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Given the abundant computational resources and the huge amount of data of
compound–protein interactions (CPIs), constructing appropriate datasets for
learning and evaluating prediction models for CPIs is not always easy. For this
study, we have developed a web server to facilitate the development and
evaluation of prediction models by providing an appropriate dataset according to
the task. Our web server provides an environment and dataset that aid model
developers and evaluators in obtaining a suitable dataset for both proteins and
compounds, in addition to attributes necessary for deep learning. With the web
server interface, users can customize the CPI dataset derived from ChEMBL by
setting positive and negative thresholds to be adjusted according to the user’s
definitions. We have also implemented a function for graphic display of the
distribution of activity values in the dataset as a histogram to set appropriate
thresholds for positive and negative examples. These functions enable effective
development and evaluation of models. Furthermore, users can prepare their task-
specific datasets by selecting a set of target proteins based on various criteria such as
Pfam families, ChEMBL’s classification, and sequence similarities. The accuracy and
efficiency of in silico screening and drug design using machine learning including deep
learning can therefore be improved by facilitating access to an appropriate dataset
prepared using our web server (https://binds.lifematics.work/).

Keywords: compound-protein interaction, CHEMBL, machine learning, interactive web server, deep learning,
datasets

1 INTRODUCTION

Identification of disease-causing proteins and compounds that act on those diseases is an important
starting point in the drug discovery process (Hughes et al., 2011). Over the last two decades, the
amounts of compound–protein interaction (CPI) data have been increasing rapidly because of
advances in experimental techniques such as high-throughput screening (HTS) (Bleicher et al., 2003;
Macarron et al., 2011). Considering the social effects of the spread of infectious diseases, as

Edited by:
Masahito Ohue,

Tokyo Institute of Technology, Japan

Reviewed by:
Jijun Tang,

University of South Carolina,
United States
Tunca Dogan,

Hacettepe University, Turkey

*Correspondence:
Kentaro Tomii

k-tomii@aist.go.jp

Specialty section:
This article was submitted to

Biological Modeling and Simulation,
a section of the journal

Frontiers in Molecular Biosciences

Received: 14 August 2021
Accepted: 15 November 2021
Published: 06 December 2021

Citation:
Ikeda K, Doi T, Ikeda M and Tomii K
(2021) PreBINDS: An Interactive Web
Tool to Create Appropriate Datasets

for Predicting
Compound–Protein Interactions.

Front. Mol. Biosci. 8:758480.
doi: 10.3389/fmolb.2021.758480

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 7584801

BRIEF RESEARCH REPORT
published: 06 December 2021

doi: 10.3389/fmolb.2021.758480

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.758480&domain=pdf&date_stamp=2021-12-06
https://www.frontiersin.org/articles/10.3389/fmolb.2021.758480/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.758480/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.758480/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.758480/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.758480/full
https://binds.lifematics.work/
http://creativecommons.org/licenses/by/4.0/
mailto:k-tomii@aist.go.jp
https://doi.org/10.3389/fmolb.2021.758480
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.758480


exemplified by COVID-19, early discovery of therapeutic agents
is highly anticipated (Cui et al., 2019). Improving drug
development efficiency using known CPI data is necessary
because it can shorten times to market and reduce costs.

Machine learning (ML) methods using CPI data have already
been regarded as effective means for the hit-to-lead stage (Ghasemi
et al., 2018; Ferreira and Andricopulo, 2019). In recent years, the
development of artificial intelligence (AI) using deep learning has
been remarkable. In fact, AI prediction models have already been
applied to various issues; further enhanced efficiency of drug
discovery is expected (Tsubaki et al., 2019; Beker et al., 2020;
Kojima et al., 2020). In the field of ML-based CPI prediction
research, some widely used benchmark datasets and development
methods have been proposed (He et al., 2017; Wu et al., 2018;
Rifaioglu et al., 2020, 2021).

The accuracy of prediction models is generally known to
depend heavily on the quality and quantity of training data.
Nevertheless, it is often not easy to obtain a suitable dataset for
creating a reliable prediction model. Particularly in the fields of
biochemistry and medicinal chemistry, it is difficult for non-
specialists to obtain high-quality CPI data and to distinguish
between positive and negative cases.

