) 1.20 1.10 1.24 1.09 1.14 1.19

Max BR (Å) 1.50 1.31 1.82 1.72 1.54 1.71

Average TP 0.50 0.48 0.56 0.51 0.48 0.40

Deoxy-HCN

- A B C D E F

No. of clusters 7 6 10 14 10 11

No. of snapshots 331 101 204 145 95 133

Average BR (Å) 1.33 1.14 1.21 1.20 1.20 1.15

Max BR (Å) 1.93 1.60 1.71 1.73 1.72 1.60

Average TP 0.60 0.37 0.52 0.53 0.49 0.40

TABLE 2 | Tunnel lining residues of the tunnel cluster with the highest average throughput and average bottleneck radius.

Oxy-HCN

A C48, F49, P51, L54, F91, W176, Y180, P181, S182, T183, K196, F200, E309, S310, N322, N325, T351, F360

B C48, F49, P51, L54, S182, T183, F200, V308, E309, S310, S311, Y312, N322, L323, N325, W326, G327, M348, S354,
F360, W363

C F49, L54, W176, S182, F200, V308, E309, S310, S311, Y312, N322, N325, T351

D C48, F49, H50, P51, L54, H175, W176, S182, T183, F200, E309, S310, S311, Y312, N322, N325, T351, S354, F360

E C48, F49, P51, L54, E55, A57, R58, Y61, F91, W174, H175, W176, L178, V179, Y180, P181, S182, T183, W184, K196,
F200, E309, N325, D350, T351, S354, F360

F C48, F49, W176, Y180, P181, S182, R195, K196, G197, E198, L199, F200, M203, D302, I303, G305, A306, E309, S311,
E313, D350, T351, S354, L355, F360

Deoxy-HCN

A F46, C48, F49, H50, P51, D52, L54, E55, F91, W176, L178, Y180, P181, S182, T183, K196, F200, E309, S310, S311,
Y312, H317, G321, N322, N325, T351, F360

B F46, S47, C48, F49, H53, L54, E55, A57, R58, H59, Y61, L88, F91, V95, A171, H172, W174, H175, W176, L178, Y180,
P181, S182, T183, K196, F200, M203, M207, E309, N325, T351, S354, L355, F360, W363

C S47, C48, F49, H50, P51, L54, W176, S182, T183, E309, S310, S311, Y312, H317, N322, S349, D350, T351, S352

D S47, C48, F49, H50, L54, W174, W176, L178, S182, T183, F200, M203, E309, S310, S311, N322, N325, D350, T351,
S352

E C48, F49, H50, P51, L54, S182, T183, F200, M203, E309, S310, S311, N322, N325, D350, T351, S354, L355, F360

F F49, H172, W176, V179, Y180, P181, S182, K192, K193, D194, R195, K196, G197, L199, F200, M203, M207, E309,
S310, T351, L355, F360, A585, D587, H588, K589, Y590, M596
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by residues expands from 1.0 Å to 1.8 Å, which is enough to allow
the oxygen molecule to pass. Similarly in Deoxy-HCN, the
bottleneck radius ranged from 1.0 to 1.3 Å, while the
constriction is able to expand to 1.9 Å. In both systems, the
top tunnel clusters identified within each monomer share several
common residues. Of these, S182, E309, and N325 appear around
the bottleneck and contribute towards the constriction of the
tunnel. The relatively greater flexibility observed in Deoxy-HCN
is in agreement with the conformational state that was ready to
facilitate oxygen entry into the protein. Additionally, the cavities
and tunnels in the Deoxy-HCN state are correspondingly spread
across the interface of all subunits. Smaller and less dense cavities
in Oxy-HCN are representative of the conformation of the
protein that is acquired after oxygen has passed to the
binuclear active site of the protein.

The global dynamics of the Oxy-HCN and Deoxy-HCN are
indistinguishable using conventional analysis like RMSD, radius
of gyration, and solvent accessible surface area. Thus, a highly
sensitive convolutional variational autoencoder (CVAE) based
deep learning method was used to differentiate between the
dynamics of the two systems. The CVAE model quality was
evaluated in different latent dimensions. Dimension 7 turned out
to be the best dimension to work with (Figure 3B). The loss
behavior over epoch showed a normal trend in all dimensions but
the value with the variation in the loss at dimension 7 was better
than others (Figure 3B). This is because initially as the latent
dimension increases, the model starts compressing less and thus
acquires more representation ability. But gradually when the
dimensions become too large, then the model might overfit
while introducing additional noises. The overall loss attains an
optimal value between the two extremes. For Oxy- and Deoxy-
HCN systems, the CVAE model is quite stable, as the loss stays
close to each other in different dimensions. The data was
visualized using 2D-tsne (t-distributed stochastic neighbor
embedding) (Figure 10A). CVAE is able to cluster the two

systems (i.e., Oxy-HCN (red) and Deoxy-HCN (blue)
distinctly based on their local and global conformational
dynamics. This is visible both in 2D- and 3D-dimensional
representation (Figure 10B). These results indicate that the
dynamics of the oxygenated and deoxygenated systems are
discernible.

CONCLUSION

Molecular dynamics simulation was used to study the differences
between the deoxygenated and oxygenated forms of hemocyanin
hexamers. This 3768 residue system was assessed over a
cumulative sampling time of around 1 µs (10 replicates of 100
ns each). Conventional structural analysis methods were unable
to differentiate between the dynamics of the two systems. This is
because the conformations of the starting structure of Oxy-HCN
and Deoxy-HCN are very similar. Further investigation of the
systems using PCA highlighted less than ∼46% subspace overlap.
The most dominant motions identified the hexameric HCN
system to function as dimer-of-trimers. The evaluation of
interfacial dynamics by estimating the contacts between
residues at the interface indicated that the Deoxy-HCN
subunits experienced fewer contacts as compared with Oxy-
HCN subunits. Calculations of the interface area via IASA
further revealed that the residues at the interface of subunits
Deoxy-HCN were less buried than in Oxy-HCN. Estimating the
solvent cavities in terms of densities, frequencies and their
volumes also found Oxy-HCN to have contracted solvent
cavities. The average bottleneck radius of the tunnels identified
in the Deoxy-HCN was greater than in Oxy-HCN. The deep
learning analysis carried out as a function of the residues that
bind to copper in the active site indicates that the two systems are
different based on their local and global conformational
dynamics. These observations, when taken together confirm a

FIGURE 10 |CVAE-based deep learning analysis. The reduced dimensional latent space of CVAE-learnt features of the high dimensional original input are shown in
(A) 2D representation and (B) 3D representation following t-sne treatment on the compressed data. The results show that the two systems [i.e., Oxy-HCN (red) and
Deoxy-HCN (red)] are different based on their local and global conformational dynamics.
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conformation for Deoxy-HCN that is ready to accept and
transport oxygen to metal binding sites. Once the oxygenation
process is completed, the system becomes stable as represented by
the Oxy-HCN conformation.
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