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RNA methylation plays a significant regulatory role in various of physiological activities
and it has gradually become a hotspot of epigenetics in the past decade.
2′-O-methyladenosine (Am), 2′-O-methylguanosine (Gm), 2′-O-methylcytidine (Cm), 2′-
O-methyluridine (Um), N6-methyladenosine (m6A), N1-methylguanosine (m1G),
5-methylcytidine (m5C), and 5-methyluridine (m5U) are representative 2′-O-methylation
and base-methylation modified epigenetic marks of RNA. Abnormal levels of these
ribonucleosides were found to be related to various diseases including cancer. Serum
is an important source of biofluid for the discovery of biomarkers, and novel tumor
biomarkers can be explored by measuring these ribonucleoside modifications in
human serum. Herein, we developed and applied a hydrophilic interaction liquid
chromatography tandem mass spectrometry (HILIC-MS/MS) method to determine the
content of monomethylated ribonucleosides in human serum. The developed method
enabled sensitive and accurate determination of these monomethylated ribonucleosides.
By applying this robust method, we demonstrated the presence of Gm and Um in human
serum for the first time, and we successfully quantifiedm6A, Gm,m1G, Cm, Um andm5U in
serum samples collected from 61 patients with breast cancer and 69 healthy controls. We
discovered that the levels of Gm, m1G, Cm, Um and m5U in serum were all significantly
decreased in breast cancer patients whereas m6A was increased. We performed receiver
operating characteristic (ROC) curve analysis, and obtained highest area under curve
(AUC) value when combining these six monomethylated ribonucleosides together. These
results suggest that m6A, Gm, m1G, Cm, Um and m5U might have great potential to be
novel biomarkers for detection of breast cancer in the early stage. In addition, this study
may stimulate future investigations about the regulatory roles of monomethylated
ribonucleosides on the initiation and development of breast cancer.
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INTRODUCTION

Post-transcriptional modifications of RNA has great research
prospects and RNA epigenetics/epitranscriptomics has been
proposed (He, 2010). More than 170 different modifications of
RNA have been identified in recent year and over half of them are
RNA methylation modifications which are associated with the
regulation of RNA functions (Jonkhout et al., 2017; Ontiveros
et al., 2019). Due to the functional identification of important
regulatory proteins such as methyltransferase METTL3/
METTL14/WTAP complex (Liu et al., 2014) and demethylase
FTO (Jia et al., 2011), RNA methylation modifications have
attracted great attention and accumulating evidences have
been obtained to confirm RNA methylation modifications as a
novel layer of epigenetic alteration. Through their unique
regulatory proteins, RNA methylation modifications play
critical roles in various cellular functions, such as RNA
splicing (Sun et al., 2020), stability (Zhang et al., 2019a; Chen
et al., 2019; Shen et al., 2020), degradation (Ni et al., 2019; Yang
et al., 2019; Chen et al., 2020b) and translation (Weng et al., 2018;
Schumann et al., 2020; Song et al., 2020). Moreover, it has been
revealed that RNA methylation is closely associated with the
occurrence and development of human cancers.

As we known, the ribonucleoside compositions of RNA
contain adenosine, guanosine, cytidine and uridine. The
methylation usually occurs at nitrogen or carbon atom in the
nucleobase part of the molecule to form m6A, m1G, m5C, m5U
and so on. When the hydrogen on the 2′-hydroxyl (-OH) of the
ribose moiety is replaced by a methyl group (-CH3), it will form
2′-O-methylation ribonucleosides (Nm) including Am, Gm, Cm
and Um. M6A is the most predominant modification in mRNA,
and the aberrant level of m6A modification has great connection
with the tumorigenesis and development (Ma et al., 2019; Xu
et al., 2020; Chen et al., 2021; Fang et al., 2021). In the recent study
of our group, it was found that the significantly elevated m6A in
human serum increased the risk of colorectal cancer and gastric
cancer (Hu et al., 2021). It was reported that the dynamic level of
m1G in human serum could help early detection of breast cancer
(Rashed et al., 2020) and colorectal cancer (Zhu et al., 2015). M5C
is another most abundant RNA modification which has been
discovered to be a potential biomarker of various cancers (Guo
et al., 2018a; Zhang et al., 2019b; Feng et al., 2020). In addition, a
significant downregulationm5U in human serum can indicate the
presence of prostate cancer (Buzatto et al., 2017). For Nm, they
have also been revealed to participate in the pathogenesis of
various cancers and play crucial roles (Hua et al., 2018; Zhu et al.,
2019; Wu et al., 2020). Recently, Li et al. reported that the level of
Cm in serum is related to the reduced risk of developing
esophageal squamous cell carcinoma (Li et al., 2021).
Therefore, these monomethylated ribonucleosides have
significant potential to be used as indicators for early detection
of cancers.