A widely used database of bioactive molecules is ChEMBL.
Because the collected data are derived mainly from the literature,
they include various CPI data points with different activity types
and values (Mendez et al., 2019). Although the ChEMBL interface
provides a useful function for searching and extracting
downloadable activity data, it is unsuitable for directly
generating positive/negative datasets for ML. PubChem
provides free access to obtain large amounts of CPI data from
results of screening experiments (Kim et al., 2021). However,
these data are not provided to users as a binary format that can be
used easily for ML. The chemical structures obtained from these
databases are provided by the Simplified Molecular Input Line
Entry System (SMILES) (Weininger, 1988) and MDL molfile
(Dalby et al., 1992). Also, LIT-PCBA (Tran-Nguyen et al., 2020)
was released as a structure-based virtual screening benchmark
dataset. It also provided for MOL2 and SMILES formats.
Therefore, to use it as input for ML, one must use chemical
calculation programs such as CDK (Willighagen et al., 2017)1.

Then the data must be encoded into physicochemical properties and
structural descriptors (fingerprints). As a result, users must bear
heavy burdens to prepare suitable CPI datasets for their research.

For this study, we have developed a web server that simplifies
creation of CPI datasets for the development and evaluation of
prediction models. Because the compound data relies on curated
ChEMBLdata, it includes high-quality chemical data such as drug-like
small molecule compounds. The target data are based on proteins
from theUniProt database (Bateman et al., 2021), which iswell known
as a reviewed protein sequence database. We also provide
classifications of target proteins based on the Pfam clan (Mistry
et al., 2021), ChEMBL’s protein target classification, and sequence
similarity. This web server provides a new environment that enables
developers to build and evaluate their prediction models more
effectively and which might reduce costs of finding drug candidates.

2 MATERIALS AND METHODS

2.1 Preparation of Compound Attributes
We used ChEMBL to obtain chemical data of compounds. From
ChEMBL release 28, bioactive compounds associated with single
protein targets were collected in the molfile format as compound
structural data. Next, using Open Babel (O’Boyle et al., 2011)
implemented in RDKit (ver. 2020.09.3), a library for chemical
calculations, the compound structure data was converted to four
fingerprints: Extended Connectivity Fingerprints four and 6 (ECFP-4
and ECFP-6) (Rogers and Hahn, 2010), MACCS keys, and FP2.

2.2 Preparation of CPI Data and Protein
Attributes
Based on the ChEMBL activity data, we extracted target proteins
with protein IDs (i.e., UniProt accession numbers). We collected
only activity data that were assigned pChEMBL values (negative
logarithms of activity values in nM units). Next, sequence data
were obtained from the UniProt Knowledgebase. Protein families
and domains for the target proteins were annotated with the
cross-reference information from the Pfam database (release
33.1). Each target sequence was labeled with its accession
number. Because the attribute (feature) of a target protein, its
Position-Specific Scoring Matrix (PSSM) was calculated using the
Blast+ 2.11.0 program with adjustment (Oda et al., 2017) search
against the UniRef90 database (Suzek et al., 2007), which provides
hiding of redundant sets of sequences from UniProt.

2.3 Clustering Methods
To provide a diverse set of compounds, we clustered the compounds
using the MiniBatch–KMeans method of the scikit-learn program
(0.22.1) based on ECFP4 fingerprint similarity. Here, we set K �
10,000. Target proteins were clustered in terms of their sequence
similarity. We clustered the collected target proteins using different
similarity thresholds (40, 50, 90%) with Cluster database at high
identity with tolerance (CD-HIT, v4.8.1; Li and Godzik, 2006), which
is a fast and efficient program for clustering large-scale protein
sequences. Next, we pre-computed and registered the clustering
data into the internal database. As a result, users can easily and

TABLE 1 | Data contents.

Type Count

Compounds 1,331,700
Assays 338,454
Targets 8,341
Pfam families 2,733
Pfam clans 635
CD-HIT clusters (90%) 6,649
CD-HIT clusters (50%) 4,504
CD-HIT clusters (40%) 3,890
PDB ligands 12,980

1http://www.rdkit.org[2020.09.3]
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quickly select a set of representative target proteins having sequence
identity higher than a specified similarity threshold on the interface.

