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Proteins fulfill complex and diverse biological functions through the controlled atomic
motions of their structures (functional dynamics). The protein composition is given by its
amino-acid sequence, which was assumed to encode the function. However, the
discovery of functional sequence variants proved that the functional encoding does not
come down to the sequence, otherwise a change in the sequence would mean a change
of function. Likewise, the discovery that function is fulfilled by a set of structures and not by
a unique structure showed that the functional encoding does not come down to the
structure either. That leaves us with the possibility that a set of atomic motions, achievable
by different sequences and different structures, encodes a specific function. Thanks to the
exponential growth in annual depositions in the Protein Data Bank of protein tridimensional
structures at atomic resolutions, network models using the Cartesian coordinates of atoms
of a protein structure as input have been used over 20 years to investigate protein features.
Combining networks with experimental measures or with Molecular Dynamics (MD)
simulations and using typical or ad-hoc network measures is well suited to decipher
the link between protein dynamics and function. One perspective is to consider static
structures alone as alternatives to address the question and find network measures
relevant to dynamics that can be subsequently used for mining and classification of
dynamic sequence changes functionally robust, adaptable or faulty. This way the set of
dynamics that fulfill a function over a diversity of sequences and structures will be
determined.
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INTRODUCTION

Proteins fulfill complex and diverse biological functions through the controlled atomic motions of
their structures (Wingert et al., 2021). The protein composition is given by its amino-acid sequence,
which was assumed to encode the function. However, the discovery of functional sequence variants
proved that the functional encoding does not come down to the sequence, otherwise a change in the
sequence wouldmean a change of function. Likewise, the discovery that function is fulfilled by a set of
structures and not by a unique structure showed that the functional encoding does not come down to
the structure either (Jaffe, 2005; Jaffe, 2020; Parisi et al., 2015).

The next alternative is that sets of atomic motions, achievable by different sequences and different
structures, encode a specific function (Bahar et al., 2010). This is consistent with the multiple
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dynamic paths that fulfill allostery (Buchenberg et al., 2017). The
challenge lies in distinguishing the set of dynamics associated
with sequence variants functionally robust or functionally
adapted (change of function) from the set of dynamics
associated with functional failure. Inferring function from the
protein dynamics is also important because pathological variants
impacting the protein dynamics but not the protein structure,
limit traditional structure-based drug discovery methods (Demir
et al., 2021).

Network science is appropriate to study system dynamics from
protein structures because it offers multiple avenues to study the
complex spatiotemporal relationships between interacting
entities (Barrat et al., 2004; Barabási, 2013; Unicomb et al.,
2017). Integrative approaches combining experimental data or
Molecular Dynamics (MD) simulation with network-based
models enable to link protein structures to protein dynamics
and function Demir et al. (2011), Leitner and Yamato (2018),
Liang et al. (2018), Ponzoni and Bahar (2018), Bourgeat et al.
(2019), Gheeraert et al. (2019), Melo et al. (2020), Bourgeat et al.
(2021), Di Paola and Leitner (2021) and for a review see (Liang
et al., 2020). On one hand, global mode analysis, elastic network
models (ENM), dynamics network models (DNM) and protein
energy networks (PEN) are used to track multiple scale dynamics
in proteins, identify allosteric pathways and residues involved in
biological activities. On the other, perturbation response scanning
(PRS) and evolutionary network models are used to investigate
the impact of mutations on protein features in particular for
disease mutations. ELM applied on different protein family
members also allows associating scale of motions to various
types of activities (Wingert et al., 2021).

The advantages of network based models in probing protein
dynamics come from the inference of amino acid and atomic
links from the structure. Now, one on-going question is to clarify
why network measures pinpoint functional residues (e.g.,
allostery) or distinguish disease mutations from the rest of the
residues in order to better understand what properties amino
acids have in a structure that make them functionally tolerant to
mutations or not. The comparison of network measures and
network models over proteins spanning large dynamics scales
from enzyme to pore-forming toxins and over their sequence
variants will help validating network measures as hallmarks of
functional dynamics and of functional dynamic perturbations
related to diseases.

One alternative perspective to network integrative approaches
is to find network measures that are relevant to functional
dynamics simply from protein structures. This implies a
network measure probing collective slow motions and
therefore shared across proteins and independent of amino
acid features as observed from global modes (Bahar et al.,
2010). In addition, a network measure with amino acid
specific characteristics is expected if it embed the dynamics of
a specific function. An allosteric enzyme and a pore-forming
toxin have 3D-structures that share multiple scale collective
dynamics but yet they have very different motions to fulfill
their functions.