Breast cancer is the most prevalent tumor with the highest
mortality among women worldwide (Sung et al., 2021). Generally,
the prognosis and the survival rate of breast cancer are better in
the early stages, but poorer in advanced stages even after receiving
the surgery and adjuvant treatment (DeSantis et al., 2016).

Therefore, it is important for early detection of breast cancer.
Currently, ultrasonography and mammography, together with
biopsy, are used for routine screening and staging. Limitations of
these inspection methods including exposure to radiation,
traumatic operation and often producing inaccurate results.
Besides, breast tumors must be at least a few millimeters in
size to be detected. Serum biomarkers, such as carbohydrate
antigen-153 (CA153) and carcinoembryonic antigen (CEA),
showed low sensitivity and/or low specificity and responded
late to tumor formation and recurrence (Nagrath et al., 2011).
From these points of view, it is necessary to hunt for robust
biomarkers for early-stage of breast cancer to elongate the
survival time and reduce the suffering of patients.

Serum is easy to obtain in the clinic and contains a large
number of biomolecules, so it can be used as the body fluid of
choice for the discovery of biomarkers. In the past decades, a
variety of analytical methods have been utilized for analyzing
modified ribonucleosides (Jiang and Ma, 2009; Wei et al., 2010;
Beale et al., 2018; Pero-Gascon et al., 2018). Reversed-phase liquid
chromatography (RPLC) or hydrophilic interaction liquid
chromatography (HILIC) coupled with tandem mass
spectrometry is more favored for biomarker discovery due to
its great advantages in selectivity, sensitivity, accuracy and high
throughput (Zhu et al., 2015; Guo et al., 2018b; Chen et al., 2020a;
Guo et al., 2020; Su et al., 2021), compared with other analytical
techniques. In our study, a fast, sensitive, simple and reliable
HILIC-MS/MS method for qualitative and quantitative detection
of monomethylated ribonucleosides in human serum was
established. We revealed the presence of Gm and Um in
human serum for the first time and quantified m6A, Gm,
m1G, Cm, Um and m5U in serum from breast cancer patients
and healthy controls. By analyzing these results, we demonstrated
the differences of these modifications between breast cancer
patients and healthy volunteers, and evaluate the potential of
these monomethylated ribonucleosides as biomarkers for early
detection of breast cancer.

MATERIALS AND METHODS

Chemicals and Reagents
Chromatographic grade acetonitrile was bought from Merck
KGaA (Darmstadt, Germany). Methanol of HPLC grade was
purchased from J.T.Baker (Radnor, PA, United States). Formic
acid (HCOOH) was bought from Fluka (Muskegon,
United States). Ammonium formate, malic acid and 5-
methylcytidine (m5C) were bought from Sigma-Aldrich (St
Louis, MO, United States). 2′-O-methyladenosine (Am), N6-
methyladenosine (m6A), 2′-O-methylguanosine (Gm), 1-
methylguanosine (m1G), 2′-O-methylcytidine (Cm), 2′-O-
methyluridine (Um), 5-methyluridine (m5U) and isotopically
labeled standards [D3]m

6A, [D3]Um and [13C5]m
5U were

obtained from Toronto Research Chemicals (Toronto,
Canada). [13C15N2]Gm, [13C15N2]m