2.4 Representative Negative Sample
Generation
When selecting negative examples, we used a method that
generates a set of negatives that do not resemble the known
compounds of a given target. The ChEMBL data are generally

known to include more positive data than negative data, which is
unbalanced as a training dataset for activity prediction. Therefore,
we modified a method for generating reliable negative data (Liu
et al., 2015). A credible negative sample is based on the
assumption that proteins differing from the known and
predicted targets of a particular compound are unlikely to be
the targets of that compound. A representative negative set was
extracted from a cluster to which positive data do not belong. The
negative prediction model was made using support vector

FIGURE 1 | Partial view of the web server interface, which is designed to be simple and easy to use, allowing users to select and retrieve compound–protein
interaction datasets quickly and interactively. Users configures their dataset in five steps: (A) Select protein targets (“Target Selection”), (B) Select activity types (“Types”),
(C) Set activity data thresholds (“Criteria”), (D) Select compound and target attributes for output (“Attributes”), and (E) Set and generate negative data (“Representative
Negative Sample Generation”). At the top of the interface, the “How to use” link leads to a brief instruction of this web server. “About us” and “Cite us” links
respectively lead to information of developers and citations of this web server. “Load Example Setting” buttons provide sample setting parameters for generating
datasets of two representative targets (A2AR and CDK2) and download links to obtain the output files. At the bottom of the interface, users can find the estimated time to
complete the submitted dataset generation job in advance.
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machine (SVM). The scikit-learn package sklearn.svm.SVC was
used for the SVM calculation.

2.5 Schema and Data Contents
The database schema comprises 11 tables (Supplementary Figure
S1). There are five table groups: ChEMBL derived data
(compounds, activities, assays), UniProt target annotation data,
Pfam family data, clustering results of proteins, and ligand
mapping data. As shown in Table 1, this web server contains
1.33 million compounds (chemical molecules) and 8,341 single
protein targets. These protein targets were classified into 2,733
Pfam families, and not all but many of them belong to 635 Pfam
clans. UniChem (Chambers et al., 2013) was used to identify the
ligands found in the Protein Data Bank (Berman et al., 2000).
Currently, 12,980 PDB ligands have been registered in this system.

3 RESULTS AND DISCUSSION

The web server was built as a relational database management
system using Python 3.8.10 programming language, Django 3.2.2,
Vue 2.6.11, and SQLite. It provides a simple and interactive
graphical user interface (GUI).

3.1 Web Interface
Users can use the interface easily by displaying the top page
without logging in (Figure 1). The interface allows users to
search for protein targets and to create datasets for obtaining
data. The procedure on this web tool includes the following
steps: 1) selection of target proteins (“Target Selection”), 2)
selection of activity types (“Types”), 3) setting of criteria for
activity values (“Criteria”), 4) selection of attributes
(“Attributes”), 5) generation of negative data samples, and 6)
download of output data. The example data button (load
example setting) has been implemented. In the load example
setting function, the target is set to A2A receptor or CDK2. The
appropriate target proteins, activity types, activity values and
margin, attributes, and negative sample setting are given. With
this feature, users can test the web server. We also implemented
a download button to provide output data. With this feature,
users can readily understand the results from the web server in
advance.

3.1.1 Selection of Target Proteins
Users can customize the list of target proteins to generate a CPI
dataset (Figures 2A–C) based on classification of three types below.

FIGURE 2 | Selecting target proteins. (A) Selection of protein families according to Pfam clans. A list of protein families is displayed by the selected Pfam clan. Users
can select one of the Pfam IDs and press the “ADD” button to provide the corresponding protein accessions to the form at the bottom. (B) Selection of target proteins
according to ChEMBL target classification. (C) Selection of target proteins by sequence similarity based on pre-computed CD-HIT clustering results. The user can select
the sequence similarity threshold for clustering from 90, 50, and 40% to provide the corresponding protein accessions.
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The Pfam family is classified based on the similarity of domains,
which are functional regions in proteins. The Pfam clan is a group of
Pfam families that have been inferred as evolutionarily related. The
collected targets were annotated using domain and clan/family data
extracted from the Pfam database (ver. 33.1). When creating a CPI
dataset in terms of the evolutionary relevance of target proteins, users
can select the target protein(s) of interest in the list of Pfam families
according to Pfam’s classification (Figure 2A). When creating a CPI
dataset in terms of biological function and pharmacology, users can
select the target protein(s) of interest according to the ChEMBL target
classification. The classification relies on the ChEMBL’s protein target
classification, which is a hierarchical classification and manually
defined by experts in the field of drug discovery based on protein
functions, enzymatic reactions, pharmacological actions, and so on
(Gaulton et al., 2012). In addition, users can use pre-computed CD-
HIT clustering results to select target proteins by sequence similarity
and generation of a list of target proteins (Figure 2C). The resulting
target proteins are listed as UniProt accessions. We have also
implemented the ability to delete each UniProt accession. With

this deletion capability, a user can easily customize the list of
UniProt accessions for the target proteins.