We consider the neighborhoods of each amino acid of a
protein as potentially relevant to the problem. This is because

on average over its neighbors every amino acid makes moderate
and similar number of atomic interactions, a property shared by
many different proteins (Dorantes-Gilardi et al., 2018). In
addition, each neighborhood is different in terms of number
of neighbors and type of neighbors (Dorantes-Gilardi et al.,
2018). Thus, neighborhoods satisfy the two conditions to
embed protein dynamics. Moreover, the neighborhoods
describe the spatial position of the amino acids in the
structure, which carves the space occupied by the amino acid
atoms and hence uncovers the space left available between amino
acids where atomic motions can take place. The relation between
the space occupied by entities and the system dynamics is a broad
topic from granular material to urban and protein systems (Liang
and Dill, 2001; Majmudar and Behringer, 2005; Henzler-
Wildman and Kern, 2007; Majmudar et al., 2007; Barthelemy,
2011; Dorantes-Gilardi et al., 2018; Gheeraert et al., 2019;
Naganathan, 2019).

To analyze neighborhoods, a protein structure is modeled by
an amino acid network (AAN), where the nodes are amino acids
and the links are atomic interactions between amino acids,
inferred from atomic proximity (Dorantes-Gilardi et al.,
2018). The space occupied by neighborhoods is described in
terms of amino acids with the node degree and in terms of atoms
with the node weight (Methods). Classically, a unique cutoff
around the threshold for chemical interactions (5 Å) is used to
investigate protein features but here the neighborhoods are
computed at different cutoff distances to probe the space
occupancy at different spatial scales (Vuillon and Lesieur,
2015; Viloria et al., 2017). This condition is necessary to
track the multiple dynamics scales associated with functional
dynamics (Henzler-Wildman and Kern, 2007; Munoz and
Cerminara, 2016).

Our case study is the third PDZ domain of the synaptic protein
PDS-95 (PDB 1BE9) chosen because the functional impact of
most of its single amino-acid mutations is known from
experiments as well as some double mutations (McLaughlin
et al., 2012; Salinas and Ranganathan, 2018). Thus, this case
study is appropriate for future validation of the network measures
to link dynamics and function.

METHODS

Starting from the Protein Data Bank (PDB) data, protein
structures are modeled using the Amino Acid Network
(AAN), an established model in Computational Biology
(Dorantes-Gilardi et al., 2018). The AAN is a graph G � (V;
E), with V is the set of the N nodes of the network (vertices of the
graph) and E the set of links of the network (edges of the graph).

Nodes of the AAN: Each node in the AAN corresponds to one
amino acid of the protein’s structure named according to the
protein sequence:

V � {i|i is an amino acid}. (1)

Links of the AAN: A link is an atomic interaction defined by
atomic proximity: two amino acids i and j are connected if there
exists at least one couple of atoms, one belonging to i and one
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belonging to j, at a distance lower or equal to a given threshold
(Cutoff distance c),

E � {(i, j)
∣∣∣∣i, j ∈ Vwith i≠ j and∃(atomi ∈ i, atomj ∈ j)with dist

(atomi, atomj)≤ c}.
(2)

Link weights of the AAN: Each link is weighted according to
the number of atomic couples that respect the cutoff condition:

wij �
∣∣∣∣∣{(atomi ∈ i, atomj ∈ j)with dist(atomi, atomj)

≤ c and i≠ j}
∣∣∣∣∣

(3)

where the pipe symbol | denotes the cardinality of the set (i.e. the
number of elements of the set). When c � 5 Å, that is a threshold
for chemical interactions, the link weights measure the number of
atomic interactions between two amino acids.

Packing around amino acids: In the AAN, the node degree ki,
defined as the number of amino acid neighbors of a node i,
measures the amino-acid packing around the amino acid i,

referred to as the amino-acid neighborhood. The node weight
wi is defined as the sum over all the weights of the links that
connect the node i to its neighbors (wi � ∑

j∈N(i)
wij with N(i) the

set of neighbors of node i). The node weight measures the atomic
packing around the amino acid i, referred to as the atomic
neighborhood.