1G and [13C5]Cm were
synthesized according to literature (Fu et al., 2015). Water was
purified by a Milli-Q water purification device (Millipore,
Milford, MA, United States).
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Instrumentation
Acquity UPLC system (Waters, Milford, MA, United States)
achieved by Empower Pro 6.0 software was applied for
analysis. A Waters Acquity BEH Amide column (100 mm ×
2.1 mm, 1.7 μm) was applied for chromatographic separation.
4000 QTRAP mass spectrometer (AB SCIEX, Foster City, CA,
United States) was applied for MS detection. The mass
spectrometer was equipped with electrospray ionization (ESI)
positive ion mode. Multiple-reaction monitoring (MRM) was
chosen to acquire data. Data acquisition and processing were
controlled by Analyst 1.6.3 software.

Sample Collection
The Ethics Committee of Medical Research of the Second
Affiliated Hospital, Zhejiang University School of Medicine
(SAHZU) approved our study. A total of 69 healthy volunteers
(mean age of 43.9 ± 11.1 years, range from 30 to 70 years) and 61
patients with breast cancer (mean age of 52.2 ± 11.9 years, range
from 29 to 80 years) were recruited from SAHZU. All breast
cancer patients had a diagnosis report with a pathological stage of
stage I or stage II at SAHZU between June 2020 and December
2020. The exclusion criteria were as follows: 1) Co-suffering other
malignant tumors. 2) Having received any type of treatment for
tumors. 3) Suffering from metabolic diseases, kidney diseases or
liver diseases. 4) Taking any drugs for a long time. All
participating volunteers agreed the informed consent in
advance. Then, the serum samples were collected in the early
morning and reserved at −80°C.

Sample Preparation
At first, 10 μl of isotope-labeled internal standards (IS) mixed
solution was added into 100 μl serum samples which were
naturally thawed in ice. And then 330 μl pre-refrigerated
acetonitrile/methanol of 2:1 (v/v) was added. After vortexed
for 60 s, let it stand at −20°C for 2 h and centrifuged at
13,000 rpm, 4°C for 15 min orderly, 352 μl of the supernatant
were taken out and then drain under vacuum. Then, 80 μl
acetonitrile/water of 9:1 (v/v) was used to redissolve the dried
samples. After vortexed for 10 s, ultrasonicated for 15 s and
centrifuged at 13,000 rpm for 15 min at 4°C, 70 μl of the
supernatant fraction were sucked into the sample bottle for
subsequent HILIC-MS/MS detection.

HILIC-MS/MS Analysis
The mobile phase was (A) H2O containing 10 mM ammonium
formate, 0.2% formic acid and 0.06 mM malic acid, and (B)
acetonitrile containing 2 mM ammonium formate, 0.2% formic
acid and 0.06 mM malic acid. The eight analytes were perfectly
separated at a flow rate of 0.4 ml/min by the optimized LC
gradient program as follows: 0 min, 94% B; 4 min, 94% B;
6.1 min, 75% B; 6.5 min, 94% B; 8 min, 94% B. The BEH
Amide column was set at 40°C and the samples temperature
was maintained at 4°C. 5 μl of sample was injected each time and
each sample was measured twice. To minimize the interference of
the mass spectrometer, a switching valve was used and the eluents
from the column were introduced into the ion source during
1.0–6.5 min.

The ion spray voltage was kept at 5.5 kV and the ion source
temperature (TEM) was maintained at 550°C. Ion source gas 1
(GS1), ion source gas 2 (GS2) and curtain gas (CUR) were all set
at 45 psi. The ion transitions of these eight ribonucleosides and
corresponding isotope labeled internal standard (IS) were
shown in Supplementary Table S1. The optimized MRM
parameters of them including declustering potential (DP),
entrance potential (EP), collision energy (CE) and collision
cell exit potential (CXP) were also listed in Supplementary
Table S1.