3.1.2 Selection of Activity Types
Users can customize datasets by specifying activity types and the
range of activity values on the interface (Figures 3A–C). Users
select a single or multiple activity type(s) among EC50, IC50, AC50,
Kd, Ki, and potency for the activity data associated with the
selected targets (Figure 3A). In addition, the "All” button allows
the user to select all options easily.

3.1.3 Setting of Criteria for Activity Values
By inputting the upper and lower thresholds of the activity value,
positive and negative data are definable. On the interface, the
activity value is displayed as the negative logarithm (-Log)
(Figure 3B) or the concentration of dose–response experiment
(nM) (Figure 3C). Users can use a slider bar to set their
thresholds easily for positive and negative data. In addition,
the range of the margin between positive and negative datasets

FIGURE 3 | Customizing compound–protein interaction datasets. Activity data are filtered by activity types and a range of activity values. (A) Selection of activity
types from EC50, IC50, AC50, Kd, Ki, and potency. (B) Setting thresholds for negative logarithms of activity values in nM units. Users can easily set thresholds for positive
and negative data using a slide bar if selecting “−Log” of radio button. The graphical display of the histogram of the activity values and the counter of the number of activity
values help the user to set the appropriate threshold values. (C) Users can directly input concentration thresholds for activity values (nM) of positive and negative
data if checking “Conc” of radio button. (D) Selection of compound and protein attributes for output. Users can select compound attributes from ECFP4, ECFP6, FP2,
andMACCS keys (Canonical SMILES by default), as well as protein attributes as PSSM (protein sequence by default). (E)Generation of representative negative samples.
Users can customize the amount of negative data for output. This function allows users to select the amount of negative sample generated from 1, 3, and 5 times the
amount of the positive sample.
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can be set arbitrarily by assignment of upper and lower thresholds
of concentration. A counter has also been incorporated, showing
the exact number of bioactive data points in the positive and
negative datasets. This featuremakes it easy for the user to visualize
using the histogram with the number of active values for the
training set. It is expected to be particularly helpful when adapting
to ML. For many targets, setting a low threshold of activity value
increases the number of compounds for learning, but it might
include non-specific binders. It is generally known that proper
thresholds andmargins differ depending on targets. Therefore, this
function helps moderate a dataset for effective prediction models.

3.1.4 Selection of Attributes for Output
Users choose attributes of proteins and compounds in the CPI
data for output (Figure 3D). As a compound attribute, users can
select from a single or multiple molecular fingerprint(s) (ECFP4,
ECFP6, FP2, and MACCS key). The canonical SMILES of the
selected compounds were outputted without selecting any option.
As a target attribute, protein sequence is output by default; PSSM
can be additionally selected.

3.1.5 Representative Negative Sample Generation
Users can customize the amount of negative data to output. This
function allows the users to choose between 1, 3, and 5 times the
amount of generated negative samples compared to number of
positive samples. Details of the procedure are presented in the
Materials and Methods section.

3.1.6 Download of Output Data
As described above, a non-redundant CPI dataset can be prepared
according to attributes and thresholds. Users click the “Generate”
button at the bottom of the top page to output a customized
dataset. It might take some time to request generation of the

dataset, so users can confirm the selected items and the status on
the result page (Figure 4). Finally, after clicking the download
button, users can obtain a compressed file formatted dataset that
includes protein and compound attributes.

4 CONCLUSION

A web server has been developed for generating datasets of
compound–protein interactions. This web server can provide a
ready-to-use CPI dataset for ML, including deep learning in
drug discovery and development. Obtaining the latest
compound and activity data from the ChEMBL and other
public databases is important for developing accurate
prediction models. For this reason, our web server shall be
updated regularly. Additional information will be imported
promptly from external resources. The web server is expected
to be useful for developing and evaluating ML models for
predicting protein–compound interactions, and for discovery
of new bioactive molecules.
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