Cutoff distance: Different cutoff distances are used in this
study such that the packing around each amino acid is described
at different length-scale via the neighborhoods at variable cutoffs.
The cutoffs are integers and range from 3 to 11 Å such that the
packing within chemical reach (≤5 Å) and above chemical reach
(>5 Å) are monitored. The rational is to distinguish amino acids
by their ‘chemical’ neighborhoods and above chemical reach
neighborhoods to probe space occupancy involved in multiple
spatiotemporal scales.

Plateau versus linear degree dependencies: The degree
dependency with the cutoff is plotted. Some amino acids show
a linear dependency of the degree with the cutoff and are referred
to as linear amino acids. Some amino acids exhibit a plateau over

FIGURE 1 |Cutoff dependencies of the weight and the degree of the AAN nodes of the 1BE9 structure. (A) Examples of the weight cutoff dependencies for glycine,
the smallest amino acid. The increase is quadratic (R2 ∼1). (B) Example of the degree cutoff dependencies for the same amino acids. One is linear (R2 ∼0,98, top panel),
and the other has a plateau between cutoffs 5 and 6 Å (bottom panel). (C) 1D-barcode: cutoff dependencies of the 1BE9 sequence. The amino acids are colored
according to the length of their extended side chains (blue: length <3 Å, orange: 3 Å ≤ length <5 Å, and green: length ≥5 Å). The colored horizontal bars represent
the secondary structures along the sequence. The star is for buried amino acids, and the numbers indicate the cutoff range of the plateau: four is for a plateau at cutoffs 4
to 5 Å, 5 is for plateau at cutoffs five to 6 Å, six is for a plateau at cutoffs 6 to 7 Å and four–six is for a plateau at cutoffs 4 to 6 Å.
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some cutoffs determined with the derivative (here just Δk because
the cutoffs are consecutive integers) equals to zero or equals to
one if and only if the derivative at cutoffs before the plateau is
equal to four or more. We refer to these amino acids as plateau
amino acids.

Amino acid side chain length classification: Amino acids are
classified by side-chain lengths as follows. Side chain length <3 Å
are small amino acids (G, A, P, S, V, I, T, C), side chain length
between 3 Å ≤ length <5 Å are medium amino acids (L, E, D, H,
N, Q, M) and side chain length ≥5 Å are big amino acids (F, K,
R, Y, W).

1D-barcode: The 1D-barcode represents the degree
dependency with the cutoff (plateau- or linear-) of the amino
acids of the 1BE9 sequence (1D).

2D-barcode: The 2D-barcode represents the degree
dependency with the cutoff of the amino acids of the 1BE9
sequence (1D) at variable cutoffs (2D).

RESULTS AND DISCUSSION

The AAN of the PDZ domain of the synaptic protein PDS-95 is
generated using the PDB 1BE9 and the weights and degrees of
every amino acid nodes are computed at different cutoff distances

(Methods). We recall that the weight of a node describes its
atomic packing, referred to as its atomic neighborhood while the
degree of a node describes its amino-acid packing referred to as its
amino-acid neighborhood. The atomic neighborhood takes into
account the features of the amino acids. The weight and degree
cutoff dependencies are plotted to investigate how atoms and
amino acid neighbors occupy the space around each amino acid
at different scales in the protein structure. This is a proxy of the
dynamics as the more space occupied the less space left available
for atomic motions.

The weight cutoff dependencies are quadratic indicating that the
weight (the number of atomic interactions) increases with the square
of the cutoff distance, i.e., with a surface of contact between atoms
rather than a volume of contacts (Figure 1A; Supplementary Figure
S1A). The degree cutoff dependencies are not quadratic but exhibit
two distinct behaviors: neighborhoods with linear dependency with
the cutoff (Figure 1B, top in the protein structure) and
neighborhoods with a plateau over some cutoffs (Figure 1B,
bottom and Supplementary Figure S1B). We call linear (plateau)
amino acids, the amino acids whose degree follows a linear (plateau)
dependency with the cutoff. The plateau is due to a lack of amino
acid neighbors at higher cutoffs and not to a lack of atoms since the
weight cutoff dependencies have no plateau (Supplementary Figure
S1A). The plateau can result from having big amino acid neighbors