Method Validation
The standard working solutions of m6A, Gm, m1G, Cm, Um and
m5U at different concentrations (1, 2.5, 5, 10, 25, 50, 100, 250,
500 nM), which were mixed with IS solution (final concentration:
[D3]m

6A (5 nM), [13C15N2]Gm (10 nM), [13C15N2]m
1G (20 nM),

[13C5]Cm (30 nM), [D3]Um (20 nM) and [13C5]m
5U (100 nM)),

were made and analyzed. The calibration curves could describe as
y � ax + b, where y represents the peak area ratio of the analyte to
the corresponding IS and x denotes the concentration of the
analyte. The limit of detection (LOD) and limit of quantification
(LOQ) of each ribonucleoside were obtained by analyzing
standard solutions with a signal-to-noise ratio of three and
ten, respectively.

For the purpose of evaluating intra-day and inter-day
precision, the quality control (QC) samples at three different
levels of m6A (2.5, 5, 50 nM), Gm (5, 10, 50 nM), m1G (5, 20,
100 nM), Cm (5, 30, 150 nM), Um (5, 20, 100 nM) and m5U (20,
100, 300 nM) were prepared in triplicate and were measured on
the same day and three consecutive days, respectively. The
accuracy was described as the ratio of measured value to the
theoretical concentration.

For the purpose of evaluating the recovery of extraction,
the serum samples were added with three different levels of
m6A (2.5, 5, 30 nM), Gm (2.5, 10, 50 nM), m1G (5, 20,
60 nM), Cm (6, 30, 150 nM), Um (5, 20, 60 nM) and m5U
(50, 150, 300 nM). After 10 μl of IS solution (same as
described above) was added, the serum samples were
treated and analyzed as mentioned above. The recovery
(R) of each analyte was calculated by (concentration in
added serum sample–concentration in original serum
sample)/added concentration × 100%.

The matrix effect was estimated by using a slope comparison
method. By adding different concentrations (1, 2.5, 5, 10, 25, 50,
100, 250, 500 nM) standard solution and IS to the serum extracts,
the calibration curve was obtained. The ratio value of its slope to
the slope of the standard solution calibration curve was matrix
effect.

Statistical Analysis
Statistical analyses were achieved through SPSS 24.0 software (IBM,
Armonk, NY, United States). The concentration differences of
serum monomethylated modifications between healthy
volunteers and breast cancer patients were accessed by Two-
tailed Student’s t-test, where p value less than 0.05 was
considered meaningful. The area under the curve (AUC) was
acquired by receiver operating characteristic (ROC) curve
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analysis, and the optimal cut-off value of the methylation
modification in serum for the diagnosis of breast cancer was
determined by the Youden index (Youden index � sensitivity +
specificity −1). Receiver operating characteristic (ROC) analysis
was performed to evaluate the ability of monomethylated
modifications to distinguish cancer patients from healthy controls.

RESULTS AND DISCUSSION

Optimization of Chromatographic
Conditions and Mass Spectrometry
Parameters
The optimization of chromatographic conditions is mainly
achieved by optimizing the type of chromatographic column
and the composition of the mobile phase. In order to acquire
symmetrical peak shape and great separation effect in a short
time, it is very important to choose a column with high separation
efficiency. The chemical structures of these monomethylated
ribonucleosides were illustrated in Figure 1. In our previous
study, we found malic acid could enhance the detection of
methylated nucleosides in HILIC-MS/MS (Guo et al., 2018a).
Therefore, a hydrophilic interaction column of BEH Amide
(100 mm × 2.1 mm, 1.7 μm, Waters) was selected for analysis,
and malic acid was added into the mobile phase. As showed in

Figure 2, it could acquire satisfactory separation for these eight
ribonucleoside modifications. Besides, the analysis could be
accomplished less than 6.5 min. It meant that this analytical
method was quick, high throughput and fit for large clinical
practice.

FIGURE 1 | The chemical structures of Am, m6A, Gm, m1G, Cm, m5C, Um, m5U.

FIGURE 2 | The MRM chromatograms of Am, m6A, Gm, m1G, Cm,
m5C, Um, m5U standards. The concentrations of Um and m5U were
1,000 nM, and the concentrations of other nucleosides standards were
100 nM. The injection volume was 5.0 μl.
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For the purpose of optimizing the MRM parameters, the mass
spectrometer analyzed the standard solution injected by the
peristaltic pump. Abundant [M + H]+ ions were observed in
full scan ESI-MS. Then, the collision induced dissociation (CID)
experiment was used to calculate the ion transitions of all
analytes. In MS/MS, the ribose group can be easily eliminated
due to the cleavage of the C-N bond. Taking Am and [13C5]Am as
examples, abundant [M + H]+ ions at m/z 282.1 and 287.1 were
observed for Am and [13C5]Am, respectively. The [M +H]+ ion of
Am lost 146 and 151 Da was lost from [M +H]+ ion of [13C5]Am.
Therefore, ion transitionm/z 282.1→136.0 andm/z 287.1→136.0
was used for the quantification of Am and [13C5]Am, respectively.
The ion transitions of other ribonucleosides and corresponding IS
were shown in Supplementary Table S1. In addition, the
optimized parameter values of DP, EP, CE and CXP were also
listed. Under these optimized conditions, The LODs and LOQs of
these monomethylated ribonucleosides can reach sub femtomole
level (Supplementary Table S2).

Validation of Analytical Method
According to the aforementioned method, the prepared
calibration curve showed excellent linearities (R2 < 0.999) in
appropriate analytical ranges, and equations were showed in
Table 1. The slope ratio values for these eight

monomethylated ribonucleosides ranged from 94.7 to 104.7%
(Table 1), which indicated the interference of matrix in this study
was minimal.

As showed in Supplementary Table S3, the intra- and inter-
day accuracy assays were in the range of 92.20–112.96% and
92.29–112.76%, respectively, and the precision of intra- and inter-
day were both within 8.6%. These data indicated that sufficient
reproducibility and accuracy were obtained. As showed in
Supplementary Table S4, the recoveries ranged from 98.04 to
114.01% (RSD <10%), indicating an excellent recovery rate.

In a word, all these results mentioned above revealed that the
established HILIC-MS/MS method could meet quantitative
requirement of m6A, Gm, m1G, Cm, Um and m5U in human
serum samples, and it was quick, accurate, sensitive, reproducible
and reliable.

Identification of Monomethylated
Ribonucleoside Modifications in Human
Serum
By using this HILIC-MS/MS method, we detected these modified
ribonucleosides in serum samples from 61 patients with breast
cancer and 69 healthy volunteers. The results showed that m6A,
Gm, m1G, Cm, Um and m5U were detected in all the serum

TABLE 1 | Linear equations and matrix effect values of m6A, Gm, m1G, Cm, Um and m5U in HILIC-MS/MS analysis.

Linear equation R2 value Linear range (nM) Matrix effect (%)

m6A y � 0.3492x + 0.1053 0.9995 1–100 104.7
Gm y � 0.1272x + 0.0308 1.0000 1–100 96.7
m1G y � 0.0432x + 0.0061 1.0000 1–100 94.9
Cm y � 0.0416x + 0.0137 0.9999 1–250 94.7
Um y � 0.1100x + 0.0312 0.9998 1–500 99.0
m5U y � 0.0173x - 0.0088 0.9999 1–500 99.4

FIGURE 3 | Representative MRM chromatograms of (A) Um, (B)m6A, (C)m5U, (D)Cm, (E)m1G, (F)Gm and spiked isotope-labeled internal standards in a serum
sample.
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samples, whereas Am and m5C could not be monitored due to
their extremely low levels. As demonstrated in Figure 3, the
retention time of Um, m6A, m5U, Cm, m1G and Gm were 1.44,
2.10, 2.42, 3.38, 4.34 and 4.91 min, respectively. Of note, the
retention time of these compounds were consistent with their
corresponding isotope-labeled internal standard. The same
tandem mass spectrometry behaviors and chromatographic
retention time of each modified ribonucleoside in serum as
those of the isotope-labeled IS confirmed the existence of
m6A, Gm, m1G, Cm, Um and m5U in human serum
indubitably. It is worth nothing that the presence of Gm and
Um in human serum was revealed for the first time, as far as
we known.