FIGURE 2 | Customized amino acid neighborhoods. (A) Degree cutoff dependencies of the small, medium and big neighbors of the AAN nodes of the 1BE9
structure. The amino acids are colored according to the length of their extended side chains (blue: length <3 Å, orange: 3 Å ≤ length < 5 Å, green: length ≥ 5 Å). The Inset
is the total degree cutoff dependency. Top row: neighbors sizes leading to plateau degree dependencies. Bottom row: neighbors sizes leading to linear degree
dependencies (B) 2D-barcode. The percentage of small, medium and big side chain neighbors are indicated for each amino acid of the 1BE9 sequence (1D,
horizontal axis) and at each cutoff (2D, vertical axis). On the sequence (horizontal), (A,B) stand for amino acids from the protein and the ligand, respectively.
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that occupy the space over more than one cutoff versus having small
amino acids that lead to a linear increase over the same cutoffs
(Figure 2A).

Ten nodes have a plateau between 4 and 5 Å, twenty between 5
and 6 Å, one between 6 and 7 Å and six over 4 to 6 Å (Figure 1B).

All amino-acid types observed in 1BE9 except histidine which
appears only twice, adopt plateau and linear neighborhoods
(Figure 1C). Methionine, cysteine and tryptophan are not
present in 1BE9. Twenty-six surface-exposed amino acids out of
fifty-eight are plateau (∼half) and sixteen buried amino acids out of
fifty-seven are plateau (∼a third). 27% of the β-strand amino acids
are plateau against 35 and 48% for loops and α-helix amino acids,
respectively. Thus the plateau and linear neighborhoods are achieved
regardless amino-acid type, position in the structure and secondary
structure, which makes the degree cutoff dependencies insensitive to
amino acid features as global modes. Together with the plateau built
at chemical-interaction threshold, it is consistent with the degree
cutoff dependencies probing collective motions. Accordingly, a 1D-
barcode representing the plateau- or linear-neighborhood of each
amino acid of the sequence could be used to characterize themultiple
scale dynamic features of a protein (Figure 1C).

To have a plateau or a linear degree cutoff dependency for one
amino acid type implies customizing neighborhoods as illustrated
by the higher number of big amino acid neighbors for plateau
amino acids than linear amino acids (Figure 2A, compare top
and bottom). To have it for any amino acid type also implies
neighborhood customized to the central amino acids as seen on
Figure 2A (compare across amino acid types). Thus, the linear
and plateau neighborhoods accessible to all amino acids are
nevertheless built from specific amino-acid neighborhoods
(Figure 2A; Supplementary Figure S2). This means the
protein dynamic-functional specificity could be embedded in
the collective motions through specific space occupancy arising
from neighborhood diversities. A 2D-barcode representing the
amino acid neighborhood size specificities of each amino acid of
the protein sequence (Figure 2B, horizontal axis) at different
cutoffs (Figure 2B, vertical axis) could be used to characterize the
protein specific embedded dynamics (Figure 2B).

We can see from this single case 2D barcode classes of
neighborhoods in terms of neighbor sizes which anticipate
classes of dynamics and of responses upon mutations
supporting the possibility to use the data for mining dynamics
and its relation to function (Figure 2B). Some positions are
composed of a majority of one-size neighbors over the cutoffs
(e.g. small neighbors: R318, T321, G322, L349, N363; medium:
F301, G303, R312, G333, G351, A390) while others are a mixture
of neighbor sizes (e.g. A308, I341, K355, A383, Q391, E401). In
addition, some positions change neighbor sizes over the cutoffs
(e.g., E396, E401). However, these sole data do not have the

statistics to make hypothesis on which neighborhood classes lead
to which dynamic classes or draw conclusion between the
neighborhood specificity, dynamics and function.

CONCLUSION

The study shows that amino acid neighborhoods and not only
amino acids and amino acid pairs, contain information relevant to
protein dynamics, opening a new perspective to explore the link
between dynamics and function. The 1D barcode of, for example, an
enzyme and a pore-forming toxin can be compared to determine
common and distinct features which can in turn be analyzed with
the 2D barcode to survey both the neighborhood diversity of the
common 1Dbarcode features and of the distinct 1D barcode features
assuming the former identifies positions functionally insensitive
(protein aspecific) and the later positions functionally sensitive
(protein specific). The analysis of each protein variants can be
used to validate the assumption as well as database analysis.

This will contribute to diagnosing dynamic functional faults
and dynamic functional diversity.
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