Quantification of Monomethylated
Ribonucleoside Modifications in Human
Serum
The detailed concentrations of m6A, Gm, m1G, Cm, Um and
m5U in all the serum samples were presented in Supplementary
Table S5. The measured concentrations (nM) in serum samples
of m6A, Gm, m1G, Cm, Um and m5U from healthy volunteers
were in the range of 0.93–6.01, 7.91–20.85, 20.29–39.74,
29.97–66.58, 14.47–36.83 and 101.97–260.34 nM respectively,
and the average concentrations were 2.97, 13.47, 27.97, 22.60
and 186.43 nM, respectively (n � 69). In the serum of breast
cancer patients, the concentration of m6A, Gm, m1G, Cm, Um
and m5U were in the range of 1.45–7.01, 7.84–21.39,
16.59–34.41, 24.61–57.14, 13.83–39.07 and 108.20–226.84 nM
respectively, and the average concentrations were 4.48, 11.55,
25.15, 37.31, 20.27 and 159.40 nM, respectively (n � 61). As
illustrated in Figure 4, it was obvious that the levels of Gm, m1G,
Cm, Um and m5U in serum were intensely decreased in patients
with breast cancer compared to healthy controls (p < 0.0001 for
Gm, p < 0.0001 for m1G, p < 0.0001 for Cm, p < 0.01 for Um, p <
0.0001 for m5U), but the concentration of m6A in breast cancer

patients was much higher than that in healthy volunteers (p <
0.0001).

To verify the significance of m6A, Gm, m1G, Cm, Um and
m5U as potential breast cancer biomarkers, receiver operating
characteristic (ROC) curve was plotted. Based on the Youden
index, the optimal cut-off values of m6A, Gm, m1G, Cm, Um and
m5U were 3.76, 12.99, 25.92, 37.31,21.62 and 169.58 nM, which
indicates that if the detection values break through these
thresholds, it increases the risk of breast cancer. Trapezoidal
rule was used to calculate area under the curve (AUC). As
demonstrated in Figure 5, the AUC values were 0.78, 0.70,
0.70, 0.78, 0.65, 0.78 and 0.68 for m6A, Gm, m1G, Cm, Um,
m5U and CA153, respectively. Most of the AUC values of
ribonucleosides were higher than that of CA153, implying
there might be better correlation between the levels of m6A,

FIGURE 4 | The measured concentrations of (A) m6A, (B) Gm, (C) m1G, (D) Cm, (E) Um, (F) m5U in serum samples and statistical analysis.

FIGURE 5 | ROC analysis for m6A, Gm, m1G, Cm, Um, m5U, SMRS and
CA153 in serum samples of breast cancer patients. *SMRS: serum
monomethylated ribonucleosides score.
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Gm, m1G, Cm and m5U in serum and the incidence of breast
cancer, compared with CA153. Moreover, when all these serum
monomethylated ribonucleosides were combined, the AUC could
reach 0.93, which suggested the sensitivity and specificity for
breast cancer diagnosis were dramatically increased. These results
indicated that lower levels of Gm, m1G, Cm, Um and m5U and
higher levels of m6A could be regarded as potential diagnostic
indicators for the screening of breast cancer.

CONCLUSION

In our study, a fast, robust, sensitive and trustable HILIC-
MS/MS method was established for analysis of
monomethylated ribonucleosides. A total of 130 serum
samples from two groups containing breast cancer patients
and healthy control were analyzed. Six modified
ribonucleosides including m6A, Gm, m1G, Cm, Um and
m5U were identified and quantified. Of note, to the best of
our knowledge, this is the first time that Gm and Um were
detected in human serum. Besides, we elucidated the
differences in the contents of these monomethylated
ribonucleosides between these two groups and our data, to
some extent, indicated that these six modified
ribonucleosides might play as potential indicators in the
early detection of breast cancer.
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